000001 /* 000002 ** 2015-06-08 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This module contains C code that generates VDBE code used to process 000013 ** the WHERE clause of SQL statements. 000014 ** 000015 ** This file was originally part of where.c but was split out to improve 000016 ** readability and editabiliity. This file contains utility routines for 000017 ** analyzing Expr objects in the WHERE clause. 000018 */ 000019 #include "sqliteInt.h" 000020 #include "whereInt.h" 000021 000022 /* Forward declarations */ 000023 static void exprAnalyze(SrcList*, WhereClause*, int); 000024 000025 /* 000026 ** Deallocate all memory associated with a WhereOrInfo object. 000027 */ 000028 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 000029 sqlite3WhereClauseClear(&p->wc); 000030 sqlite3DbFree(db, p); 000031 } 000032 000033 /* 000034 ** Deallocate all memory associated with a WhereAndInfo object. 000035 */ 000036 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 000037 sqlite3WhereClauseClear(&p->wc); 000038 sqlite3DbFree(db, p); 000039 } 000040 000041 /* 000042 ** Add a single new WhereTerm entry to the WhereClause object pWC. 000043 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 000044 ** The index in pWC->a[] of the new WhereTerm is returned on success. 000045 ** 0 is returned if the new WhereTerm could not be added due to a memory 000046 ** allocation error. The memory allocation failure will be recorded in 000047 ** the db->mallocFailed flag so that higher-level functions can detect it. 000048 ** 000049 ** This routine will increase the size of the pWC->a[] array as necessary. 000050 ** 000051 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 000052 ** for freeing the expression p is assumed by the WhereClause object pWC. 000053 ** This is true even if this routine fails to allocate a new WhereTerm. 000054 ** 000055 ** WARNING: This routine might reallocate the space used to store 000056 ** WhereTerms. All pointers to WhereTerms should be invalidated after 000057 ** calling this routine. Such pointers may be reinitialized by referencing 000058 ** the pWC->a[] array. 000059 */ 000060 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 000061 WhereTerm *pTerm; 000062 int idx; 000063 testcase( wtFlags & TERM_VIRTUAL ); 000064 if( pWC->nTerm>=pWC->nSlot ){ 000065 WhereTerm *pOld = pWC->a; 000066 sqlite3 *db = pWC->pWInfo->pParse->db; 000067 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 000068 if( pWC->a==0 ){ 000069 if( wtFlags & TERM_DYNAMIC ){ 000070 sqlite3ExprDelete(db, p); 000071 } 000072 pWC->a = pOld; 000073 return 0; 000074 } 000075 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 000076 if( pOld!=pWC->aStatic ){ 000077 sqlite3DbFree(db, pOld); 000078 } 000079 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 000080 } 000081 pTerm = &pWC->a[idx = pWC->nTerm++]; 000082 if( p && ExprHasProperty(p, EP_Unlikely) ){ 000083 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 000084 }else{ 000085 pTerm->truthProb = 1; 000086 } 000087 pTerm->pExpr = sqlite3ExprSkipCollate(p); 000088 pTerm->wtFlags = wtFlags; 000089 pTerm->pWC = pWC; 000090 pTerm->iParent = -1; 000091 memset(&pTerm->eOperator, 0, 000092 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); 000093 return idx; 000094 } 000095 000096 /* 000097 ** Return TRUE if the given operator is one of the operators that is 000098 ** allowed for an indexable WHERE clause term. The allowed operators are 000099 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" 000100 */ 000101 static int allowedOp(int op){ 000102 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 000103 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 000104 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 000105 assert( TK_GE==TK_EQ+4 ); 000106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 000107 } 000108 000109 /* 000110 ** Commute a comparison operator. Expressions of the form "X op Y" 000111 ** are converted into "Y op X". 000112 ** 000113 ** If left/right precedence rules come into play when determining the 000114 ** collating sequence, then COLLATE operators are adjusted to ensure 000115 ** that the collating sequence does not change. For example: 000116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 000117 ** the left hand side of a comparison overrides any collation sequence 000118 ** attached to the right. For the same reason the EP_Collate flag 000119 ** is not commuted. 000120 */ 000121 static void exprCommute(Parse *pParse, Expr *pExpr){ 000122 u16 expRight = (pExpr->pRight->flags & EP_Collate); 000123 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 000124 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 000125 if( expRight==expLeft ){ 000126 /* Either X and Y both have COLLATE operator or neither do */ 000127 if( expRight ){ 000128 /* Both X and Y have COLLATE operators. Make sure X is always 000129 ** used by clearing the EP_Collate flag from Y. */ 000130 pExpr->pRight->flags &= ~EP_Collate; 000131 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 000132 /* Neither X nor Y have COLLATE operators, but X has a non-default 000133 ** collating sequence. So add the EP_Collate marker on X to cause 000134 ** it to be searched first. */ 000135 pExpr->pLeft->flags |= EP_Collate; 000136 } 000137 } 000138 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 000139 if( pExpr->op>=TK_GT ){ 000140 assert( TK_LT==TK_GT+2 ); 000141 assert( TK_GE==TK_LE+2 ); 000142 assert( TK_GT>TK_EQ ); 000143 assert( TK_GT<TK_LE ); 000144 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 000145 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 000146 } 000147 } 000148 000149 /* 000150 ** Translate from TK_xx operator to WO_xx bitmask. 000151 */ 000152 static u16 operatorMask(int op){ 000153 u16 c; 000154 assert( allowedOp(op) ); 000155 if( op==TK_IN ){ 000156 c = WO_IN; 000157 }else if( op==TK_ISNULL ){ 000158 c = WO_ISNULL; 000159 }else if( op==TK_IS ){ 000160 c = WO_IS; 000161 }else{ 000162 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 000163 c = (u16)(WO_EQ<<(op-TK_EQ)); 000164 } 000165 assert( op!=TK_ISNULL || c==WO_ISNULL ); 000166 assert( op!=TK_IN || c==WO_IN ); 000167 assert( op!=TK_EQ || c==WO_EQ ); 000168 assert( op!=TK_LT || c==WO_LT ); 000169 assert( op!=TK_LE || c==WO_LE ); 000170 assert( op!=TK_GT || c==WO_GT ); 000171 assert( op!=TK_GE || c==WO_GE ); 000172 assert( op!=TK_IS || c==WO_IS ); 000173 return c; 000174 } 000175 000176 000177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 000178 /* 000179 ** Check to see if the given expression is a LIKE or GLOB operator that 000180 ** can be optimized using inequality constraints. Return TRUE if it is 000181 ** so and false if not. 000182 ** 000183 ** In order for the operator to be optimizible, the RHS must be a string 000184 ** literal that does not begin with a wildcard. The LHS must be a column 000185 ** that may only be NULL, a string, or a BLOB, never a number. (This means 000186 ** that virtual tables cannot participate in the LIKE optimization.) The 000187 ** collating sequence for the column on the LHS must be appropriate for 000188 ** the operator. 