000001 /* 000002 ** 2010 February 1 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** 000013 ** This file contains the implementation of a write-ahead log (WAL) used in 000014 ** "journal_mode=WAL" mode. 000015 ** 000016 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 000017 ** 000018 ** A WAL file consists of a header followed by zero or more "frames". 000019 ** Each frame records the revised content of a single page from the 000020 ** database file. All changes to the database are recorded by writing 000021 ** frames into the WAL. Transactions commit when a frame is written that 000022 ** contains a commit marker. A single WAL can and usually does record 000023 ** multiple transactions. Periodically, the content of the WAL is 000024 ** transferred back into the database file in an operation called a 000025 ** "checkpoint". 000026 ** 000027 ** A single WAL file can be used multiple times. In other words, the 000028 ** WAL can fill up with frames and then be checkpointed and then new 000029 ** frames can overwrite the old ones. A WAL always grows from beginning 000030 ** toward the end. Checksums and counters attached to each frame are 000031 ** used to determine which frames within the WAL are valid and which 000032 ** are leftovers from prior checkpoints. 000033 ** 000034 ** The WAL header is 32 bytes in size and consists of the following eight 000035 ** big-endian 32-bit unsigned integer values: 000036 ** 000037 ** 0: Magic number. 0x377f0682 or 0x377f0683 000038 ** 4: File format version. Currently 3007000 000039 ** 8: Database page size. Example: 1024 000040 ** 12: Checkpoint sequence number 000041 ** 16: Salt-1, random integer incremented with each checkpoint 000042 ** 20: Salt-2, a different random integer changing with each ckpt 000043 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 000044 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 000045 ** 000046 ** Immediately following the wal-header are zero or more frames. Each 000047 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 000048 ** of page data. The frame-header is six big-endian 32-bit unsigned 000049 ** integer values, as follows: 000050 ** 000051 ** 0: Page number. 000052 ** 4: For commit records, the size of the database image in pages 000053 ** after the commit. For all other records, zero. 000054 ** 8: Salt-1 (copied from the header) 000055 ** 12: Salt-2 (copied from the header) 000056 ** 16: Checksum-1. 000057 ** 20: Checksum-2. 000058 ** 000059 ** A frame is considered valid if and only if the following conditions are 000060 ** true: 000061 ** 000062 ** (1) The salt-1 and salt-2 values in the frame-header match 000063 ** salt values in the wal-header 000064 ** 000065 ** (2) The checksum values in the final 8 bytes of the frame-header 000066 ** exactly match the checksum computed consecutively on the 000067 ** WAL header and the first 8 bytes and the content of all frames 000068 ** up to and including the current frame. 000069 ** 000070 ** The checksum is computed using 32-bit big-endian integers if the 000071 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 000072 ** is computed using little-endian if the magic number is 0x377f0682. 000073 ** The checksum values are always stored in the frame header in a 000074 ** big-endian format regardless of which byte order is used to compute 000075 ** the checksum. The checksum is computed by interpreting the input as 000076 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 000077 ** algorithm used for the checksum is as follows: 000078 ** 000079 ** for i from 0 to n-1 step 2: 000080 ** s0 += x[i] + s1; 000081 ** s1 += x[i+1] + s0; 000082 ** endfor 000083 ** 000084 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 000085 ** in reverse order (the largest fibonacci weight occurs on the first element 000086 ** of the sequence being summed.) The s1 value spans all 32-bit 000087 ** terms of the sequence whereas s0 omits the final term. 000088 ** 000089 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 000090 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 000091 ** The VFS.xSync operations serve as write barriers - all writes launched 000092 ** before the xSync must complete before any write that launches after the 000093 ** xSync begins. 000094 ** 000095 ** After each checkpoint, the salt-1 value is incremented and the salt-2 000096 ** value is randomized. This prevents old and new frames in the WAL from 000097 ** being considered valid at the same time and being checkpointing together 000098 ** following a crash. 000099 ** 000100 ** READER ALGORITHM 000101 ** 000102 ** To read a page from the database (call it page number P), a reader 000103 ** first checks the WAL to see if it contains page P. If so, then the 000104 ** last valid instance of page P that is a followed by a commit frame 000105 ** or is a commit frame itself becomes the value read. If the WAL 000106 ** contains no copies of page P that are valid and which are a commit 000107 ** frame or are followed by a commit frame, then page P is read from 000108 ** the database file. 000109 ** 000110 ** To start a read transaction, the reader records the index of the last 000111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 000112 ** for all subsequent read operations. New transactions can be appended 000113 ** to the WAL, but as long as the reader uses its original mxFrame value 000114 ** and ignores the newly appended content, it will see a consistent snapshot 000115 ** of the database from a single point in time. This technique allows 000116 ** multiple concurrent readers to view different versions of the database 000117 ** content simultaneously. 000118 ** 000119 ** The reader algorithm in the previous paragraphs works correctly, but 000120 ** because frames for page P can appear anywhere within the WAL, the 000121 ** reader has to scan the entire WAL looking for page P frames. If the 000122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 000123 ** and read performance suffers. To overcome this problem, a separate 000124 ** data structure called the wal-index is maintained to expedite the 000125 ** search for frames of a particular page. 000126 ** 000127 ** WAL-INDEX FORMAT 000128 ** 000129 ** Conceptually, the wal-index is shared memory, though VFS implementations 000130 ** might choose to implement the wal-index using a mmapped file. Because 000131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 000132 ** on a network filesystem. All users of the database must be able to 000133 ** share memory. 000134 ** 000135 ** The wal-index is transient. After a crash, the wal-index can (and should 000136 ** be) reconstructed from the original WAL file. In fact, the VFS is required 000137 ** to either truncate or zero the header of the wal-index when the last 000138 ** connection to it closes. Because the wal-index is transient, it can 000139 ** use an architecture-specific format; it does not have to be cross-platform. 000140 ** Hence, unlike the database and WAL file formats which store all values 000141 ** as big endian, the wal-index can store multi-byte values in the native 000142 ** byte order of the host computer. 000143 ** 000144 ** The purpose of the wal-index is to answer this question quickly: Given 000145 ** a page number P and a maximum frame index M, return the index of the 000146 ** last frame in the wal before frame M for page P in the WAL, or return 000147 ** NULL if there are no frames for page P in the WAL prior to M. 000148 ** 000149 ** The wal-index consists of a header region, followed by an one or 000150 ** more index blocks. 000151 ** 000152 ** The wal-index header contains the total number of frames within the WAL 000153 ** in the mxFrame field. 000154 ** 000155 ** Each index block except for the first contains information on 000156 ** HASHTABLE_NPAGE frames. The first index block contains information on 000157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 000158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 000159 ** first index block are the same size as all other index blocks in the 000160 ** wal-index. 000161 ** 000162 ** Each index block contains two sections, a page-mapping that contains the 000163 ** database page number associated with each wal frame, and a hash-table 000164 ** that allows readers to query an index block for a specific page number. 000165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 000166 ** for the first index block) 32-bit page numbers. The first entry in the 000167 ** first index-block contains the database page number corresponding to the 000168 ** first frame in the WAL file. The first entry in the second index block 000169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 000170 ** the log, and so on. 000171 ** 000172 ** The last index block in a wal-index usually contains less than the full 000173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 000174 ** depending on the contents of the WAL file. This does not change the 000175 ** allocated size of the page-mapping array - the page-mapping array merely 000176 ** contains unused entries. 000177 ** 000178 ** Even without using the hash table, the last frame for page P 000179 ** can be found by scanning the page-mapping sections of each index block 000180 ** starting with the last index block and moving toward the first, and 000181 ** within each index block, starting at the end and moving toward the 000182 ** beginning. The first entry that equals P corresponds to the frame 000183 ** holding the content for that page. 000184 ** 000185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 000186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 000187 ** hash table for each page number in the mapping section, so the hash 000188 ** table is never more than half full. The expected number of collisions 000189 ** prior to finding a match is 1. Each entry of the hash table is an 000190 ** 1-based index of an entry in the mapping section of the same 000191 ** index block. Let K be the 1-based index of the largest entry in 000192 ** the mapping section. (For index blocks other than the last, K will 000193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 000194 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 000195 ** contain a value of 0. 000196 ** 000197 ** To look for page P in the hash table, first compute a hash iKey on 000198 ** P as follows: 000199 ** 000200 ** iKey = (P * 383) % HASHTABLE_NSLOT 000201 ** 000202 ** Then start scanning entries of the hash table, starting with iKey 000203 ** (wrapping around to the beginning when the end of the hash table is 000204 ** reached) until an unused hash slot is found. Let the first unused slot 000205 ** be at index iUnused. (iUnused might be less than iKey if there was 000206 ** wrap-around.) Because the hash table is never more than half full, 000207 ** the search is guaranteed to eventually hit an unused entry. Let 000208 ** iMax be the value between iKey and iUnused, closest to iUnused, 000209 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 000210 ** no hash slot such that aHash[i]==p) then page P is not in the 000211 ** current index block. Otherwise the iMax-th mapping entry of the 000212 ** current index block corresponds to the last entry that references 000213 ** page P. 000214 ** 000215 ** A hash search begins with the last index block and moves toward the 000216 ** first index block, looking for entries corresponding to page P. On 000217 ** average, only two or three slots in each index block need to be 000218 ** examined in order to either find the last entry for page P, or to 000219 ** establish that no such entry exists in the block. Each index block 000220 ** holds over 4000 entries. So two or three index blocks are sufficient 000221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 000222 ** comparisons (on average) suffice to either locate a frame in the 000223 ** WAL or to establish that the frame does not exist in the WAL. This 000224 ** is much faster than scanning the entire 10MB WAL. 000225 ** 000226 ** Note that entries are added in order of increasing K. Hence, one 000227 ** reader might be using some value K0 and a second reader that started 000228 ** at a later time (after additional transactions were added to the WAL 000229 ** and to the wal-index) might be using a different value K1, where K1>K0. 000230 ** Both readers can use the same hash table and mapping section to get 000231 ** the correct result. There may be entries in the hash table with 000232 ** K>K0 but to the first reader, those entries will appear to be unused 000233 ** slots in the hash table and so the first reader will get an answer as 000234 ** if no values greater than K0 had ever been inserted into the hash table 000235 ** in the first place - which is what reader one wants. Meanwhile, the 000236 ** second reader using K1 will see additional values that were inserted 000237 ** later, which is exactly what reader two wants. 000238 ** 000239 ** When a rollback occurs, the value of K is decreased. Hash table entries 000240 ** that correspond to frames greater than the new K value are removed 000241 ** from the hash table at this point. 