000189 */ 000190 static int isLikeOrGlob( 000191 Parse *pParse, /* Parsing and code generating context */ 000192 Expr *pExpr, /* Test this expression */ 000193 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 000194 int *pisComplete, /* True if the only wildcard is % in the last character */ 000195 int *pnoCase /* True if uppercase is equivalent to lowercase */ 000196 ){ 000197 const char *z = 0; /* String on RHS of LIKE operator */ 000198 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 000199 ExprList *pList; /* List of operands to the LIKE operator */ 000200 int c; /* One character in z[] */ 000201 int cnt; /* Number of non-wildcard prefix characters */ 000202 char wc[3]; /* Wildcard characters */ 000203 sqlite3 *db = pParse->db; /* Database connection */ 000204 sqlite3_value *pVal = 0; 000205 int op; /* Opcode of pRight */ 000206 int rc; /* Result code to return */ 000207 000208 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 000209 return 0; 000210 } 000211 #ifdef SQLITE_EBCDIC 000212 if( *pnoCase ) return 0; 000213 #endif 000214 pList = pExpr->x.pList; 000215 pLeft = pList->a[1].pExpr; 000216 if( pLeft->op!=TK_COLUMN 000217 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 000218 || IsVirtual(pLeft->pTab) /* Value might be numeric */ 000219 ){ 000220 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must 000221 ** be the name of an indexed column with TEXT affinity. */ 000222 return 0; 000223 } 000224 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ 000225 000226 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 000227 op = pRight->op; 000228 if( op==TK_VARIABLE ){ 000229 Vdbe *pReprepare = pParse->pReprepare; 000230 int iCol = pRight->iColumn; 000231 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 000232 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 000233 z = (char *)sqlite3_value_text(pVal); 000234 } 000235 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 000236 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 000237 }else if( op==TK_STRING ){ 000238 z = pRight->u.zToken; 000239 } 000240 if( z ){ 000241 cnt = 0; 000242 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 000243 cnt++; 000244 } 000245 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 000246 Expr *pPrefix; 000247 *pisComplete = c==wc[0] && z[cnt+1]==0; 000248 pPrefix = sqlite3Expr(db, TK_STRING, z); 000249 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; 000250 *ppPrefix = pPrefix; 000251 if( op==TK_VARIABLE ){ 000252 Vdbe *v = pParse->pVdbe; 000253 sqlite3VdbeSetVarmask(v, pRight->iColumn); 000254 if( *pisComplete && pRight->u.zToken[1] ){ 000255 /* If the rhs of the LIKE expression is a variable, and the current 000256 ** value of the variable means there is no need to invoke the LIKE 000257 ** function, then no OP_Variable will be added to the program. 000258 ** This causes problems for the sqlite3_bind_parameter_name() 000259 ** API. To work around them, add a dummy OP_Variable here. 000260 */ 000261 int r1 = sqlite3GetTempReg(pParse); 000262 sqlite3ExprCodeTarget(pParse, pRight, r1); 000263 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 000264 sqlite3ReleaseTempReg(pParse, r1); 000265 } 000266 } 000267 }else{ 000268 z = 0; 000269 } 000270 } 000271 000272 rc = (z!=0); 000273 sqlite3ValueFree(pVal); 000274 return rc; 000275 } 000276 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 000277 000278 000279 #ifndef SQLITE_OMIT_VIRTUALTABLE 000280 /* 000281 ** Check to see if the given expression is of the form 000282 ** 000283 ** column OP expr 000284 ** 000285 ** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a 000286 ** column of a virtual table. 000287 ** 000288 ** If it is then return TRUE. If not, return FALSE. 000289 */ 000290 static int isMatchOfColumn( 000291 Expr *pExpr, /* Test this expression */ 000292 unsigned char *peOp2 /* OUT: 0 for MATCH, or else an op2 value */ 000293 ){ 000294 static const struct Op2 { 000295 const char *zOp; 000296 unsigned char eOp2; 000297 } aOp[] = { 000298 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 000299 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 000300 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 000301 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 000302 }; 000303 ExprList *pList; 000304 Expr *pCol; /* Column reference */ 000305 int i; 000306 000307 if( pExpr->op!=TK_FUNCTION ){ 000308 return 0; 000309 } 000310 pList = pExpr->x.pList; 000311 if( pList==0 || pList->nExpr!=2 ){ 000312 return 0; 000313 } 000314 pCol = pList->a[1].pExpr; 000315 if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){ 000316 return 0; 000317 } 000318 for(i=0; i<ArraySize(aOp); i++){ 000319 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 000320 *peOp2 = aOp[i].eOp2; 000321 return 1; 000322 } 000323 } 000324 return 0; 000325 } 000326 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 000327 000328 /* 000329 ** If the pBase expression originated in the ON or USING clause of 000330 ** a join, then transfer the appropriate markings over to derived. 000331 */ 000332 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 000333 if( pDerived ){ 000334 pDerived->flags |= pBase->flags & EP_FromJoin; 000335 pDerived->iRightJoinTable = pBase->iRightJoinTable; 000336 } 000337 } 000338 000339 /* 000340 ** Mark term iChild as being a child of term iParent 000341 */ 000342 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 000343 pWC->a[iChild].iParent = iParent; 000344 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 000345 pWC->a[iParent].nChild++; 000346 } 000347 000348 /* 000349 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 000350 ** a conjunction, then return just pTerm when N==0. If N is exceeds 000351 ** the number of available subterms, return NULL. 000352 */ 000353 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 000354 if( pTerm->eOperator!=WO_AND ){ 000355 return N==0 ? pTerm : 0; 000356 } 000357 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 000358 return &pTerm->u.pAndInfo->wc.a[N]; 000359 } 000360 return 0; 000361 } 000362 000363 /* 000364 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 000365 ** two subterms are in disjunction - they are OR-ed together. 000366 ** 000367 ** If these two terms are both of the form: "A op B" with the same 000368 ** A and B values but different operators and if the operators are 000369 ** compatible (if one is = and the other is <, for example) then 000370 ** add a new virtual AND term to pWC that is the combination of the 000371 ** two. 000372 ** 000373 ** Some examples: 000374 ** 000375 ** x<y OR x=y --> x<=y 000376 ** x=y OR x=y --> x=y 000377 ** x<=y OR x<y --> x<=y 000378 ** 000379 ** The following is NOT generated: 000380 ** 000381 ** x<y OR x>y --> x!=y 000382 */ 000383 static void whereCombineDisjuncts( 000384 SrcList *pSrc, /* the FROM clause */ 000385 WhereClause *pWC, /* The complete WHERE clause */ 000386 WhereTerm *pOne, /* First disjunct */ 000387 WhereTerm *pTwo /* Second disjunct */ 000388 ){ 000389 u16 eOp = pOne->eOperator | pTwo->eOperator; 000390 sqlite3 *db; /* Database connection (for malloc) */ 000391 Expr *pNew; /* New virtual expression */ 000392 int op; /* Operator for the combined expression */ 000393 int idxNew; /* Index in pWC of the next virtual term */ 000394 000395 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 000396 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 000397 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 000398 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 000399 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 000400 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 000401 if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 000402 if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; 000403 /* If we reach this point, it means the two subterms can be combined */ 000404 if( (eOp & (eOp-1))!=0 ){ 000405 if( eOp & (WO_LT|WO_LE) ){ 000406 eOp = WO_LE; 000407 }else{ 000408 assert( eOp & (WO_GT|WO_GE) ); 000409 eOp = WO_GE; 000410 } 000411 } 000412 db = pWC->pWInfo->pParse->db; 000413 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 000414 if( pNew==0 ) return; 000415 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 000416 pNew->op = op; 000417 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 000418 exprAnalyze(pSrc, pWC, idxNew); 000419 } 000420 000421 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 000422 /* 000423 ** Analyze a term that consists of two or more OR-connected 000424 ** subterms. So in: 000425 ** 000426 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 000427 ** ^^^^^^^^^^^^^^^^^^^^ 000428 ** 000429 ** This routine analyzes terms such as the middle term in the above example. 000430 ** A WhereOrTerm object is computed and attached to the term under 000431 ** analysis, regardless of the outcome of the analysis. Hence: 000432 ** 000433 ** WhereTerm.wtFlags |= TERM_ORINFO 000434 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 000435 ** 000436 ** The term being analyzed must have two or more of OR-connected subterms. 000437 ** A single subterm might be a set of AND-connected sub-subterms. 000438 ** Examples of terms under analysis: 000439 ** 000440 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 000441 ** (B) x=expr1 OR expr2=x OR x=expr3 000442 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 000443 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 000444 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 000445 ** (F) x>A OR (x=A AND y>=B) 000446 ** 000447 ** CASE 1: 000448 ** 000449 ** If all subterms are of the form T.C=expr for some single column of C and 000450 ** a single table T (as shown in example B above) then create a new virtual 000451 ** term that is an equivalent IN expression. In other words, if the term 000452 ** being analyzed is: 000453 ** 000454 ** x = expr1 OR expr2 = x OR x = expr3 000455 ** 000456 ** then create a new virtual term like this: 000457 ** 000458 ** x IN (expr1,expr2,expr3) 000459 ** 000460 ** CASE 2: 000461 ** 000462 ** If there are exactly two disjuncts and one side has x>A and the other side 000463 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 000464 ** WHERE clause of the form "x>=A". Example: 000465 ** 000466 ** x>A OR (x=A AND y>B) adds: x>=A 000467 ** 000468 ** The added conjunct can sometimes be helpful in query planning. 000469 ** 000470 ** CASE 3: 000471 ** 000472 ** If all subterms are indexable by a single table T, then set 000473 ** 000474 ** WhereTerm.eOperator = WO_OR 000475 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 000476 ** 000477 ** A subterm is "indexable" if it is of the form 000478 ** "T.C <op> <expr>" where C is any column of table T and 000479 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 000480 ** A subterm is also indexable if it is an AND of two or more 000481 ** subsubterms at least one of which is indexable. Indexable AND 000482 ** subterms have their eOperator set to WO_AND and they have 000483 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 000484 ** 000485 ** From another point of view, "indexable" means that the subterm could 000486 ** potentially be used with an index if an appropriate index exists. 000487 ** This analysis does not consider whether or not the index exists; that 000488 ** is decided elsewhere. This analysis only looks at whether subterms 000489 ** appropriate for indexing exist. 000490 ** 000491 ** All examples A through E above satisfy case 3. But if a term 000492 ** also satisfies case 1 (such as B) we know that the optimizer will 000493 ** always prefer case 1, so in that case we pretend that case 3 is not 000494 ** satisfied. 000495 ** 000496 ** It might be the case that multiple tables are indexable. For example, 000497 ** (E) above is indexable on tables P, Q, and R. 000498 ** 000499 ** Terms that satisfy case 3 are candidates for lookup by using 000500 ** separate indices to find rowids for each subterm and composing 000501 ** the union of all rowids using a RowSet object. This is similar 000502 ** to "bitmap indices" in other database engines. 000503 ** 000504 ** OTHERWISE: 000505 ** 000506 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 000507 ** zero. This term is not useful for search. 000508 */ 000509 static void exprAnalyzeOrTerm( 000510 SrcList *pSrc, /* the FROM clause */ 000511 WhereClause *pWC, /* the complete WHERE clause */ 000512 int idxTerm /* Index of the OR-term to be analyzed */ 000513 ){ 000514 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 000515 Parse *pParse = pWInfo->pParse; /* Parser context */ 000516 sqlite3 *db = pParse->db; /* Database connection */ 000517 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 000518 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 000519 int i; /* Loop counters */ 000520 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 000521 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 000522 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 000523 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 000524 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 000525 000526 /* 000527 ** Break the OR clause into its separate subterms. The subterms are 000528 ** stored in a WhereClause structure containing within the WhereOrInfo 000529 ** object that is attached to the original OR clause term. 000530 */ 000531 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 000532 assert( pExpr->op==TK_OR ); 000533 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 000534 if( pOrInfo==0 ) return; 000535 pTerm->wtFlags |= TERM_ORINFO; 000536 pOrWc = &pOrInfo->wc; 000537 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); 000538 sqlite3WhereClauseInit(pOrWc, pWInfo); 000539 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 000540 sqlite3WhereExprAnalyze(pSrc, pOrWc); 000541 if( db->mallocFailed ) return; 000542 assert( pOrWc->nTerm>=2 ); 000543 000544 /* 000545 ** Compute the set of tables that might satisfy cases 1 or 3. 