000242 */ 000243 #ifndef SQLITE_OMIT_WAL 000244 000245 #include "wal.h" 000246 000247 /* 000248 ** Trace output macros 000249 */ 000250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 000251 int sqlite3WalTrace = 0; 000252 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 000253 #else 000254 # define WALTRACE(X) 000255 #endif 000256 000257 /* 000258 ** The maximum (and only) versions of the wal and wal-index formats 000259 ** that may be interpreted by this version of SQLite. 000260 ** 000261 ** If a client begins recovering a WAL file and finds that (a) the checksum 000262 ** values in the wal-header are correct and (b) the version field is not 000263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 000264 ** 000265 ** Similarly, if a client successfully reads a wal-index header (i.e. the 000266 ** checksum test is successful) and finds that the version field is not 000267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 000268 ** returns SQLITE_CANTOPEN. 000269 */ 000270 #define WAL_MAX_VERSION 3007000 000271 #define WALINDEX_MAX_VERSION 3007000 000272 000273 /* 000274 ** Indices of various locking bytes. WAL_NREADER is the number 000275 ** of available reader locks and should be at least 3. The default 000276 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 000277 */ 000278 #define WAL_WRITE_LOCK 0 000279 #define WAL_ALL_BUT_WRITE 1 000280 #define WAL_CKPT_LOCK 1 000281 #define WAL_RECOVER_LOCK 2 000282 #define WAL_READ_LOCK(I) (3+(I)) 000283 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 000284 000285 000286 /* Object declarations */ 000287 typedef struct WalIndexHdr WalIndexHdr; 000288 typedef struct WalIterator WalIterator; 000289 typedef struct WalCkptInfo WalCkptInfo; 000290 000291 000292 /* 000293 ** The following object holds a copy of the wal-index header content. 000294 ** 000295 ** The actual header in the wal-index consists of two copies of this 000296 ** object followed by one instance of the WalCkptInfo object. 000297 ** For all versions of SQLite through 3.10.0 and probably beyond, 000298 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 000299 ** the total header size is 136 bytes. 000300 ** 000301 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 000302 ** Or it can be 1 to represent a 65536-byte page. The latter case was 000303 ** added in 3.7.1 when support for 64K pages was added. 000304 */ 000305 struct WalIndexHdr { 000306 u32 iVersion; /* Wal-index version */ 000307 u32 unused; /* Unused (padding) field */ 000308 u32 iChange; /* Counter incremented each transaction */ 000309 u8 isInit; /* 1 when initialized */ 000310 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 000311 u16 szPage; /* Database page size in bytes. 1==64K */ 000312 u32 mxFrame; /* Index of last valid frame in the WAL */ 000313 u32 nPage; /* Size of database in pages */ 000314 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 000315 u32 aSalt[2]; /* Two salt values copied from WAL header */ 000316 u32 aCksum[2]; /* Checksum over all prior fields */ 000317 }; 000318 000319 /* 000320 ** A copy of the following object occurs in the wal-index immediately 000321 ** following the second copy of the WalIndexHdr. This object stores 000322 ** information used by checkpoint. 000323 ** 000324 ** nBackfill is the number of frames in the WAL that have been written 000325 ** back into the database. (We call the act of moving content from WAL to 000326 ** database "backfilling".) The nBackfill number is never greater than 000327 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 000328 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 000329 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 000330 ** mxFrame back to zero when the WAL is reset. 000331 ** 000332 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 000333 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 000334 ** the nBackfillAttempted is set before any backfilling is done and the 000335 ** nBackfill is only set after all backfilling completes. So if a checkpoint 000336 ** crashes, nBackfillAttempted might be larger than nBackfill. The 000337 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 000338 ** 000339 ** The aLock[] field is a set of bytes used for locking. These bytes should 000340 ** never be read or written. 000341 ** 000342 ** There is one entry in aReadMark[] for each reader lock. If a reader 000343 ** holds read-lock K, then the value in aReadMark[K] is no greater than 000344 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 000345 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 000346 ** a special case; its value is never used and it exists as a place-holder 000347 ** to avoid having to offset aReadMark[] indexs by one. Readers holding 000348 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 000349 ** directly from the database. 000350 ** 000351 ** The value of aReadMark[K] may only be changed by a thread that 000352 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 000353 ** aReadMark[K] cannot changed while there is a reader is using that mark 000354 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 000355 ** 000356 ** The checkpointer may only transfer frames from WAL to database where 000357 ** the frame numbers are less than or equal to every aReadMark[] that is 000358 ** in use (that is, every aReadMark[j] for which there is a corresponding 000359 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 000360 ** largest value and will increase an unused aReadMark[] to mxFrame if there 000361 ** is not already an aReadMark[] equal to mxFrame. The exception to the 000362 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 000363 ** in the WAL has been backfilled into the database) then new readers 000364 ** will choose aReadMark[0] which has value 0 and hence such reader will 000365 ** get all their all content directly from the database file and ignore 000366 ** the WAL. 000367 ** 000368 ** Writers normally append new frames to the end of the WAL. However, 000369 ** if nBackfill equals mxFrame (meaning that all WAL content has been 000370 ** written back into the database) and if no readers are using the WAL 000371 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 000372 ** the writer will first "reset" the WAL back to the beginning and start 000373 ** writing new content beginning at frame 1. 000374 ** 000375 ** We assume that 32-bit loads are atomic and so no locks are needed in 000376 ** order to read from any aReadMark[] entries. 000377 */ 000378 struct WalCkptInfo { 000379 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 000380 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 000381 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 000382 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 000383 u32 notUsed0; /* Available for future enhancements */ 000384 }; 000385 #define READMARK_NOT_USED 0xffffffff 000386 000387 000388 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 000389 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 000390 ** only support mandatory file-locks, we do not read or write data 000391 ** from the region of the file on which locks are applied. 000392 */ 000393 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 000394 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 000395 000396 /* Size of header before each frame in wal */ 000397 #define WAL_FRAME_HDRSIZE 24 000398 000399 /* Size of write ahead log header, including checksum. */ 000400 /* #define WAL_HDRSIZE 24 */ 000401 #define WAL_HDRSIZE 32 000402 000403 /* WAL magic value. Either this value, or the same value with the least 000404 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 000405 ** big-endian format in the first 4 bytes of a WAL file. 000406 ** 000407 ** If the LSB is set, then the checksums for each frame within the WAL 000408 ** file are calculated by treating all data as an array of 32-bit 000409 ** big-endian words. Otherwise, they are calculated by interpreting 000410 ** all data as 32-bit little-endian words. 000411 */ 000412 #define WAL_MAGIC 0x377f0682 000413 000414 /* 000415 ** Return the offset of frame iFrame in the write-ahead log file, 000416 ** assuming a database page size of szPage bytes. The offset returned 000417 ** is to the start of the write-ahead log frame-header. 000418 */ 000419 #define walFrameOffset(iFrame, szPage) ( \ 000420 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 000421 ) 000422 000423 /* 000424 ** An open write-ahead log file is represented by an instance of the 000425 ** following object. 000426 */ 000427 struct Wal { 000428 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 000429 sqlite3_file *pDbFd; /* File handle for the database file */ 000430 sqlite3_file *pWalFd; /* File handle for WAL file */ 000431 u32 iCallback; /* Value to pass to log callback (or 0) */ 000432 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 000433 int nWiData; /* Size of array apWiData */ 000434 int szFirstBlock; /* Size of first block written to WAL file */ 000435 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 000436 u32 szPage; /* Database page size */ 000437 i16 readLock; /* Which read lock is being held. -1 for none */ 000438 u8 syncFlags; /* Flags to use to sync header writes */ 000439 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 000440 u8 writeLock; /* True if in a write transaction */ 000441 u8 ckptLock; /* True if holding a checkpoint lock */ 000442 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 000443 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 000444 u8 syncHeader; /* Fsync the WAL header if true */ 000445 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 000446 WalIndexHdr hdr; /* Wal-index header for current transaction */ 000447 u32 minFrame; /* Ignore wal frames before this one */ 000448 u32 iReCksum; /* On commit, recalculate checksums from here */ 000449 const char *zWalName; /* Name of WAL file */ 000450 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 000451 #ifdef SQLITE_DEBUG 000452 u8 lockError; /* True if a locking error has occurred */ 000453 #endif 000454 #ifdef SQLITE_ENABLE_SNAPSHOT 000455 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 000456 #endif 000457 }; 000458 000459 /* 000460 ** Candidate values for Wal.exclusiveMode. 000461 */ 000462 #define WAL_NORMAL_MODE 0 000463 #define WAL_EXCLUSIVE_MODE 1 000464 #define WAL_HEAPMEMORY_MODE 2 000465 000466 /* 000467 ** Possible values for WAL.readOnly 000468 */ 000469 #define WAL_RDWR 0 /* Normal read/write connection */ 000470 #define WAL_RDONLY 1 /* The WAL file is readonly */ 000471 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 000472 000473 /* 000474 ** Each page of the wal-index mapping contains a hash-table made up of 000475 ** an array of HASHTABLE_NSLOT elements of the following type. 000476 */ 000477 typedef u16 ht_slot; 000478 000479 /* 000480 ** This structure is used to implement an iterator that loops through 000481 ** all frames in the WAL in database page order. Where two or more frames 000482 ** correspond to the same database page, the iterator visits only the 000483 ** frame most recently written to the WAL (in other words, the frame with 000484 ** the largest index). 000485 ** 000486 ** The internals of this structure are only accessed by: 000487 ** 000488 ** walIteratorInit() - Create a new iterator, 000489 ** walIteratorNext() - Step an iterator, 000490 ** walIteratorFree() - Free an iterator. 000491 ** 000492 ** This functionality is used by the checkpoint code (see walCheckpoint()). 000493 */ 000494 struct WalIterator { 000495 int iPrior; /* Last result returned from the iterator */ 000496 int nSegment; /* Number of entries in aSegment[] */ 000497 struct WalSegment { 000498 int iNext; /* Next slot in aIndex[] not yet returned */ 000499 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 000500 u32 *aPgno; /* Array of page numbers. */ 000501 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 000502 int iZero; /* Frame number associated with aPgno[0] */ 000503 } aSegment[1]; /* One for every 32KB page in the wal-index */ 000504 }; 000505 000506 /* 000507 ** Define the parameters of the hash tables in the wal-index file. There 000508 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 000509 ** wal-index. 000510 ** 000511 ** Changing any of these constants will alter the wal-index format and 000512 ** create incompatibilities. 000513 */ 000514 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 000515 #define HASHTABLE_HASH_1 383 /* Should be prime */ 000516 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 000517 000518 /* 000519 ** The block of page numbers associated with the first hash-table in a 000520 ** wal-index is smaller than usual. This is so that there is a complete 000521 ** hash-table on each aligned 32KB page of the wal-index. 000522 */ 000523 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 000524 000525 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 000526 #define WALINDEX_PGSZ ( \ 000527 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 000528 ) 000529 000530 /* 000531 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 000532 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 000533 ** numbered from zero. 000534 ** 000535 ** If this call is successful, *ppPage is set to point to the wal-index 000536 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, 000537 ** then an SQLite error code is returned and *ppPage is set to 0. 