000546 */ 000547 indexable = ~(Bitmask)0; 000548 chngToIN = ~(Bitmask)0; 000549 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 000550 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 000551 WhereAndInfo *pAndInfo; 000552 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 000553 chngToIN = 0; 000554 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 000555 if( pAndInfo ){ 000556 WhereClause *pAndWC; 000557 WhereTerm *pAndTerm; 000558 int j; 000559 Bitmask b = 0; 000560 pOrTerm->u.pAndInfo = pAndInfo; 000561 pOrTerm->wtFlags |= TERM_ANDINFO; 000562 pOrTerm->eOperator = WO_AND; 000563 pAndWC = &pAndInfo->wc; 000564 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); 000565 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 000566 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 000567 sqlite3WhereExprAnalyze(pSrc, pAndWC); 000568 pAndWC->pOuter = pWC; 000569 if( !db->mallocFailed ){ 000570 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 000571 assert( pAndTerm->pExpr ); 000572 if( allowedOp(pAndTerm->pExpr->op) 000573 || pAndTerm->eOperator==WO_MATCH 000574 ){ 000575 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 000576 } 000577 } 000578 } 000579 indexable &= b; 000580 } 000581 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 000582 /* Skip this term for now. We revisit it when we process the 000583 ** corresponding TERM_VIRTUAL term */ 000584 }else{ 000585 Bitmask b; 000586 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 000587 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 000588 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 000589 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 000590 } 000591 indexable &= b; 000592 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 000593 chngToIN = 0; 000594 }else{ 000595 chngToIN &= b; 000596 } 000597 } 000598 } 000599 000600 /* 000601 ** Record the set of tables that satisfy case 3. The set might be 000602 ** empty. 000603 */ 000604 pOrInfo->indexable = indexable; 000605 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 000606 000607 /* For a two-way OR, attempt to implementation case 2. 000608 */ 000609 if( indexable && pOrWc->nTerm==2 ){ 000610 int iOne = 0; 000611 WhereTerm *pOne; 000612 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 000613 int iTwo = 0; 000614 WhereTerm *pTwo; 000615 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 000616 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 000617 } 000618 } 000619 } 000620 000621 /* 000622 ** chngToIN holds a set of tables that *might* satisfy case 1. But 000623 ** we have to do some additional checking to see if case 1 really 000624 ** is satisfied. 000625 ** 000626 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 000627 ** that there is no possibility of transforming the OR clause into an 000628 ** IN operator because one or more terms in the OR clause contain 000629 ** something other than == on a column in the single table. The 1-bit 000630 ** case means that every term of the OR clause is of the form 000631 ** "table.column=expr" for some single table. The one bit that is set 000632 ** will correspond to the common table. We still need to check to make 000633 ** sure the same column is used on all terms. The 2-bit case is when 000634 ** the all terms are of the form "table1.column=table2.column". It 000635 ** might be possible to form an IN operator with either table1.column 000636 ** or table2.column as the LHS if either is common to every term of 000637 ** the OR clause. 000638 ** 000639 ** Note that terms of the form "table.column1=table.column2" (the 000640 ** same table on both sizes of the ==) cannot be optimized. 000641 */ 000642 if( chngToIN ){ 000643 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 000644 int iColumn = -1; /* Column index on lhs of IN operator */ 000645 int iCursor = -1; /* Table cursor common to all terms */ 000646 int j = 0; /* Loop counter */ 000647 000648 /* Search for a table and column that appears on one side or the 000649 ** other of the == operator in every subterm. That table and column 000650 ** will be recorded in iCursor and iColumn. There might not be any 000651 ** such table and column. Set okToChngToIN if an appropriate table 000652 ** and column is found but leave okToChngToIN false if not found. 000653 */ 000654 for(j=0; j<2 && !okToChngToIN; j++){ 000655 pOrTerm = pOrWc->a; 000656 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 000657 assert( pOrTerm->eOperator & WO_EQ ); 000658 pOrTerm->wtFlags &= ~TERM_OR_OK; 000659 if( pOrTerm->leftCursor==iCursor ){ 000660 /* This is the 2-bit case and we are on the second iteration and 000661 ** current term is from the first iteration. So skip this term. */ 000662 assert( j==1 ); 000663 continue; 000664 } 000665 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 000666 pOrTerm->leftCursor))==0 ){ 000667 /* This term must be of the form t1.a==t2.b where t2 is in the 000668 ** chngToIN set but t1 is not. This term will be either preceded 000669 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 000670 ** and use its inversion. */ 000671 testcase( pOrTerm->wtFlags & TERM_COPIED ); 000672 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 000673 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 000674 continue; 000675 } 000676 iColumn = pOrTerm->u.leftColumn; 000677 iCursor = pOrTerm->leftCursor; 000678 break; 000679 } 000680 if( i<0 ){ 000681 /* No candidate table+column was found. This can only occur 000682 ** on the second iteration */ 000683 assert( j==1 ); 000684 assert( IsPowerOfTwo(chngToIN) ); 000685 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 000686 break; 000687 } 000688 testcase( j==1 ); 000689 000690 /* We have found a candidate table and column. Check to see if that 000691 ** table and column is common to every term in the OR clause */ 000692 okToChngToIN = 1; 000693 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 000694 assert( pOrTerm->eOperator & WO_EQ ); 000695 if( pOrTerm->leftCursor!=iCursor ){ 000696 pOrTerm->wtFlags &= ~TERM_OR_OK; 000697 }else if( pOrTerm->u.leftColumn!=iColumn ){ 000698 okToChngToIN = 0; 000699 }else{ 000700 int affLeft, affRight; 000701 /* If the right-hand side is also a column, then the affinities 000702 ** of both right and left sides must be such that no type 000703 ** conversions are required on the right. (Ticket #2249) 000704 */ 000705 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 000706 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 000707 if( affRight!=0 && affRight!=affLeft ){ 000708 okToChngToIN = 0; 000709 }else{ 000710 pOrTerm->wtFlags |= TERM_OR_OK; 000711 } 000712 } 000713 } 000714 } 000715 000716 /* At this point, okToChngToIN is true if original pTerm satisfies 000717 ** case 1. In that case, construct a new virtual term that is 000718 ** pTerm converted into an IN operator. 000719 */ 000720 if( okToChngToIN ){ 000721 Expr *pDup; /* A transient duplicate expression */ 000722 ExprList *pList = 0; /* The RHS of the IN operator */ 000723 Expr *pLeft = 0; /* The LHS of the IN operator */ 000724 Expr *pNew; /* The complete IN operator */ 000725 000726 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 000727 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 000728 assert( pOrTerm->eOperator & WO_EQ ); 000729 assert( pOrTerm->leftCursor==iCursor ); 000730 assert( pOrTerm->u.leftColumn==iColumn ); 000731 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 000732 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 000733 pLeft = pOrTerm->pExpr->pLeft; 000734 } 000735 assert( pLeft!=0 ); 000736 pDup = sqlite3ExprDup(db, pLeft, 0); 000737 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); 000738 if( pNew ){ 000739 int idxNew; 000740 transferJoinMarkings(pNew, pExpr); 000741 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 000742 pNew->x.pList = pList; 000743 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 000744 testcase( idxNew==0 ); 000745 exprAnalyze(pSrc, pWC, idxNew); 000746 pTerm = &pWC->a[idxTerm]; 000747 markTermAsChild(pWC, idxNew, idxTerm); 000748 }else{ 000749 sqlite3ExprListDelete(db, pList); 000750 } 000751 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ 000752 } 000753 } 000754 } 000755 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 000756 000757 /* 000758 ** We already know that pExpr is a binary operator where both operands are 000759 ** column references. This routine checks to see if pExpr is an equivalence 000760 ** relation: 000761 ** 1. The SQLITE_Transitive optimization must be enabled 000762 ** 2. Must be either an == or an IS operator 000763 ** 3. Not originating in the ON clause of an OUTER JOIN 000764 ** 4. The affinities of A and B must be compatible 000765 ** 5a. Both operands use the same collating sequence OR 000766 ** 5b. The overall collating sequence is BINARY 000767 ** If this routine returns TRUE, that means that the RHS can be substituted 000768 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 000769 ** This is an optimization. No harm comes from returning 0. But if 1 is 000770 ** returned when it should not be, then incorrect answers might result. 000771 */ 000772 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 000773 char aff1, aff2; 000774 CollSeq *pColl; 000775 const char *zColl1, *zColl2; 000776 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 000777 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 000778 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 000779 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 000780 aff2 = sqlite3ExprAffinity(pExpr->pRight); 000781 if( aff1!=aff2 000782 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 000783 ){ 000784 return 0; 000785 } 000786 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 000787 if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; 000788 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 000789 zColl1 = pColl ? pColl->zName : 0; 000790 pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 000791 zColl2 = pColl ? pColl->zName : 0; 000792 return sqlite3_stricmp(zColl1, zColl2)==0; 000793 } 000794 000795 /* 000796 ** Recursively walk the expressions of a SELECT statement and generate 000797 ** a bitmask indicating which tables are used in that expression 000798 ** tree. 000799 */ 000800 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 000801 Bitmask mask = 0; 000802 while( pS ){ 000803 SrcList *pSrc = pS->pSrc; 000804 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 000805 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 000806 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 000807 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 000808 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 000809 if( ALWAYS(pSrc!=0) ){ 000810 int i; 000811 for(i=0; i<pSrc->nSrc; i++){ 000812 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 000813 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 000814 } 000815 } 000816 pS = pS->pPrior; 000817 } 000818 return mask; 000819 } 000820 000821 /* 000822 ** Expression pExpr is one operand of a comparison operator that might 000823 ** be useful for indexing. This routine checks to see if pExpr appears 000824 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 000825 ** FALSE (0) if not. If TRUE is returned, also set *piCur to the cursor 000826 ** number of the table that is indexed and *piColumn to the column number 000827 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being 000828 ** indexed. 000829 ** 000830 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 000831 ** true even if that particular column is not indexed, because the column 000832 ** might be added to an automatic index later. 000833 */ 000834 static int exprMightBeIndexed( 000835 SrcList *pFrom, /* The FROM clause */ 000836 int op, /* The specific comparison operator */ 000837 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 000838 Expr *pExpr, /* An operand of a comparison operator */ 000839 int *piCur, /* Write the referenced table cursor number here */ 000840 int *piColumn /* Write the referenced table column number here */ 000841 ){ 000842 Index *pIdx; 000843 int i; 000844 int iCur; 000845 000846 /* If this expression is a vector to the left or right of a 000847 ** inequality constraint (>, <, >= or <=), perform the processing 000848 ** on the first element of the vector. */ 000849 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); 000850 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); 000851 assert( op<=TK_GE ); 000852 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ 000853 pExpr = pExpr->x.pList->a[0].pExpr; 000854 } 000855 000856 if( pExpr->op==TK_COLUMN ){ 000857 *piCur = pExpr->iTable; 000858 *piColumn = pExpr->iColumn; 000859 return 1; 000860 } 000861 if( mPrereq==0 ) return 0; /* No table references */ 000862 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 000863 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 000864 iCur = pFrom->a[i].iCursor; 000865 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 000866 if( pIdx->aColExpr==0 ) continue; 000867 for(i=0; i<pIdx->nKeyCol; i++){ 000868 if( pIdx->aiColumn[i]!=XN_EXPR ) continue; 000869 if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 000870 *piCur = iCur; 000871 *piColumn = XN_EXPR; 000872 return 1; 000873 } 000874 } 000875 } 000876 return 0; 000877 } 000878 000879 /* 000880 ** The input to this routine is an WhereTerm structure with only the 000881 ** "pExpr" field filled in. The job of this routine is to analyze the 000882 ** subexpression and populate all the other fields of the WhereTerm 000883 ** structure. 000884 ** 000885 ** If the expression is of the form "<expr> <op> X" it gets commuted 000886 ** to the standard form of "X <op> <expr>". 