000538 */ 000539 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ 000540 int rc = SQLITE_OK; 000541 000542 /* Enlarge the pWal->apWiData[] array if required */ 000543 if( pWal->nWiData<=iPage ){ 000544 int nByte = sizeof(u32*)*(iPage+1); 000545 volatile u32 **apNew; 000546 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); 000547 if( !apNew ){ 000548 *ppPage = 0; 000549 return SQLITE_NOMEM_BKPT; 000550 } 000551 memset((void*)&apNew[pWal->nWiData], 0, 000552 sizeof(u32*)*(iPage+1-pWal->nWiData)); 000553 pWal->apWiData = apNew; 000554 pWal->nWiData = iPage+1; 000555 } 000556 000557 /* Request a pointer to the required page from the VFS */ 000558 if( pWal->apWiData[iPage]==0 ){ 000559 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 000560 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 000561 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 000562 }else{ 000563 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 000564 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 000565 ); 000566 if( rc==SQLITE_READONLY ){ 000567 pWal->readOnly |= WAL_SHM_RDONLY; 000568 rc = SQLITE_OK; 000569 } 000570 } 000571 } 000572 000573 *ppPage = pWal->apWiData[iPage]; 000574 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 000575 return rc; 000576 } 000577 000578 /* 000579 ** Return a pointer to the WalCkptInfo structure in the wal-index. 000580 */ 000581 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 000582 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 000583 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 000584 } 000585 000586 /* 000587 ** Return a pointer to the WalIndexHdr structure in the wal-index. 000588 */ 000589 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 000590 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 000591 return (volatile WalIndexHdr*)pWal->apWiData[0]; 000592 } 000593 000594 /* 000595 ** The argument to this macro must be of type u32. On a little-endian 000596 ** architecture, it returns the u32 value that results from interpreting 000597 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 000598 ** returns the value that would be produced by interpreting the 4 bytes 000599 ** of the input value as a little-endian integer. 000600 */ 000601 #define BYTESWAP32(x) ( \ 000602 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 000603 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 000604 ) 000605 000606 /* 000607 ** Generate or extend an 8 byte checksum based on the data in 000608 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 000609 ** initial values of 0 and 0 if aIn==NULL). 000610 ** 000611 ** The checksum is written back into aOut[] before returning. 000612 ** 000613 ** nByte must be a positive multiple of 8. 000614 */ 000615 static void walChecksumBytes( 000616 int nativeCksum, /* True for native byte-order, false for non-native */ 000617 u8 *a, /* Content to be checksummed */ 000618 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 000619 const u32 *aIn, /* Initial checksum value input */ 000620 u32 *aOut /* OUT: Final checksum value output */ 000621 ){ 000622 u32 s1, s2; 000623 u32 *aData = (u32 *)a; 000624 u32 *aEnd = (u32 *)&a[nByte]; 000625 000626 if( aIn ){ 000627 s1 = aIn[0]; 000628 s2 = aIn[1]; 000629 }else{ 000630 s1 = s2 = 0; 000631 } 000632 000633 assert( nByte>=8 ); 000634 assert( (nByte&0x00000007)==0 ); 000635 000636 if( nativeCksum ){ 000637 do { 000638 s1 += *aData++ + s2; 000639 s2 += *aData++ + s1; 000640 }while( aData<aEnd ); 000641 }else{ 000642 do { 000643 s1 += BYTESWAP32(aData[0]) + s2; 000644 s2 += BYTESWAP32(aData[1]) + s1; 000645 aData += 2; 000646 }while( aData<aEnd ); 000647 } 000648 000649 aOut[0] = s1; 000650 aOut[1] = s2; 000651 } 000652 000653 static void walShmBarrier(Wal *pWal){ 000654 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 000655 sqlite3OsShmBarrier(pWal->pDbFd); 000656 } 000657 } 000658 000659 /* 000660 ** Write the header information in pWal->hdr into the wal-index. 000661 ** 000662 ** The checksum on pWal->hdr is updated before it is written. 000663 */ 000664 static void walIndexWriteHdr(Wal *pWal){ 000665 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 000666 const int nCksum = offsetof(WalIndexHdr, aCksum); 000667 000668 assert( pWal->writeLock ); 000669 pWal->hdr.isInit = 1; 000670 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 000671 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 000672 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 000673 walShmBarrier(pWal); 000674 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 000675 } 000676 000677 /* 000678 ** This function encodes a single frame header and writes it to a buffer 000679 ** supplied by the caller. A frame-header is made up of a series of 000680 ** 4-byte big-endian integers, as follows: 000681 ** 000682 ** 0: Page number. 000683 ** 4: For commit records, the size of the database image in pages 000684 ** after the commit. For all other records, zero. 000685 ** 8: Salt-1 (copied from the wal-header) 000686 ** 12: Salt-2 (copied from the wal-header) 000687 ** 16: Checksum-1. 000688 ** 20: Checksum-2. 000689 */ 000690 static void walEncodeFrame( 000691 Wal *pWal, /* The write-ahead log */ 000692 u32 iPage, /* Database page number for frame */ 000693 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 000694 u8 *aData, /* Pointer to page data */ 000695 u8 *aFrame /* OUT: Write encoded frame here */ 000696 ){ 000697 int nativeCksum; /* True for native byte-order checksums */ 000698 u32 *aCksum = pWal->hdr.aFrameCksum; 000699 assert( WAL_FRAME_HDRSIZE==24 ); 000700 sqlite3Put4byte(&aFrame[0], iPage); 000701 sqlite3Put4byte(&aFrame[4], nTruncate); 000702 if( pWal->iReCksum==0 ){ 000703 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 000704 000705 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 000706 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 000707 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 000708 000709 sqlite3Put4byte(&aFrame[16], aCksum[0]); 000710 sqlite3Put4byte(&aFrame[20], aCksum[1]); 000711 }else{ 000712 memset(&aFrame[8], 0, 16); 000713 } 000714 } 000715 000716 /* 000717 ** Check to see if the frame with header in aFrame[] and content 000718 ** in aData[] is valid. If it is a valid frame, fill *piPage and 000719 ** *pnTruncate and return true. Return if the frame is not valid. 000720 */ 000721 static int walDecodeFrame( 000722 Wal *pWal, /* The write-ahead log */ 000723 u32 *piPage, /* OUT: Database page number for frame */ 000724 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 000725 u8 *aData, /* Pointer to page data (for checksum) */ 000726 u8 *aFrame /* Frame data */ 000727 ){ 000728 int nativeCksum; /* True for native byte-order checksums */ 000729 u32 *aCksum = pWal->hdr.aFrameCksum; 000730 u32 pgno; /* Page number of the frame */ 000731 assert( WAL_FRAME_HDRSIZE==24 ); 000732 000733 /* A frame is only valid if the salt values in the frame-header 000734 ** match the salt values in the wal-header. 000735 */ 000736 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 000737 return 0; 000738 } 000739 000740 /* A frame is only valid if the page number is creater than zero. 000741 */ 000742 pgno = sqlite3Get4byte(&aFrame[0]); 000743 if( pgno==0 ){ 000744 return 0; 000745 } 000746 000747 /* A frame is only valid if a checksum of the WAL header, 000748 ** all prior frams, the first 16 bytes of this frame-header, 000749 ** and the frame-data matches the checksum in the last 8 000750 ** bytes of this frame-header. 000751 */ 000752 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 000753 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 000754 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 000755 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 000756 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 000757 ){ 000758 /* Checksum failed. */ 000759 return 0; 000760 } 000761 000762 /* If we reach this point, the frame is valid. Return the page number 000763 ** and the new database size. 000764 */ 000765 *piPage = pgno; 000766 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 000767 return 1; 000768 } 000769 000770 000771 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 000772 /* 000773 ** Names of locks. This routine is used to provide debugging output and is not 000774 ** a part of an ordinary build. 000775 */ 000776 static const char *walLockName(int lockIdx){ 000777 if( lockIdx==WAL_WRITE_LOCK ){ 000778 return "WRITE-LOCK"; 000779 }else if( lockIdx==WAL_CKPT_LOCK ){ 000780 return "CKPT-LOCK"; 000781 }else if( lockIdx==WAL_RECOVER_LOCK ){ 000782 return "RECOVER-LOCK"; 000783 }else{ 000784 static char zName[15]; 000785 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 000786 lockIdx-WAL_READ_LOCK(0)); 000787 return zName; 000788 } 000789 } 000790 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 000791 000792 000793 /* 000794 ** Set or release locks on the WAL. Locks are either shared or exclusive. 000795 ** A lock cannot be moved directly between shared and exclusive - it must go 000796 ** through the unlocked state first. 000797 ** 000798 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 000799 */ 000800 static int walLockShared(Wal *pWal, int lockIdx){ 000801 int rc; 000802 if( pWal->exclusiveMode ) return SQLITE_OK; 000803 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 000804 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 000805 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 000806 walLockName(lockIdx), rc ? "failed" : "ok")); 000807 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 000808 return rc; 000809 } 000810 static void walUnlockShared(Wal *pWal, int lockIdx){ 000811 if( pWal->exclusiveMode ) return; 000812 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 000813 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 000814 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 000815 } 000816 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 000817 int rc; 000818 if( pWal->exclusiveMode ) return SQLITE_OK; 000819 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 000820 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 000821 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 000822 walLockName(lockIdx), n, rc ? "failed" : "ok")); 000823 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) 000824 return rc; 000825 } 000826 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 000827 if( pWal->exclusiveMode ) return; 000828 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 000829 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 000830 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 000831 walLockName(lockIdx), n)); 000832 } 000833 000834 /* 000835 ** Compute a hash on a page number. The resulting hash value must land 000836 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 000837 ** the hash to the next value in the event of a collision. 000838 */ 000839 static int walHash(u32 iPage){ 000840 assert( iPage>0 ); 000841 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 000842 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 000843 } 000844 static int walNextHash(int iPriorHash){ 000845 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 000846 } 000847 000848 /* 000849 ** Return pointers to the hash table and page number array stored on 000850 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 000851 ** numbered starting from 0. 000852 ** 000853 ** Set output variable *paHash to point to the start of the hash table 000854 ** in the wal-index file. Set *piZero to one less than the frame 000855 ** number of the first frame indexed by this hash table. If a 000856 ** slot in the hash table is set to N, it refers to frame number 000857 ** (*piZero+N) in the log. 000858 ** 000859 ** Finally, set *paPgno so that *paPgno[1] is the page number of the 000860 ** first frame indexed by the hash table, frame (*piZero+1). 000861 */ 000862 static int walHashGet( 000863 Wal *pWal, /* WAL handle */ 000864 int iHash, /* Find the iHash'th table */ 000865 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ 000866 volatile u32 **paPgno, /* OUT: Pointer to page number array */ 000867 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ 000868 ){ 000869 int rc; /* Return code */ 000870 volatile u32 *aPgno; 000871 000872 rc = walIndexPage(pWal, iHash, &aPgno); 000873 assert( rc==SQLITE_OK || iHash>0 ); 000874 000875 if( rc==SQLITE_OK ){ 000876 u32 iZero; 000877 volatile ht_slot *aHash; 000878 000879 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; 000880 if( iHash==0 ){ 000881 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 000882 iZero = 0; 000883 }else{ 000884 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 000885 } 000886 000887 *paPgno = &aPgno[-1]; 000888 *paHash = aHash; 000889 *piZero = iZero; 000890 } 000891 return rc; 000892 } 000893 000894 /* 000895 ** Return the number of the wal-index page that contains the hash-table 000896 ** and page-number array that contain entries corresponding to WAL frame 000897 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 000898 ** are numbered starting from 0. 