000887 ** 000888 ** If the expression is of the form "X <op> Y" where both X and Y are 000889 ** columns, then the original expression is unchanged and a new virtual 000890 ** term of the form "Y <op> X" is added to the WHERE clause and 000891 ** analyzed separately. The original term is marked with TERM_COPIED 000892 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 000893 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 000894 ** is a commuted copy of a prior term.) The original term has nChild=1 000895 ** and the copy has idxParent set to the index of the original term. 000896 */ 000897 static void exprAnalyze( 000898 SrcList *pSrc, /* the FROM clause */ 000899 WhereClause *pWC, /* the WHERE clause */ 000900 int idxTerm /* Index of the term to be analyzed */ 000901 ){ 000902 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 000903 WhereTerm *pTerm; /* The term to be analyzed */ 000904 WhereMaskSet *pMaskSet; /* Set of table index masks */ 000905 Expr *pExpr; /* The expression to be analyzed */ 000906 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 000907 Bitmask prereqAll; /* Prerequesites of pExpr */ 000908 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 000909 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 000910 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 000911 int noCase = 0; /* uppercase equivalent to lowercase */ 000912 int op; /* Top-level operator. pExpr->op */ 000913 Parse *pParse = pWInfo->pParse; /* Parsing context */ 000914 sqlite3 *db = pParse->db; /* Database connection */ 000915 unsigned char eOp2; /* op2 value for LIKE/REGEXP/GLOB */ 000916 000917 if( db->mallocFailed ){ 000918 return; 000919 } 000920 pTerm = &pWC->a[idxTerm]; 000921 pMaskSet = &pWInfo->sMaskSet; 000922 pExpr = pTerm->pExpr; 000923 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 000924 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 000925 op = pExpr->op; 000926 if( op==TK_IN ){ 000927 assert( pExpr->pRight==0 ); 000928 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 000929 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 000930 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 000931 }else{ 000932 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 000933 } 000934 }else if( op==TK_ISNULL ){ 000935 pTerm->prereqRight = 0; 000936 }else{ 000937 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 000938 } 000939 prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); 000940 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 000941 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 000942 prereqAll |= x; 000943 extraRight = x-1; /* ON clause terms may not be used with an index 000944 ** on left table of a LEFT JOIN. Ticket #3015 */ 000945 } 000946 pTerm->prereqAll = prereqAll; 000947 pTerm->leftCursor = -1; 000948 pTerm->iParent = -1; 000949 pTerm->eOperator = 0; 000950 if( allowedOp(op) ){ 000951 int iCur, iColumn; 000952 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 000953 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 000954 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 000955 000956 if( pTerm->iField>0 ){ 000957 assert( op==TK_IN ); 000958 assert( pLeft->op==TK_VECTOR ); 000959 pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr; 000960 } 000961 000962 if( exprMightBeIndexed(pSrc, op, prereqLeft, pLeft, &iCur, &iColumn) ){ 000963 pTerm->leftCursor = iCur; 000964 pTerm->u.leftColumn = iColumn; 000965 pTerm->eOperator = operatorMask(op) & opMask; 000966 } 000967 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 000968 if( pRight 000969 && exprMightBeIndexed(pSrc, op, pTerm->prereqRight, pRight, &iCur,&iColumn) 000970 ){ 000971 WhereTerm *pNew; 000972 Expr *pDup; 000973 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 000974 assert( pTerm->iField==0 ); 000975 if( pTerm->leftCursor>=0 ){ 000976 int idxNew; 000977 pDup = sqlite3ExprDup(db, pExpr, 0); 000978 if( db->mallocFailed ){ 000979 sqlite3ExprDelete(db, pDup); 000980 return; 000981 } 000982 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 000983 if( idxNew==0 ) return; 000984 pNew = &pWC->a[idxNew]; 000985 markTermAsChild(pWC, idxNew, idxTerm); 000986 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 000987 pTerm = &pWC->a[idxTerm]; 000988 pTerm->wtFlags |= TERM_COPIED; 000989 000990 if( termIsEquivalence(pParse, pDup) ){ 000991 pTerm->eOperator |= WO_EQUIV; 000992 eExtraOp = WO_EQUIV; 000993 } 000994 }else{ 000995 pDup = pExpr; 000996 pNew = pTerm; 000997 } 000998 exprCommute(pParse, pDup); 000999 pNew->leftCursor = iCur; 001000 pNew->u.leftColumn = iColumn; 001001 testcase( (prereqLeft | extraRight) != prereqLeft ); 001002 pNew->prereqRight = prereqLeft | extraRight; 001003 pNew->prereqAll = prereqAll; 001004 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 001005 } 001006 } 001007 001008 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 001009 /* If a term is the BETWEEN operator, create two new virtual terms 001010 ** that define the range that the BETWEEN implements. For example: 001011 ** 001012 ** a BETWEEN b AND c 001013 ** 001014 ** is converted into: 001015 ** 001016 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 001017 ** 001018 ** The two new terms are added onto the end of the WhereClause object. 001019 ** The new terms are "dynamic" and are children of the original BETWEEN 001020 ** term. That means that if the BETWEEN term is coded, the children are 001021 ** skipped. Or, if the children are satisfied by an index, the original 001022 ** BETWEEN term is skipped. 001023 */ 001024 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 001025 ExprList *pList = pExpr->x.pList; 001026 int i; 001027 static const u8 ops[] = {TK_GE, TK_LE}; 001028 assert( pList!=0 ); 001029 assert( pList->nExpr==2 ); 001030 for(i=0; i<2; i++){ 001031 Expr *pNewExpr; 001032 int idxNew; 001033 pNewExpr = sqlite3PExpr(pParse, ops[i], 001034 sqlite3ExprDup(db, pExpr->pLeft, 0), 001035 sqlite3ExprDup(db, pList->a[i].pExpr, 0)); 001036 transferJoinMarkings(pNewExpr, pExpr); 001037 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 001038 testcase( idxNew==0 ); 001039 exprAnalyze(pSrc, pWC, idxNew); 001040 pTerm = &pWC->a[idxTerm]; 001041 markTermAsChild(pWC, idxNew, idxTerm); 001042 } 001043 } 001044 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 001045 001046 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 001047 /* Analyze a term that is composed of two or more subterms connected by 001048 ** an OR operator. 001049 */ 001050 else if( pExpr->op==TK_OR ){ 001051 assert( pWC->op==TK_AND ); 001052 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 001053 pTerm = &pWC->a[idxTerm]; 001054 } 001055 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 001056 001057 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 001058 /* Add constraints to reduce the search space on a LIKE or GLOB 001059 ** operator. 001060 ** 001061 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 001062 ** 001063 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 001064 ** 001065 ** The last character of the prefix "abc" is incremented to form the 001066 ** termination condition "abd". If case is not significant (the default 001067 ** for LIKE) then the lower-bound is made all uppercase and the upper- 001068 ** bound is made all lowercase so that the bounds also work when comparing 001069 ** BLOBs. 