000899 */ 000900 static int walFramePage(u32 iFrame){ 000901 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 000902 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 000903 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 000904 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 000905 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 000906 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 000907 ); 000908 return iHash; 000909 } 000910 000911 /* 000912 ** Return the page number associated with frame iFrame in this WAL. 000913 */ 000914 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 000915 int iHash = walFramePage(iFrame); 000916 if( iHash==0 ){ 000917 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 000918 } 000919 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 000920 } 000921 000922 /* 000923 ** Remove entries from the hash table that point to WAL slots greater 000924 ** than pWal->hdr.mxFrame. 000925 ** 000926 ** This function is called whenever pWal->hdr.mxFrame is decreased due 000927 ** to a rollback or savepoint. 000928 ** 000929 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 000930 ** updated. Any later hash tables will be automatically cleared when 000931 ** pWal->hdr.mxFrame advances to the point where those hash tables are 000932 ** actually needed. 000933 */ 000934 static void walCleanupHash(Wal *pWal){ 000935 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ 000936 volatile u32 *aPgno = 0; /* Page number array for hash table */ 000937 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ 000938 int iLimit = 0; /* Zero values greater than this */ 000939 int nByte; /* Number of bytes to zero in aPgno[] */ 000940 int i; /* Used to iterate through aHash[] */ 000941 000942 assert( pWal->writeLock ); 000943 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 000944 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 000945 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 000946 000947 if( pWal->hdr.mxFrame==0 ) return; 000948 000949 /* Obtain pointers to the hash-table and page-number array containing 000950 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 000951 ** that the page said hash-table and array reside on is already mapped. 000952 */ 000953 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 000954 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 000955 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); 000956 000957 /* Zero all hash-table entries that correspond to frame numbers greater 000958 ** than pWal->hdr.mxFrame. 000959 */ 000960 iLimit = pWal->hdr.mxFrame - iZero; 000961 assert( iLimit>0 ); 000962 for(i=0; i<HASHTABLE_NSLOT; i++){ 000963 if( aHash[i]>iLimit ){ 000964 aHash[i] = 0; 000965 } 000966 } 000967 000968 /* Zero the entries in the aPgno array that correspond to frames with 000969 ** frame numbers greater than pWal->hdr.mxFrame. 000970 */ 000971 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); 000972 memset((void *)&aPgno[iLimit+1], 0, nByte); 000973 000974 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 000975 /* Verify that the every entry in the mapping region is still reachable 000976 ** via the hash table even after the cleanup. 000977 */ 000978 if( iLimit ){ 000979 int j; /* Loop counter */ 000980 int iKey; /* Hash key */ 000981 for(j=1; j<=iLimit; j++){ 000982 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){ 000983 if( aHash[iKey]==j ) break; 000984 } 000985 assert( aHash[iKey]==j ); 000986 } 000987 } 000988 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 000989 } 000990 000991 000992 /* 000993 ** Set an entry in the wal-index that will map database page number 000994 ** pPage into WAL frame iFrame. 000995 */ 000996 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 000997 int rc; /* Return code */ 000998 u32 iZero = 0; /* One less than frame number of aPgno[1] */ 000999 volatile u32 *aPgno = 0; /* Page number array */ 001000 volatile ht_slot *aHash = 0; /* Hash table */ 001001 001002 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); 001003 001004 /* Assuming the wal-index file was successfully mapped, populate the 001005 ** page number array and hash table entry. 001006 */ 001007 if( rc==SQLITE_OK ){ 001008 int iKey; /* Hash table key */ 001009 int idx; /* Value to write to hash-table slot */ 001010 int nCollide; /* Number of hash collisions */ 001011 001012 idx = iFrame - iZero; 001013 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 001014 001015 /* If this is the first entry to be added to this hash-table, zero the 001016 ** entire hash table and aPgno[] array before proceeding. 001017 */ 001018 if( idx==1 ){ 001019 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); 001020 memset((void*)&aPgno[1], 0, nByte); 001021 } 001022 001023 /* If the entry in aPgno[] is already set, then the previous writer 001024 ** must have exited unexpectedly in the middle of a transaction (after 001025 ** writing one or more dirty pages to the WAL to free up memory). 001026 ** Remove the remnants of that writers uncommitted transaction from 001027 ** the hash-table before writing any new entries. 001028 */ 001029 if( aPgno[idx] ){ 001030 walCleanupHash(pWal); 001031 assert( !aPgno[idx] ); 001032 } 001033 001034 /* Write the aPgno[] array entry and the hash-table slot. */ 001035 nCollide = idx; 001036 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ 001037 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 001038 } 001039 aPgno[idx] = iPage; 001040 aHash[iKey] = (ht_slot)idx; 001041 001042 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 001043 /* Verify that the number of entries in the hash table exactly equals 001044 ** the number of entries in the mapping region. 001045 */ 001046 { 001047 int i; /* Loop counter */ 001048 int nEntry = 0; /* Number of entries in the hash table */ 001049 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } 001050 assert( nEntry==idx ); 001051 } 001052 001053 /* Verify that the every entry in the mapping region is reachable 001054 ** via the hash table. This turns out to be a really, really expensive 001055 ** thing to check, so only do this occasionally - not on every 001056 ** iteration. 001057 */ 001058 if( (idx&0x3ff)==0 ){ 001059 int i; /* Loop counter */ 001060 for(i=1; i<=idx; i++){ 001061 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ 001062 if( aHash[iKey]==i ) break; 001063 } 001064 assert( aHash[iKey]==i ); 001065 } 001066 } 001067 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 001068 } 001069 001070 001071 return rc; 001072 } 001073 001074 001075 /* 001076 ** Recover the wal-index by reading the write-ahead log file. 001077 ** 001078 ** This routine first tries to establish an exclusive lock on the 001079 ** wal-index to prevent other threads/processes from doing anything 001080 ** with the WAL or wal-index while recovery is running. The 001081 ** WAL_RECOVER_LOCK is also held so that other threads will know 001082 ** that this thread is running recovery. If unable to establish 001083 ** the necessary locks, this routine returns SQLITE_BUSY. 001084 */ 001085 static int walIndexRecover(Wal *pWal){ 001086 int rc; /* Return Code */ 001087 i64 nSize; /* Size of log file */ 001088 u32 aFrameCksum[2] = {0, 0}; 001089 int iLock; /* Lock offset to lock for checkpoint */ 001090 int nLock; /* Number of locks to hold */ 001091 001092 /* Obtain an exclusive lock on all byte in the locking range not already 001093 ** locked by the caller. The caller is guaranteed to have locked the 001094 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 001095 ** If successful, the same bytes that are locked here are unlocked before 001096 ** this function returns. 001097 */ 001098 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 001099 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 001100 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 001101 assert( pWal->writeLock ); 001102 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 001103 nLock = SQLITE_SHM_NLOCK - iLock; 001104 rc = walLockExclusive(pWal, iLock, nLock); 001105 if( rc ){ 001106 return rc; 001107 } 001108 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 001109 001110 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 001111 001112 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 001113 if( rc!=SQLITE_OK ){ 001114 goto recovery_error; 001115 } 001116 001117 if( nSize>WAL_HDRSIZE ){ 001118 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 001119 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 001120 int szFrame; /* Number of bytes in buffer aFrame[] */ 001121 u8 *aData; /* Pointer to data part of aFrame buffer */ 001122 int iFrame; /* Index of last frame read */ 001123 i64 iOffset; /* Next offset to read from log file */ 001124 int szPage; /* Page size according to the log */ 001125 u32 magic; /* Magic value read from WAL header */ 001126 u32 version; /* Magic value read from WAL header */ 001127 int isValid; /* True if this frame is valid */ 001128 001129 /* Read in the WAL header. */ 001130 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 001131 if( rc!=SQLITE_OK ){ 001132 goto recovery_error; 001133 } 001134 001135 /* If the database page size is not a power of two, or is greater than 001136 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 001137 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 001138 ** WAL file. 001139 */ 001140 magic = sqlite3Get4byte(&aBuf[0]); 001141 szPage = sqlite3Get4byte(&aBuf[8]); 001142 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 001143 || szPage&(szPage-1) 001144 || szPage>SQLITE_MAX_PAGE_SIZE 001145 || szPage<512 001146 ){ 001147 goto finished; 001148 } 001149 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 001150 pWal->szPage = szPage; 001151 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 001152 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 001153 001154 /* Verify that the WAL header checksum is correct */ 001155 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 001156 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 001157 ); 001158 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 001159 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 001160 ){ 001161 goto finished; 001162 } 001163 001164 /* Verify that the version number on the WAL format is one that 001165 ** are able to understand */ 001166 version = sqlite3Get4byte(&aBuf[4]); 001167 if( version!=WAL_MAX_VERSION ){ 001168 rc = SQLITE_CANTOPEN_BKPT; 001169 goto finished; 001170 } 001171 001172 /* Malloc a buffer to read frames into. */ 001173 szFrame = szPage + WAL_FRAME_HDRSIZE; 001174 aFrame = (u8 *)sqlite3_malloc64(szFrame); 001175 if( !aFrame ){ 001176 rc = SQLITE_NOMEM_BKPT; 001177 goto recovery_error; 001178 } 001179 aData = &aFrame[WAL_FRAME_HDRSIZE]; 001180 001181 /* Read all frames from the log file. */ 001182 iFrame = 0; 001183 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ 001184 u32 pgno; /* Database page number for frame */ 001185 u32 nTruncate; /* dbsize field from frame header */ 001186 001187 /* Read and decode the next log frame. */ 001188 iFrame++; 001189 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 001190 if( rc!=SQLITE_OK ) break; 001191 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 001192 if( !isValid ) break; 001193 rc = walIndexAppend(pWal, iFrame, pgno); 001194 if( rc!=SQLITE_OK ) break; 001195 001196 /* If nTruncate is non-zero, this is a commit record. */ 001197 if( nTruncate ){ 001198 pWal->hdr.mxFrame = iFrame; 001199 pWal->hdr.nPage = nTruncate; 001200 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 001201 testcase( szPage<=32768 ); 001202 testcase( szPage>=65536 ); 001203 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 001204 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 001205 } 001206 } 001207 001208 sqlite3_free(aFrame); 001209 } 001210 001211 finished: 001212 if( rc==SQLITE_OK ){ 001213 volatile WalCkptInfo *pInfo; 001214 int i; 001215 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 001216 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 001217 walIndexWriteHdr(pWal); 001218 001219 /* Reset the checkpoint-header. This is safe because this thread is 001220 ** currently holding locks that exclude all other readers, writers and 001221 ** checkpointers. 001222 */ 001223 pInfo = walCkptInfo(pWal); 001224 pInfo->nBackfill = 0; 001225 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 001226 pInfo->aReadMark[0] = 0; 001227 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 001228 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; 001229 001230 /* If more than one frame was recovered from the log file, report an 001231 ** event via sqlite3_log(). This is to help with identifying performance 001232 ** problems caused by applications routinely shutting down without 001233 ** checkpointing the log file. 001234 */ 001235 if( pWal->hdr.nPage ){ 001236 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 001237 "recovered %d frames from WAL file %s", 001238 pWal->hdr.mxFrame, pWal->zWalName 001239 ); 001240 } 001241 } 001242 001243 recovery_error: 001244 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 001245 walUnlockExclusive(pWal, iLock, nLock); 001246 return rc; 001247 } 001248 001249 /* 001250 ** Close an open wal-index. 001251 */ 001252 static void walIndexClose(Wal *pWal, int isDelete){ 001253 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 001254 int i; 001255 for(i=0; i<pWal->nWiData; i++){ 001256 sqlite3_free((void *)pWal->apWiData[i]); 001257 pWal->apWiData[i] = 0; 001258 } 001259 }else{ 001260 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 001261 } 001262 } 001263 001264 /* 001265 ** Open a connection to the WAL file zWalName. The database file must 001266 ** already be opened on connection pDbFd. The buffer that zWalName points 001267 ** to must remain valid for the lifetime of the returned Wal* handle. 001268 ** 001269 ** A SHARED lock should be held on the database file when this function 001270 ** is called. The purpose of this SHARED lock is to prevent any other 001271 ** client from unlinking the WAL or wal-index file. If another process 001272 ** were to do this just after this client opened one of these files, the 001273 ** system would be badly broken. 001274 ** 001275 ** If the log file is successfully opened, SQLITE_OK is returned and 001276 ** *ppWal is set to point to a new WAL handle. If an error occurs, 001277 ** an SQLite error code is returned and *ppWal is left unmodified. 001278 */ 001279 int sqlite3WalOpen( 001280 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 001281 sqlite3_file *pDbFd, /* The open database file */ 001282 const char *zWalName, /* Name of the WAL file */ 001283 int bNoShm, /* True to run in heap-memory mode */ 001284 i64 mxWalSize, /* Truncate WAL to this size on reset */ 001285 Wal **ppWal /* OUT: Allocated Wal handle */ 001286 ){ 001287 int rc; /* Return Code */ 001288 Wal *pRet; /* Object to allocate and return */ 001289 int flags; /* Flags passed to OsOpen() */ 001290 001291 assert( zWalName && zWalName[0] ); 001292 assert( pDbFd ); 001293 001294 /* In the amalgamation, the os_unix.c and os_win.c source files come before 001295 ** this source file. Verify that the #defines of the locking byte offsets 001296 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 001297 ** For that matter, if the lock offset ever changes from its initial design 001298 ** value of 120, we need to know that so there is an assert() to check it. 001299 */ 001300 assert( 120==WALINDEX_LOCK_OFFSET ); 001301 assert( 136==WALINDEX_HDR_SIZE ); 001302 #ifdef WIN_SHM_BASE 001303 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 001304 #endif 001305 #ifdef UNIX_SHM_BASE 001306 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 001307 #endif 001308 001309 001310 /* Allocate an instance of struct Wal to return. */ 001311 *ppWal = 0; 001312 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 001313 if( !pRet ){ 001314 return SQLITE_NOMEM_BKPT; 001315 } 001316 001317 pRet->pVfs = pVfs; 001318 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 001319 pRet->pDbFd = pDbFd; 001320 pRet->readLock = -1; 001321 pRet->mxWalSize = mxWalSize; 001322 pRet->zWalName = zWalName; 001323 pRet->syncHeader = 1; 001324 pRet->padToSectorBoundary = 1; 001325 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 001326 001327 /* Open file handle on the write-ahead log file. */ 001328 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 001329 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 001330 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 001331 pRet->readOnly = WAL_RDONLY; 001332 } 001333 001334 if( rc!=SQLITE_OK ){ 001335 walIndexClose(pRet, 0); 001336 sqlite3OsClose(pRet->pWalFd); 001337 sqlite3_free(pRet); 001338 }else{ 001339 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 001340 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 001341 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 001342 pRet->padToSectorBoundary = 0; 001343 } 001344 *ppWal = pRet; 001345 WALTRACE(("WAL%d: opened\n", pRet)); 001346 } 001347 return rc; 001348 } 001349 001350 /* 001351 ** Change the size to which the WAL file is trucated on each reset. 001352 */ 001353 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 001354 if( pWal ) pWal->mxWalSize = iLimit; 001355 } 001356 001357 /* 001358 ** Find the smallest page number out of all pages held in the WAL that 001359 ** has not been returned by any prior invocation of this method on the 001360 ** same WalIterator object. Write into *piFrame the frame index where 001361 ** that page was last written into the WAL. Write into *piPage the page 001362 ** number. 001363 ** 001364 ** Return 0 on success. If there are no pages in the WAL with a page 001365 ** number larger than *piPage, then return 1. 001366 */ 001367 static int walIteratorNext( 001368 WalIterator *p, /* Iterator */ 001369 u32 *piPage, /* OUT: The page number of the next page */ 001370 u32 *piFrame /* OUT: Wal frame index of next page */ 001371 ){ 001372 u32 iMin; /* Result pgno must be greater than iMin */ 001373 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 001374 int i; /* For looping through segments */ 001375 001376 iMin = p->iPrior; 001377 assert( iMin<0xffffffff ); 001378 for(i=p->nSegment-1; i>=0; i--){ 001379 struct WalSegment *pSegment = &p->aSegment[i]; 001380 while( pSegment->iNext<pSegment->nEntry ){ 001381 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 001382 if( iPg>iMin ){ 001383 if( iPg<iRet ){ 001384 iRet = iPg; 001385 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 001386 } 001387 break; 001388 } 001389 pSegment->iNext++; 001390 } 001391 } 001392 001393 *piPage = p->iPrior = iRet; 001394 return (iRet==0xFFFFFFFF); 001395 } 001396 001397 /* 001398 ** This function merges two sorted lists into a single sorted list. 001399 ** 001400 ** aLeft[] and aRight[] are arrays of indices. The sort key is 001401 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 001402 ** is guaranteed for all J<K: 001403 ** 001404 ** aContent[aLeft[J]] < aContent[aLeft[K]] 001405 ** aContent[aRight[J]] < aContent[aRight[K]] 001406 ** 001407 ** This routine overwrites aRight[] with a new (probably longer) sequence 001408 ** of indices such that the aRight[] contains every index that appears in 001409 ** either aLeft[] or the old aRight[] and such that the second condition 001410 ** above is still met. 001411 ** 001412 ** The aContent[aLeft[X]] values will be unique for all X. And the 001413 ** aContent[aRight[X]] values will be unique too. But there might be 001414 ** one or more combinations of X and Y such that 001415 ** 001416 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 001417 ** 001418 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 001419 */ 001420 static void walMerge( 001421 const u32 *aContent, /* Pages in wal - keys for the sort */ 001422 ht_slot *aLeft, /* IN: Left hand input list */ 001423 int nLeft, /* IN: Elements in array *paLeft */ 001424 ht_slot **paRight, /* IN/OUT: Right hand input list */ 001425 int *pnRight, /* IN/OUT: Elements in *paRight */ 001426 ht_slot *aTmp /* Temporary buffer */ 001427 ){ 001428 int iLeft = 0; /* Current index in aLeft */ 001429 int iRight = 0; /* Current index in aRight */ 001430 int iOut = 0; /* Current index in output buffer */ 001431 int nRight = *pnRight; 001432 ht_slot *aRight = *paRight; 001433 001434 assert( nLeft>0 && nRight>0 ); 001435 while( iRight<nRight || iLeft<nLeft ){ 001436 ht_slot logpage; 001437 Pgno dbpage; 001438 001439 if( (iLeft<nLeft) 001440 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 001441 ){ 001442 logpage = aLeft[iLeft++]; 001443 }else{ 001444 logpage = aRight[iRight++]; 001445 } 001446 dbpage = aContent[logpage]; 001447 001448 aTmp[iOut++] = logpage; 001449 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 001450 001451 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 001452 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 001453 } 001454 001455 *paRight = aLeft; 001456 *pnRight = iOut; 001457 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 001458 } 001459 001460 /* 001461 ** Sort the elements in list aList using aContent[] as the sort key. 001462 ** Remove elements with duplicate keys, preferring to keep the 001463 ** larger aList[] values. 001464 ** 001465 ** The aList[] entries are indices into aContent[]. The values in 001466 ** aList[] are to be sorted so that for all J<K: 001467 ** 001468 ** aContent[aList[J]] < aContent[aList[K]] 001469 ** 001470 ** For any X and Y such that 001471 ** 001472 ** aContent[aList[X]] == aContent[aList[Y]] 001473 ** 001474 ** Keep the larger of the two values aList[X] and aList[Y] and discard 001475 ** the smaller. 001476 */ 001477 static void walMergesort( 001478 const u32 *aContent, /* Pages in wal */ 001479 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 001480 ht_slot *aList, /* IN/OUT: List to sort */ 001481 int *pnList /* IN/OUT: Number of elements in aList[] */ 001482 ){ 001483 struct Sublist { 001484 int nList; /* Number of elements in aList */ 001485 ht_slot *aList; /* Pointer to sub-list content */ 001486 }; 001487 001488 const int nList = *pnList; /* Size of input list */ 001489 int nMerge = 0; /* Number of elements in list aMerge */ 001490 ht_slot *aMerge = 0; /* List to be merged */ 001491 int iList; /* Index into input list */ 001492 u32 iSub = 0; /* Index into aSub array */ 001493 struct Sublist aSub[13]; /* Array of sub-lists */ 001494 001495 memset(aSub, 0, sizeof(aSub)); 001496 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 001497 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 001498 001499 for(iList=0; iList<nList; iList++){ 001500 nMerge = 1; 001501 aMerge = &aList[iList]; 001502 for(iSub=0; iList & (1<<iSub); iSub++){ 001503 struct Sublist *p; 001504 assert( iSub<ArraySize(aSub) ); 001505 p = &aSub[iSub]; 001506 assert( p->aList && p->nList<=(1<<iSub) ); 001507 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 001508 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 001509 } 001510 aSub[iSub].aList = aMerge; 001511 aSub[iSub].nList = nMerge; 001512 } 001513 001514 for(iSub++; iSub<ArraySize(aSub); iSub++){ 001515 if( nList & (1<<iSub) ){ 001516 struct Sublist *p; 001517 assert( iSub<ArraySize(aSub) ); 001518 p = &aSub[iSub]; 001519 assert( p->nList<=(1<<iSub) ); 001520 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 001521 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 001522 } 001523 } 001524 assert( aMerge==aList ); 001525 *pnList = nMerge; 001526 001527 #ifdef SQLITE_DEBUG 001528 { 001529 int i; 001530 for(i=1; i<*pnList; i++){ 001531 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 001532 } 001533 } 001534 #endif 001535 } 001536 001537 /* 001538 ** Free an iterator allocated by walIteratorInit(). 001539 */ 001540 static void walIteratorFree(WalIterator *p){ 001541 sqlite3_free(p); 001542 } 001543 001544 /* 001545 ** Construct a WalInterator object that can be used to loop over all 001546 ** pages in the WAL in ascending order. The caller must hold the checkpoint 001547 ** lock. 001548 ** 001549 ** On success, make *pp point to the newly allocated WalInterator object 001550 ** return SQLITE_OK. Otherwise, return an error code. If this routine 001551 ** returns an error, the value of *pp is undefined. 001552 ** 001553 ** The calling routine should invoke walIteratorFree() to destroy the 001554 ** WalIterator object when it has finished with it. 001555 */ 001556 static int walIteratorInit(Wal *pWal, WalIterator **pp){ 001557 WalIterator *p; /* Return value */ 001558 int nSegment; /* Number of segments to merge */ 001559 u32 iLast; /* Last frame in log */ 001560 int nByte; /* Number of bytes to allocate */ 001561 int i; /* Iterator variable */ 001562 ht_slot *aTmp; /* Temp space used by merge-sort */ 001563 int rc = SQLITE_OK; /* Return Code */ 001564 001565 /* This routine only runs while holding the checkpoint lock. And 001566 ** it only runs if there is actually content in the log (mxFrame>0). 001567 */ 001568 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 001569 iLast = pWal->hdr.mxFrame; 001570 001571 /* Allocate space for the WalIterator object. */ 001572 nSegment = walFramePage(iLast) + 1; 001573 nByte = sizeof(WalIterator) 001574 + (nSegment-1)*sizeof(struct WalSegment) 001575 + iLast*sizeof(ht_slot); 001576 p = (WalIterator *)sqlite3_malloc64(nByte); 001577 if( !p ){ 001578 return SQLITE_NOMEM_BKPT; 001579 } 001580 memset(p, 0, nByte); 001581 p->nSegment = nSegment; 001582 001583 /* Allocate temporary space used by the merge-sort routine. This block 001584 ** of memory will be freed before this function returns. 001585 */ 001586 aTmp = (ht_slot *)sqlite3_malloc64( 001587 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 001588 ); 001589 if( !aTmp ){ 001590 rc = SQLITE_NOMEM_BKPT; 001591 } 001592 001593 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ 001594 volatile ht_slot *aHash; 001595 u32 iZero; 001596 volatile u32 *aPgno; 001597 001598 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); 001599 if( rc==SQLITE_OK ){ 001600 int j; /* Counter variable */ 001601 int nEntry; /* Number of entries in this segment */ 001602 ht_slot *aIndex; /* Sorted index for this segment */ 001603 001604 aPgno++; 001605 if( (i+1)==nSegment ){ 001606 nEntry = (int)(iLast - iZero); 001607 }else{ 001608 nEntry = (int)((u32*)aHash - (u32*)aPgno); 001609 } 001610 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; 001611 iZero++; 001612 001613 for(j=0; j<nEntry; j++){ 001614 aIndex[j] = (ht_slot)j; 001615 } 001616 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); 001617 p->aSegment[i].iZero = iZero; 001618 p->aSegment[i].nEntry = nEntry; 001619 p->aSegment[i].aIndex = aIndex; 001620 p->aSegment[i].aPgno = (u32 *)aPgno; 001621 } 001622 } 001623 sqlite3_free(aTmp); 001624 001625 if( rc!