001070 */ 001071 if( pWC->op==TK_AND 001072 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 001073 ){ 001074 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 001075 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 001076 Expr *pNewExpr1; 001077 Expr *pNewExpr2; 001078 int idxNew1; 001079 int idxNew2; 001080 const char *zCollSeqName; /* Name of collating sequence */ 001081 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 001082 001083 pLeft = pExpr->x.pList->a[1].pExpr; 001084 pStr2 = sqlite3ExprDup(db, pStr1, 0); 001085 001086 /* Convert the lower bound to upper-case and the upper bound to 001087 ** lower-case (upper-case is less than lower-case in ASCII) so that 001088 ** the range constraints also work for BLOBs 001089 */ 001090 if( noCase && !pParse->db->mallocFailed ){ 001091 int i; 001092 char c; 001093 pTerm->wtFlags |= TERM_LIKE; 001094 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 001095 pStr1->u.zToken[i] = sqlite3Toupper(c); 001096 pStr2->u.zToken[i] = sqlite3Tolower(c); 001097 } 001098 } 001099 001100 if( !db->mallocFailed ){ 001101 u8 c, *pC; /* Last character before the first wildcard */ 001102 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 001103 c = *pC; 001104 if( noCase ){ 001105 /* The point is to increment the last character before the first 001106 ** wildcard. But if we increment '@', that will push it into the 001107 ** alphabetic range where case conversions will mess up the 001108 ** inequality. To avoid this, make sure to also run the full 001109 ** LIKE on all candidate expressions by clearing the isComplete flag 001110 */ 001111 if( c=='A'-1 ) isComplete = 0; 001112 c = sqlite3UpperToLower[c]; 001113 } 001114 *pC = c + 1; 001115 } 001116 zCollSeqName = noCase ? "NOCASE" : "BINARY"; 001117 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 001118 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 001119 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 001120 pStr1); 001121 transferJoinMarkings(pNewExpr1, pExpr); 001122 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 001123 testcase( idxNew1==0 ); 001124 exprAnalyze(pSrc, pWC, idxNew1); 001125 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 001126 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 001127 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 001128 pStr2); 001129 transferJoinMarkings(pNewExpr2, pExpr); 001130 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 001131 testcase( idxNew2==0 ); 001132 exprAnalyze(pSrc, pWC, idxNew2); 001133 pTerm = &pWC->a[idxTerm]; 001134 if( isComplete ){ 001135 markTermAsChild(pWC, idxNew1, idxTerm); 001136 markTermAsChild(pWC, idxNew2, idxTerm); 001137 } 001138 } 001139 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 001140 001141 #ifndef SQLITE_OMIT_VIRTUALTABLE 001142 /* Add a WO_MATCH auxiliary term to the constraint set if the 001143 ** current expression is of the form: column MATCH expr. 001144 ** This information is used by the xBestIndex methods of 001145 ** virtual tables. The native query optimizer does not attempt 001146 ** to do anything with MATCH functions. 001147 */ 001148 if( pWC->op==TK_AND && isMatchOfColumn(pExpr, &eOp2) ){ 001149 int idxNew; 001150 Expr *pRight, *pLeft; 001151 WhereTerm *pNewTerm; 001152 Bitmask prereqColumn, prereqExpr; 001153 001154 pRight = pExpr->x.pList->a[0].pExpr; 001155 pLeft = pExpr->x.pList->a[1].pExpr; 001156 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 001157 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 001158 if( (prereqExpr & prereqColumn)==0 ){ 001159 Expr *pNewExpr; 001160 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 001161 0, sqlite3ExprDup(db, pRight, 0)); 001162 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 001163 testcase( idxNew==0 ); 001164 pNewTerm = &pWC->a[idxNew]; 001165 pNewTerm->prereqRight = prereqExpr; 001166 pNewTerm->leftCursor = pLeft->iTable; 001167 pNewTerm->u.leftColumn = pLeft->iColumn; 001168 pNewTerm->eOperator = WO_MATCH; 001169 pNewTerm->eMatchOp = eOp2; 001170 markTermAsChild(pWC, idxNew, idxTerm); 001171 pTerm = &pWC->a[idxTerm]; 001172 pTerm->wtFlags |= TERM_COPIED; 001173 pNewTerm->prereqAll = pTerm->prereqAll; 001174 } 001175 } 001176 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 001177 001178 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create 001179 ** new terms for each component comparison - "a = ?" and "b = ?". The 001180 ** new terms completely replace the original vector comparison, which is 001181 ** no longer used. 001182 ** 001183 ** This is only required if at least one side of the comparison operation 001184 ** is not a sub-select. */ 001185 if( pWC->op==TK_AND 001186 && (pExpr->op==TK_EQ || pExpr->op==TK_IS) 001187 && sqlite3ExprIsVector(pExpr->pLeft) 001188 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 001189 || (pExpr->pRight->flags & EP_xIsSelect)==0 001190 )){ 001191 int nLeft = sqlite3ExprVectorSize(pExpr->pLeft); 001192 int i; 001193 assert( nLeft==sqlite3ExprVectorSize(pExpr->pRight) ); 001194 for(i=0; i<nLeft; i++){ 001195 int idxNew; 001196 Expr *pNew; 001197 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); 001198 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); 001199 001200 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); 001201 transferJoinMarkings(pNew, pExpr); 001202 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); 001203 exprAnalyze(pSrc, pWC, idxNew); 001204 } 001205 pTerm = &pWC->a[idxTerm]; 001206 pTerm->wtFlags = TERM_CODED|TERM_VIRTUAL; /* Disable the original */ 001207 pTerm->eOperator = 0; 001208 } 001209 001210 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create 001211 ** a virtual term for each vector component. The expression object 001212 ** used by each such virtual term is pExpr (the full vector IN(...) 001213 ** expression). The WhereTerm.iField variable identifies the index within 001214 ** the vector on the LHS that the virtual term represents. 001215 ** 001216 ** This only works if the RHS is a simple SELECT, not a compound 001217 */ 001218 if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0 001219 && pExpr->pLeft->op==TK_VECTOR 001220 && pExpr->x.pSelect->pPrior==0 001221 ){ 001222 int i; 001223 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ 001224 int idxNew; 001225 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); 001226 pWC->a[idxNew].iField = i+1; 001227 exprAnalyze(pSrc, pWC, idxNew); 001228 markTermAsChild(pWC, idxNew, idxTerm); 001229 } 001230 } 001231 001232 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 001233 /* When sqlite_stat3 histogram data is available an operator of the 001234 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 001235 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 001236 ** virtual term of that form. 001237 ** 001238 ** Note that the virtual term must be tagged with TERM_VNULL. 001239 */ 001240 if( pExpr->op==TK_NOTNULL 001241 && pExpr->pLeft->op==TK_COLUMN 001242 && pExpr->pLeft->iColumn>=0 001243 && OptimizationEnabled(db, SQLITE_Stat34) 001244 ){ 001245 Expr *pNewExpr; 001246 Expr *pLeft = pExpr->pLeft; 001247 int idxNew; 001248 WhereTerm *pNewTerm; 001249 001250 pNewExpr = sqlite3PExpr(pParse, TK_GT, 001251 sqlite3ExprDup(db, pLeft, 0), 001252 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 001253 001254 idxNew = whereClauseInsert(pWC, pNewExpr, 001255 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 001256 if( idxNew ){ 001257 pNewTerm = &pWC->a[idxNew]; 001258 pNewTerm->prereqRight = 0; 001259 pNewTerm->leftCursor = pLeft->iTable; 001260 pNewTerm->u.leftColumn = pLeft->iColumn; 001261 pNewTerm->eOperator = WO_GT; 001262 markTermAsChild(pWC, idxNew, idxTerm); 001263 pTerm = &pWC->a[idxTerm]; 001264 pTerm->wtFlags |= TERM_COPIED; 001265 pNewTerm->prereqAll = pTerm->prereqAll; 001266 } 001267 } 001268 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 001269 001270 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 001271 ** an index for tables to the left of the join. 001272 */ 001273 testcase( pTerm!=&pWC->a[idxTerm] ); 001274 pTerm = &pWC->a[idxTerm]; 001275 pTerm->prereqRight |= extraRight; 001276 } 001277 001278 /*************************************************************************** 001279 ** Routines with file scope above. Interface to the rest of the where.c 001280 ** subsystem follows. 001281 ***************************************************************************/ 001282 001283 /* 001284 ** This routine identifies subexpressions in the WHERE clause where 001285 ** each subexpression is separated by the AND operator or some other 001286 ** operator specified in the op parameter. The WhereClause structure 001287 ** is filled with pointers to subexpressions. For example: 001288 ** 001289 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 001290 ** \________/ \_______________/ \________________/ 001291 ** slot[0] slot[1] slot[2] 001292 ** 001293 ** The original WHERE clause in pExpr is unaltered. All this routine 001294 ** does is make slot[] entries point to substructure within pExpr. 001295 ** 001296 ** In the previous sentence and in the diagram, "slot[]" refers to 001297 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 001298 ** all terms of the WHERE clause. 001299 */ 001300 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 001301 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 001302 pWC->op = op; 001303 if( pE2==0 ) return; 001304 if( pE2->op!=op ){ 001305 whereClauseInsert(pWC, pExpr, 0); 001306 }else{ 001307 sqlite3WhereSplit(pWC, pE2->pLeft, op); 001308 sqlite3WhereSplit(pWC, pE2->pRight, op); 001309 } 001310 } 001311 001312 /* 001313 ** Initialize a preallocated WhereClause structure. 001314 */ 001315 void sqlite3WhereClauseInit( 001316 WhereClause *pWC, /* The WhereClause to be initialized */ 001317 WhereInfo *pWInfo /* The WHERE processing context */ 001318 ){ 001319 pWC->pWInfo = pWInfo; 001320 pWC->pOuter = 0; 001321 pWC->nTerm = 0; 001322 pWC->nSlot = ArraySize(pWC->aStatic); 001323 pWC->a = pWC->aStatic; 001324 } 001325 001326 /* 001327 ** Deallocate a WhereClause structure. The WhereClause structure 001328 ** itself is not freed. This routine is the inverse of 001329 ** sqlite3WhereClauseInit(). 001330 */ 001331 void sqlite3WhereClauseClear(WhereClause *pWC){ 001332 int i; 001333 WhereTerm *a; 001334 sqlite3 *db = pWC->pWInfo->pParse->db; 001335 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 001336 if( a->wtFlags & TERM_DYNAMIC ){ 001337 sqlite3ExprDelete(db, a->pExpr); 001338 } 001339 if( a->wtFlags & TERM_ORINFO ){ 001340 whereOrInfoDelete(db, a->u.pOrInfo); 001341 }else if( a->wtFlags & TERM_ANDINFO ){ 001342 whereAndInfoDelete(db, a->u.pAndInfo); 001343 } 001344 } 001345 if( pWC->a!=pWC->aStatic ){ 001346 sqlite3DbFree(db, pWC->a); 001347 } 001348 } 001349 001350 001351 /* 001352 ** These routines walk (recursively) an expression tree and generate 001353 ** a bitmask indicating which tables are used in that expression 001354 ** tree. 001355 */ 001356 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 001357 Bitmask mask; 001358 if( p==0 ) return 0; 001359 if( p->op==TK_COLUMN ){ 001360 mask = sqlite3WhereGetMask(pMaskSet, p->iTable); 001361 return mask; 001362 } 001363 assert( !ExprHasProperty(p, EP_TokenOnly) ); 001364 mask = p->pRight ? sqlite3WhereExprUsage(pMaskSet, p->pRight) : 0; 001365 if( p->pLeft ) mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); 001366 if( ExprHasProperty(p, EP_xIsSelect) ){ 001367 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 001368 }else if( p->x.pList ){ 001369 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 001370 } 001371 return mask; 001372 } 001373 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 001374 int i; 001375 Bitmask mask = 0; 001376 if( pList ){ 001377 for(i=0; i<pList->nExpr; i++){ 001378 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 001379 } 001380 } 001381 return mask; 001382 } 001383 001384 001385 /* 001386 ** Call exprAnalyze on all terms in a WHERE clause. 001387 ** 001388 ** Note that exprAnalyze() might add new virtual terms onto the 001389 ** end of the WHERE clause. We do not want to analyze these new 001390 ** virtual terms, so start analyzing at the end and work forward 001391 ** so that the added virtual terms are never processed. 001392 */ 001393 void sqlite3WhereExprAnalyze( 001394 SrcList *pTabList, /* the FROM clause */ 001395 WhereClause *pWC /* the WHERE clause to be analyzed */ 001396 ){ 001397 int i; 001398 for(i=pWC->nTerm-1; i>=0; i--){ 001399 exprAnalyze(pTabList, pWC, i); 001400 } 001401 } 001402 001403 /* 001404 ** For table-valued-functions, transform the function arguments into 001405 ** new WHERE clause terms. 001406 ** 001407 ** Each function argument translates into an equality constraint against 001408 ** a HIDDEN column in the table. 001409 */ 001410 void sqlite3WhereTabFuncArgs( 001411 Parse *pParse, /* Parsing context */ 001412 struct SrcList_item *pItem, /* The FROM clause term to process */ 001413 WhereClause *pWC /* Xfer function arguments to here */ 001414 ){ 001415 Table *pTab; 001416 int j, k; 001417 ExprList *pArgs; 001418 Expr *pColRef; 001419 Expr *pTerm; 001420 if( pItem->fg.isTabFunc==0 ) return; 001421 pTab = pItem->pTab; 001422 assert( pTab!=0 ); 001423 pArgs = pItem->u1.pFuncArg; 001424 if( pArgs==0 ) return; 001425 for(j=k=0; j<pArgs->nExpr; j++){ 001426 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 001427 if( k>=pTab->nCol ){ 001428 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 001429 pTab->zName, j); 001430 return; 001431 } 001432 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); 001433 if( pColRef==0 ) return; 001434 pColRef->iTable = pItem->iCursor; 001435 pColRef->iColumn = k++; 001436 pColRef->pTab = pTab; 001437 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, 001438 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0)); 001439 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 001440 } 001441 }