=SQLITE_OK ){ 001626 walIteratorFree(p); 001627 } 001628 *pp = p; 001629 return rc; 001630 } 001631 001632 /* 001633 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 001634 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 001635 ** busy-handler function. Invoke it and retry the lock until either the 001636 ** lock is successfully obtained or the busy-handler returns 0. 001637 */ 001638 static int walBusyLock( 001639 Wal *pWal, /* WAL connection */ 001640 int (*xBusy)(void*), /* Function to call when busy */ 001641 void *pBusyArg, /* Context argument for xBusyHandler */ 001642 int lockIdx, /* Offset of first byte to lock */ 001643 int n /* Number of bytes to lock */ 001644 ){ 001645 int rc; 001646 do { 001647 rc = walLockExclusive(pWal, lockIdx, n); 001648 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 001649 return rc; 001650 } 001651 001652 /* 001653 ** The cache of the wal-index header must be valid to call this function. 001654 ** Return the page-size in bytes used by the database. 001655 */ 001656 static int walPagesize(Wal *pWal){ 001657 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 001658 } 001659 001660 /* 001661 ** The following is guaranteed when this function is called: 001662 ** 001663 ** a) the WRITER lock is held, 001664 ** b) the entire log file has been checkpointed, and 001665 ** c) any existing readers are reading exclusively from the database 001666 ** file - there are no readers that may attempt to read a frame from 001667 ** the log file. 001668 ** 001669 ** This function updates the shared-memory structures so that the next 001670 ** client to write to the database (which may be this one) does so by 001671 ** writing frames into the start of the log file. 001672 ** 001673 ** The value of parameter salt1 is used as the aSalt[1] value in the 001674 ** new wal-index header. It should be passed a pseudo-random value (i.e. 001675 ** one obtained from sqlite3_randomness()). 001676 */ 001677 static void walRestartHdr(Wal *pWal, u32 salt1){ 001678 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 001679 int i; /* Loop counter */ 001680 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 001681 pWal->nCkpt++; 001682 pWal->hdr.mxFrame = 0; 001683 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 001684 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 001685 walIndexWriteHdr(pWal); 001686 pInfo->nBackfill = 0; 001687 pInfo->nBackfillAttempted = 0; 001688 pInfo->aReadMark[1] = 0; 001689 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 001690 assert( pInfo->aReadMark[0]==0 ); 001691 } 001692 001693 /* 001694 ** Copy as much content as we can from the WAL back into the database file 001695 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 001696 ** 001697 ** The amount of information copies from WAL to database might be limited 001698 ** by active readers. This routine will never overwrite a database page 001699 ** that a concurrent reader might be using. 001700 ** 001701 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 001702 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 001703 ** checkpoints are always run by a background thread or background 001704 ** process, foreground threads will never block on a lengthy fsync call. 001705 ** 001706 ** Fsync is called on the WAL before writing content out of the WAL and 001707 ** into the database. This ensures that if the new content is persistent 001708 ** in the WAL and can be recovered following a power-loss or hard reset. 001709 ** 001710 ** Fsync is also called on the database file if (and only if) the entire 001711 ** WAL content is copied into the database file. This second fsync makes 001712 ** it safe to delete the WAL since the new content will persist in the 001713 ** database file. 001714 ** 001715 ** This routine uses and updates the nBackfill field of the wal-index header. 001716 ** This is the only routine that will increase the value of nBackfill. 001717 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 001718 ** its value.) 001719 ** 001720 ** The caller must be holding sufficient locks to ensure that no other 001721 ** checkpoint is running (in any other thread or process) at the same 001722 ** time. 001723 */ 001724 static int walCheckpoint( 001725 Wal *pWal, /* Wal connection */ 001726 sqlite3 *db, /* Check for interrupts on this handle */ 001727 int eMode, /* One of PASSIVE, FULL or RESTART */ 001728 int (*xBusy)(void*), /* Function to call when busy */ 001729 void *pBusyArg, /* Context argument for xBusyHandler */ 001730 int sync_flags, /* Flags for OsSync() (or 0) */ 001731 u8 *zBuf /* Temporary buffer to use */ 001732 ){ 001733 int rc = SQLITE_OK; /* Return code */ 001734 int szPage; /* Database page-size */ 001735 WalIterator *pIter = 0; /* Wal iterator context */ 001736 u32 iDbpage = 0; /* Next database page to write */ 001737 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 001738 u32 mxSafeFrame; /* Max frame that can be backfilled */ 001739 u32 mxPage; /* Max database page to write */ 001740 int i; /* Loop counter */ 001741 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 001742 001743 szPage = walPagesize(pWal); 001744 testcase( szPage<=32768 ); 001745 testcase( szPage>=65536 ); 001746 pInfo = walCkptInfo(pWal); 001747 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 001748 001749 /* Allocate the iterator */ 001750 rc = walIteratorInit(pWal, &pIter); 001751 if( rc!=SQLITE_OK ){ 001752 return rc; 001753 } 001754 assert( pIter ); 001755 001756 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 001757 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 001758 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 001759 001760 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 001761 ** safe to write into the database. Frames beyond mxSafeFrame might 001762 ** overwrite database pages that are in use by active readers and thus 001763 ** cannot be backfilled from the WAL. 001764 */ 001765 mxSafeFrame = pWal->hdr.mxFrame; 001766 mxPage = pWal->hdr.nPage; 001767 for(i=1; i<WAL_NREADER; i++){ 001768 /* Thread-sanitizer reports that the following is an unsafe read, 001769 ** as some other thread may be in the process of updating the value 001770 ** of the aReadMark[] slot. The assumption here is that if that is 001771 ** happening, the other client may only be increasing the value, 001772 ** not decreasing it. So assuming either that either the "old" or 001773 ** "new" version of the value is read, and not some arbitrary value 001774 ** that would never be written by a real client, things are still 001775 ** safe. */ 001776 u32 y = pInfo->aReadMark[i]; 001777 if( mxSafeFrame>y ){ 001778 assert( y<=pWal->hdr.mxFrame ); 001779 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 001780 if( rc==SQLITE_OK ){ 001781 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 001782 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 001783 }else if( rc==SQLITE_BUSY ){ 001784 mxSafeFrame = y; 001785 xBusy = 0; 001786 }else{ 001787 goto walcheckpoint_out; 001788 } 001789 } 001790 } 001791 001792 if( pInfo->nBackfill<mxSafeFrame 001793 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK 001794 ){ 001795 i64 nSize; /* Current size of database file */ 001796 u32 nBackfill = pInfo->nBackfill; 001797 001798 pInfo->nBackfillAttempted = mxSafeFrame; 001799 001800 /* Sync the WAL to disk */ 001801 if( sync_flags ){ 001802 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); 001803 } 001804 001805 /* If the database may grow as a result of this checkpoint, hint 001806 ** about the eventual size of the db file to the VFS layer. 001807 */ 001808 if( rc==SQLITE_OK ){ 001809 i64 nReq = ((i64)mxPage * szPage); 001810 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 001811 if( rc==SQLITE_OK && nSize<nReq ){ 001812 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); 001813 } 001814 } 001815 001816 001817 /* Iterate through the contents of the WAL, copying data to the db file */ 001818 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 001819 i64 iOffset; 001820 assert( walFramePgno(pWal, iFrame)==iDbpage ); 001821 if( db->u1.isInterrupted ){ 001822 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 001823 break; 001824 } 001825 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 001826 continue; 001827 } 001828 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 001829 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 001830 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 001831 if( rc!=SQLITE_OK ) break; 001832 iOffset = (iDbpage-1)*(i64)szPage; 001833 testcase( IS_BIG_INT(iOffset) ); 001834 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 001835 if( rc!=SQLITE_OK ) break; 001836 } 001837 001838 /* If work was actually accomplished... */ 001839 if( rc==SQLITE_OK ){ 001840 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 001841 i64 szDb = pWal->hdr.nPage*(i64)szPage; 001842 testcase( IS_BIG_INT(szDb) ); 001843 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 001844 if( rc==SQLITE_OK && sync_flags ){ 001845 rc = sqlite3OsSync(pWal->pDbFd, sync_flags); 001846 } 001847 } 001848 if( rc==SQLITE_OK ){ 001849 pInfo->nBackfill = mxSafeFrame; 001850 } 001851 } 001852 001853 /* Release the reader lock held while backfilling */ 001854 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 001855 } 001856 001857 if( rc==SQLITE_BUSY ){ 001858 /* Reset the return code so as not to report a checkpoint failure 001859 ** just because there are active readers. */ 001860 rc = SQLITE_OK; 001861 } 001862 } 001863 001864 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 001865 ** entire wal file has been copied into the database file, then block 001866 ** until all readers have finished using the wal file. This ensures that 001867 ** the next process to write to the database restarts the wal file. 001868 */ 001869 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 001870 assert( pWal->writeLock ); 001871 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 001872 rc = SQLITE_BUSY; 001873 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 001874 u32 salt1; 001875 sqlite3_randomness(4, &salt1); 001876 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 001877 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 001878 if( rc==SQLITE_OK ){ 001879 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 001880 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 001881 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 001882 ** truncates the log file to zero bytes just prior to a 001883 ** successful return. 001884 ** 001885 ** In theory, it might be safe to do this without updating the 001886 ** wal-index header in shared memory, as all subsequent reader or 001887 ** writer clients should see that the entire log file has been 001888 ** checkpointed and behave accordingly. This seems unsafe though, 001889 ** as it would leave the system in a state where the contents of 001890 ** the wal-index header do not match the contents of the 001891 ** file-system. To avoid this, update the wal-index header to 001892 ** indicate that the log file contains zero valid frames. */ 001893 walRestartHdr(pWal, salt1); 001894 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 001895 } 001896 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 001897 } 001898 } 001899 } 001900 001901 walcheckpoint_out: 001902 walIteratorFree(pIter); 001903 return rc; 001904 } 001905 001906 /* 001907 ** If the WAL file is currently larger than nMax bytes in size, truncate 001908 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 001909 */ 001910 static void walLimitSize(Wal *pWal, i64 nMax){ 001911 i64 sz; 001912 int rx; 001913 sqlite3BeginBenignMalloc(); 001914 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 001915 if( rx==SQLITE_OK && (sz > nMax ) ){ 001916 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 001917 } 001918 sqlite3EndBenignMalloc(); 001919 if( rx ){ 001920 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 001921 } 001922 } 001923 001924 /* 001925 ** Close a connection to a log file. 001926 */ 001927 int sqlite3WalClose( 001928 Wal *pWal, /* Wal to close */ 001929 sqlite3 *db, /* For interrupt flag */ 001930 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 001931 int nBuf, 001932 u8 *zBuf /* Buffer of at least nBuf bytes */ 001933 ){ 001934 int rc = SQLITE_OK; 001935 if( pWal ){ 001936 int isDelete = 0; /* True to unlink wal and wal-index files */ 001937 001938 /* If an EXCLUSIVE lock can be obtained on the database file (using the 001939 ** ordinary, rollback-mode locking methods, this guarantees that the 001940 ** connection associated with this log file is the only connection to 001941 ** the database. In this case checkpoint the database and unlink both 001942 ** the wal and wal-index files. 001943 ** 001944 ** The EXCLUSIVE lock is not released before returning. 001945 */ 001946 if( zBuf!=0 001947 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 001948 ){ 001949 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 001950 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 001951 } 001952 rc = sqlite3WalCheckpoint(pWal, db, 001953 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 001954 ); 001955 if( rc==SQLITE_OK ){ 001956 int bPersist = -1; 001957 sqlite3OsFileControlHint( 001958 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 001959 ); 001960 if( bPersist!=1 ){ 001961 /* Try to delete the WAL file if the checkpoint completed and 001962 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal 001963 ** mode (!bPersist) */ 001964 isDelete = 1; 001965 }else if( pWal->mxWalSize>=0 ){ 001966 /* Try to truncate the WAL file to zero bytes if the checkpoint 001967 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 001968 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 001969 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 001970 ** to zero bytes as truncating to the journal_size_limit might 001971 ** leave a corrupt WAL file on disk. */ 001972 walLimitSize(pWal, 0); 001973 } 001974 } 001975 } 001976 001977 walIndexClose(pWal, isDelete); 001978 sqlite3OsClose(pWal->pWalFd); 001979 if( isDelete ){ 001980 sqlite3BeginBenignMalloc(); 001981 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 001982 sqlite3EndBenignMalloc(); 001983 } 001984 WALTRACE(("WAL%p: closed\n", pWal)); 001985 sqlite3_free((void *)pWal->apWiData); 001986 sqlite3_free(pWal); 001987 } 001988 return rc; 001989 } 001990 001991 /* 001992 ** Try to read the wal-index header. Return 0 on success and 1 if 001993 ** there is a problem. 001994 ** 001995 ** The wal-index is in shared memory. Another thread or process might 001996 ** be writing the header at the same time this procedure is trying to 001997 ** read it, which might result in inconsistency. A dirty read is detected 001998 ** by verifying that both copies of the header are the same and also by 001999 ** a checksum on the header. 002000 ** 002001 ** If and only if the read is consistent and the header is different from 002002 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 002003 ** and *pChanged is set to 1. 002004 ** 002005 ** If the checksum cannot be verified return non-zero. If the header 002006 ** is read successfully and the checksum verified, return zero. 002007 */ 002008 static int walIndexTryHdr(Wal *pWal, int *pChanged){ 002009 u32 aCksum[2]; /* Checksum on the header content */ 002010 WalIndexHdr h1, h2; /* Two copies of the header content */ 002011 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 002012 002013 /* The first page of the wal-index must be mapped at this point. */ 002014 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 002015 002016 /* Read the header. This might happen concurrently with a write to the 002017 ** same area of shared memory on a different CPU in a SMP, 002018 ** meaning it is possible that an inconsistent snapshot is read 002019 ** from the file. If this happens, return non-zero. 002020 ** 002021 ** There are two copies of the header at the beginning of the wal-index. 002022 ** When reading, read [0] first then [1]. Writes are in the reverse order. 002023 ** Memory barriers are used to prevent the compiler or the hardware from 002024 ** reordering the reads and writes. 002025 */ 002026 aHdr = walIndexHdr(pWal); 002027 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); 002028 walShmBarrier(pWal); 002029 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 002030 002031 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 002032 return 1; /* Dirty read */ 002033 } 002034 if( h1.isInit==0 ){ 002035 return 1; /* Malformed header - probably all zeros */ 002036 } 002037 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 002038 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 002039 return 1; /* Checksum does not match */ 002040 } 002041 002042 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 002043 *pChanged = 1; 002044 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 002045 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 002046 testcase( pWal->szPage<=32768 ); 002047 testcase( pWal->szPage>=65536 ); 002048 } 002049 002050 /* The header was successfully read. Return zero. */ 002051 return 0; 002052 } 002053 002054 /* 002055 ** Read the wal-index header from the wal-index and into pWal->hdr. 002056 ** If the wal-header appears to be corrupt, try to reconstruct the 002057 ** wal-index from the WAL before returning. 002058 ** 002059 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 002060 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 002061 ** to 0. 002062 ** 002063 ** If the wal-index header is successfully read, return SQLITE_OK. 002064 ** Otherwise an SQLite error code. 002065 */ 002066 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 002067 int rc; /* Return code */ 002068 int badHdr; /* True if a header read failed */ 002069 volatile u32 *page0; /* Chunk of wal-index containing header */ 002070 002071 /* Ensure that page 0 of the wal-index (the page that contains the 002072 ** wal-index header) is mapped. Return early if an error occurs here. 002073 */ 002074 assert( pChanged ); 002075 rc = walIndexPage(pWal, 0, &page0); 002076 if( rc!=SQLITE_OK ){ 002077 return rc; 002078 }; 002079 assert( page0 || pWal->writeLock==0 ); 002080 002081 /* If the first page of the wal-index has been mapped, try to read the 002082 ** wal-index header immediately, without holding any lock. This usually 002083 ** works, but may fail if the wal-index header is corrupt or currently 002084 ** being modified by another thread or process. 002085 */ 002086 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 002087 002088 /* If the first attempt failed, it might have been due to a race 002089 ** with a writer. So get a WRITE lock and try again. 002090 */ 002091 assert( badHdr==0 || pWal->writeLock==0 ); 002092 if( badHdr ){ 002093 if( pWal->readOnly & WAL_SHM_RDONLY ){ 002094 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 002095 walUnlockShared(pWal, WAL_WRITE_LOCK); 002096 rc = SQLITE_READONLY_RECOVERY; 002097 } 002098 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ 002099 pWal->writeLock = 1; 002100 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 002101 badHdr = walIndexTryHdr(pWal, pChanged); 002102 if( badHdr ){ 002103 /* If the wal-index header is still malformed even while holding 002104 ** a WRITE lock, it can only mean that the header is corrupted and 002105 ** needs to be reconstructed. So run recovery to do exactly that. 002106 */ 002107 rc = walIndexRecover(pWal); 002108 *pChanged = 1; 002109 } 002110 } 002111 pWal->writeLock = 0; 002112 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 002113 } 002114 } 002115 002116 /* If the header is read successfully, check the version number to make 002117 ** sure the wal-index was not constructed with some future format that 002118 ** this version of SQLite cannot understand. 002119 */ 002120 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 002121 rc = SQLITE_CANTOPEN_BKPT; 002122 } 002123 002124 return rc; 002125 } 002126 002127 /* 002128 ** This is the value that walTryBeginRead returns when it needs to 002129 ** be retried. 002130 */ 002131 #define WAL_RETRY (-1) 002132 002133 /* 002134 ** Attempt to start a read transaction. This might fail due to a race or 002135 ** other transient condition. When that happens, it returns WAL_RETRY to 002136 ** indicate to the caller that it is safe to retry immediately. 002137 ** 002138 ** On success return SQLITE_OK. On a permanent failure (such an 002139 ** I/O error or an SQLITE_BUSY because another process is running 002140 ** recovery) return a positive error code. 002141 ** 002142 ** The useWal parameter is true to force the use of the WAL and disable 002143 ** the case where the WAL is bypassed because it has been completely 002144 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 002145 ** to make a copy of the wal-index header into pWal->hdr. If the 002146 ** wal-index header has changed, *pChanged is set to 1 (as an indication 002147 ** to the caller that the local paget cache is obsolete and needs to be 002148 ** flushed.) When useWal==1, the wal-index header is assumed to already 002149 ** be loaded and the pChanged parameter is unused. 002150 ** 002151 ** The caller must set the cnt parameter to the number of prior calls to 002152 ** this routine during the current read attempt that returned WAL_RETRY. 002153 ** This routine will start taking more aggressive measures to clear the 002154 ** race conditions after multiple WAL_RETRY returns, and after an excessive 002155 ** number of errors will ultimately return SQLITE_PROTOCOL. The 002156 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 002157 ** and is not honoring the locking protocol. There is a vanishingly small 002158 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 002159 ** bad luck when there is lots of contention for the wal-index, but that 002160 ** possibility is so small that it can be safely neglected, we believe. 002161 ** 002162 ** On success, this routine obtains a read lock on 002163 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 002164 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 002165 ** that means the Wal does not hold any read lock. The reader must not 002166 ** access any database page that is modified by a WAL frame up to and 002167 ** including frame number aReadMark[pWal->readLock]. The reader will 002168 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 002169 ** Or if pWal->readLock==0, then the reader will ignore the WAL 002170 ** completely and get all content directly from the database file. 002171 ** If the useWal parameter is 1 then the WAL will never be ignored and 002172 ** this routine will always set pWal->readLock>0 on success. 002173 ** When the read transaction is completed, the caller must release the 002174 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 002175 ** 002176 ** This routine uses the nBackfill and aReadMark[] fields of the header 002177 ** to select a particular WAL_READ_LOCK() that strives to let the 002178 ** checkpoint process do as much work as possible. This routine might 002179 ** update values of the aReadMark[] array in the header, but if it does 002180 ** so it takes care to hold an exclusive lock on the corresponding 002181 ** WAL_READ_LOCK() while changing values. 002182 */ 002183 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ 002184 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 002185 u32 mxReadMark; /* Largest aReadMark[] value */ 002186 int mxI; /* Index of largest aReadMark[] value */ 002187 int i; /* Loop counter */ 002188 int rc = SQLITE_OK; /* Return code */ 002189 u32 mxFrame; /* Wal frame to lock to */ 002190 002191 assert( pWal->readLock<0 ); /* Not currently locked */ 002192 002193 /* Take steps to avoid spinning forever if there is a protocol error. 002194 ** 002195 ** Circumstances that cause a RETRY should only last for the briefest 002196 ** instances of time. No I/O or other system calls are done while the 002197 ** locks are held, so the locks should not be held for very long. But 002198 ** if we are unlucky, another process that is holding a lock might get 002199 ** paged out or take a page-fault that is time-consuming to resolve, 002200 ** during the few nanoseconds that it is holding the lock. In that case, 002201 ** it might take longer than normal for the lock to free. 002202 ** 002203 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 002204 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 002205 ** is more of a scheduler yield than an actual delay. But on the 10th 002206 ** an subsequent retries, the delays start becoming longer and longer, 002207 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 002208 ** The total delay time before giving up is less than 10 seconds. 002209 */ 002210 if( cnt>5 ){ 002211 int nDelay = 1; /* Pause time in microseconds */ 002212 if( cnt>100 ){ 002213 VVA_ONLY( pWal->lockError = 1; ) 002214 return SQLITE_PROTOCOL; 002215 } 002216 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 002217 sqlite3OsSleep(pWal->pVfs, nDelay); 002218 } 002219 002220 if( !useWal ){ 002221 rc = walIndexReadHdr(pWal, pChanged); 002222 if( rc==SQLITE_BUSY ){ 002223 /* If there is not a recovery running in another thread or process 002224 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 002225 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 002226 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 002227 ** would be technically correct. But the race is benign since with 002228 ** WAL_RETRY this routine will be called again and will probably be 002229 ** right on the second iteration. 002230 */ 002231 if( pWal->apWiData[0]==0 ){ 002232 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 002233 ** We assume this is a transient condition, so return WAL_RETRY. The 002234 ** xShmMap() implementation used by the default unix and win32 VFS 002235 ** modules may return SQLITE_BUSY due to a race condition in the 002236 ** code that determines whether or not the shared-memory region 002237 ** must be zeroed before the requested page is returned. 002238 */ 002239 rc = WAL_RETRY; 002240 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 002241 walUnlockShared(pWal, WAL_RECOVER_LOCK); 002242 rc = WAL_RETRY; 002243 }else if( rc==SQLITE_BUSY ){ 002244 rc = SQLITE_BUSY_RECOVERY; 002245 } 002246 } 002247 if( rc!=SQLITE_OK ){ 002248 return rc; 002249 } 002250 } 002251 002252 pInfo = walCkptInfo(pWal); 002253 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame 002254 #ifdef SQLITE_ENABLE_SNAPSHOT 002255 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0 002256 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr))) 002257 #endif 002258 ){ 002259 /* The WAL has been completely backfilled (or it is empty). 002260 ** and can be safely ignored. 002261 */ 002262 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 002263 walShmBarrier(pWal); 002264 if( rc==SQLITE_OK ){ 002265 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 002266 /* It is not safe to allow the reader to continue here if frames 002267 ** may have been appended to the log before READ_LOCK(0) was obtained. 002268 ** When holding READ_LOCK(0), the reader ignores the entire log file, 002269 ** which implies that the database file contains a trustworthy 002270 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 002271 ** happening, this is usually correct. 002272 ** 002273 ** However, if frames have been appended to the log (or if the log 002274 ** is wrapped and written for that matter) before the READ_LOCK(0) 002275 ** is obtained, that is not necessarily true. A checkpointer may 002276 ** have started to backfill the appended frames but crashed before 002277 ** it finished. Leaving a corrupt image in the database file. 002278 */ 002279 walUnlockShared(pWal, WAL_READ_LOCK(0)); 002280 return WAL_RETRY; 002281 } 002282 pWal->readLock = 0; 002283 return SQLITE_OK; 002284 }else if( rc!=SQLITE_BUSY ){ 002285 return rc; 002286 } 002287 } 002288 002289 /* If we get this far, it means that the reader will want to use 002290 ** the WAL to get at content from recent commits. The job now is 002291 ** to select one of the aReadMark[] entries that is closest to 002292 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 002293 */ 002294 mxReadMark = 0; 002295 mxI = 0; 002296 mxFrame = pWal->hdr.mxFrame; 002297 #ifdef SQLITE_ENABLE_SNAPSHOT 002298 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 002299 mxFrame = pWal->pSnapshot->mxFrame; 002300 } 002301 #endif 002302 for(i=1; i<WAL_NREADER; i++){ 002303 u32 thisMark = pInfo->aReadMark[i]; 002304 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 002305 assert( thisMark!=READMARK_NOT_USED ); 002306 mxReadMark = thisMark; 002307 mxI = i; 002308 } 002309 } 002310 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 002311 && (mxReadMark<mxFrame || mxI==0) 002312 ){ 002313 for(i=1; i<WAL_NREADER; i++){ 002314 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 002315 if( rc==SQLITE_OK ){ 002316 mxReadMark = pInfo->aReadMark[i] = mxFrame; 002317 mxI = i; 002318 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 002319 break; 002320 }else if( rc!=SQLITE_BUSY ){ 002321 return rc; 002322 } 002323 } 002324 } 002325 if( mxI==0 ){ 002326 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 002327 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; 002328 } 002329 002330 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 002331 if( rc ){ 002332 return rc==SQLITE_BUSY ? WAL_RETRY : rc; 002333 } 002334 /* Now that the read-lock has been obtained, check that neither the 002335 ** value in the aReadMark[] array or the contents of the wal-index 002336 ** header have changed. 002337 ** 002338 ** It is necessary to check that the wal-index header did not change 002339 ** between the time it was read and when the shared-lock was obtained 002340 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 002341 ** that the log file may have been wrapped by a writer, or that frames 002342 ** that occur later in the log than pWal->hdr.mxFrame may have been 002343 ** copied into the database by a checkpointer. If either of these things 002344 ** happened, then reading the database with the current value of 002345 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 002346 ** instead. 002347 ** 002348 ** Before checking that the live wal-index header has not changed 002349 ** since it was read, set Wal.minFrame to the first frame in the wal 002350 ** file that has not yet been checkpointed. This client will not need 002351 ** to read any frames earlier than minFrame from the wal file - they 002352 ** can be safely read directly from the database file. 002353 ** 002354 ** Because a ShmBarrier() call is made between taking the copy of 002355 ** nBackfill and checking that the wal-header in shared-memory still 002356 ** matches the one cached in pWal->hdr, it is guaranteed that the 002357 ** checkpointer that set nBackfill was not working with a wal-index 002358 ** header newer than that cached in pWal->hdr. If it were, that could 002359 ** cause a problem. The checkpointer could omit to checkpoint 002360 ** a version of page X that lies before pWal->minFrame (call that version 002361 ** A) on the basis that there is a newer version (version B) of the same 002362 ** page later in the wal file. But if version B happens to like past 002363 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 002364 ** that it can read version A from the database file. However, since 002365 ** we can guarantee that the checkpointer that set nBackfill could not 002366 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 002367 */ 002368 pWal->minFrame = pInfo->nBackfill+1; 002369 walShmBarrier(pWal); 002370 if( pInfo->aReadMark[mxI]!=mxReadMark 002371 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 002372 ){ 002373 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 002374 return WAL_RETRY; 002375 }else{ 002376 assert( mxReadMark<=pWal->hdr.mxFrame ); 002377 pWal->readLock = (i16)mxI; 002378 } 002379 return rc; 002380 } 002381 002382 #ifdef SQLITE_ENABLE_SNAPSHOT 002383 /* 002384 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 002385 ** variable so that older snapshots can be accessed. To do this, loop 002386 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 002387 ** comparing their content to the corresponding page with the database 002388 ** file, if any. Set nBackfillAttempted to the frame number of the 002389 ** first frame for which the wal file content matches the db file. 002390 ** 002391 ** This is only really safe if the file-system is such that any page 002392 ** writes made by earlier checkpointers were atomic operations, which 002393 ** is not always true. It is also possible that nBackfillAttempted 002394 ** may be left set to a value larger than expected, if a wal frame 002395 ** contains content that duplicate of an earlier version of the same 002396 ** page. 002397 ** 002398 ** SQLITE_OK is returned if successful, or an SQLite error code if an 002399 ** error occurs. It is not an error if nBackfillAttempted cannot be 002400 ** decreased at all. 002401 */ 002402 int sqlite3WalSnapshotRecover(Wal *pWal){ 002403 int rc; 002404 002405 assert( pWal->readLock>=0 ); 002406 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 002407 if( rc==SQLITE_OK ){ 002408 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 002409 int szPage = (int)pWal->szPage; 002410 i64 szDb; /* Size of db file in bytes */ 002411 002412 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 002413 if( rc==SQLITE_OK ){ 002414 void *pBuf1 = sqlite3_malloc(szPage); 002415 void *pBuf2 = sqlite3_malloc(szPage); 002416 if( pBuf1==0 || pBuf2==0 ){ 002417 rc = SQLITE_NOMEM; 002418 }else{ 002419 u32 i = pInfo->nBackfillAttempted; 002420 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){ 002421 volatile ht_slot *dummy; 002422 volatile u32 *aPgno; /* Array of page numbers */ 002423 u32 iZero; /* Frame corresponding to aPgno[0] */ 002424 u32 pgno; /* Page number in db file */ 002425 i64 iDbOff; /* Offset of db file entry */ 002426 i64 iWalOff; /* Offset of wal file entry */ 002427 002428 rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero); 002429 if( rc!=SQLITE_OK ) break; 002430 pgno = aPgno[i-iZero]; 002431 iDbOff = (i64)(pgno-1) * szPage; 002432 002433 if( iDbOff+szPage<=szDb ){ 002434 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 002435 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 002436 002437 if( rc==SQLITE_OK ){ 002438 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 002439 } 002440 002441 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 002442 break; 002443 } 002444 } 002445 002446 pInfo->nBackfillAttempted = i-1; 002447 } 002448 } 002449 002450 sqlite3_free(pBuf1); 002451 sqlite3_free(pBuf2); 002452 } 002453 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 002454 } 002455 002456 return rc; 002457 } 002458 #endif /* SQLITE_ENABLE_SNAPSHOT */ 002459 002460 /* 002461 ** Begin a read transaction on the database. 002462 ** 002463 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 002464 ** it takes a snapshot of the state of the WAL and wal-index for the current 002465 ** instant in time. The current thread will continue to use this snapshot. 002466 ** Other threads might append new content to the WAL and wal-index but 002467 ** that extra content is ignored by the current thread. 002468 ** 002469 ** If the database contents have changes since the previous read 002470 ** transaction, then *pChanged is set to 1 before returning. The 002471 ** Pager layer will use this to know that is cache is stale and 002472 ** needs to be flushed. 002473 */ 002474 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 002475 int rc; /* Return code */ 002476 int cnt = 0; /* Number of TryBeginRead attempts */ 002477 002478 #ifdef SQLITE_ENABLE_SNAPSHOT 002479 int bChanged = 0; 002480 WalIndexHdr *pSnapshot = pWal->pSnapshot; 002481 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 002482 bChanged = 1; 002483 } 002484 #endif 002485 002486 do{ 002487 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); 002488 }while( rc==WAL_RETRY ); 002489 testcase( (rc&0xff)==SQLITE_BUSY ); 002490 testcase( (rc&0xff)==SQLITE_IOERR ); 002491 testcase( rc==SQLITE_PROTOCOL ); 002492 testcase( rc==SQLITE_OK ); 002493 002494 #ifdef SQLITE_ENABLE_SNAPSHOT 002495 if( rc==SQLITE_OK ){ 002496 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 002497 /* At this point the client has a lock on an aReadMark[] slot holding 002498 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 002499 ** is populated with the wal-index header corresponding to the head 002500 ** of the wal file. Verify that pSnapshot is still valid before 002501 ** continuing. Reasons why pSnapshot might no longer be valid: 002502 ** 002503 ** (1) The WAL file has been reset since the snapshot was taken. 002504 ** In this case, the salt will have changed. 002505 ** 002506 ** (2) A checkpoint as been attempted that wrote frames past 002507 ** pSnapshot->mxFrame into the database file. Note that the 002508 ** checkpoint need not have completed for this to cause problems. 002509 */ 002510 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 002511 002512 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 002513 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 002514 002515 /* It is possible that there is a checkpointer thread running 002516 ** concurrent with this code. If this is the case, it may be that the 002517 ** checkpointer has already determined that it will checkpoint 002518 ** snapshot X, where X is later in the wal file than pSnapshot, but 002519 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 002520 ** its intent. To avoid the race condition this leads to, ensure that 002521 ** there is no checkpointer process by taking a shared CKPT lock 002522 ** before checking pInfo->nBackfillAttempted. 002523 ** 002524 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing 002525 ** this already? 002526 */ 002527 rc = walLockShared(pWal, WAL_CKPT_LOCK); 002528 002529 if( rc==SQLITE_OK ){ 002530 /* Check that the wal file has not been wrapped. Assuming that it has 002531 ** not, also check that no checkpointer has attempted to checkpoint any 002532 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 002533 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr 002534 ** with *pSnapshot and set *pChanged as appropriate for opening the 002535 ** snapshot. */ 002536 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 002537 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 002538 ){ 002539 assert( pWal->readLock>0 ); 002540 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 002541 *pChanged = bChanged; 002542 }else{ 002543 rc = SQLITE_BUSY_SNAPSHOT; 002544 } 002545 002546 /* Release the shared CKPT lock obtained above. */ 002547 walUnlockShared(pWal, WAL_CKPT_LOCK); 002548 } 002549 002550 002551 if( rc!=SQLITE_OK ){ 002552 sqlite3WalEndReadTransaction(pWal); 002553 } 002554 } 002555 } 002556 #endif 002557 return rc; 002558 } 002559 002560 /* 002561 ** Finish with a read transaction. All this does is release the 002562 ** read-lock. 002563 */ 002564 void sqlite3WalEndReadTransaction(Wal *pWal){ 002565 sqlite3WalEndWriteTransaction(pWal); 002566 if( pWal->readLock>=0 ){ 002567 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 002568 pWal->readLock = -1; 002569 } 002570 } 002571 002572 /* 002573 ** Search the wal file for page pgno. If found, set *piRead to the frame that 002574 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 002575 ** to zero. 002576 ** 002577 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 002578 ** error does occur, the final value of *piRead is undefined. 002579 */ 002580 int sqlite3WalFindFrame( 002581 Wal *pWal, /* WAL handle */ 002582 Pgno pgno, /* Database page number to read data for */ 002583 u32 *piRead /* OUT: Frame number (or zero) */ 002584 ){ 002585 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 002586 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 002587 int iHash; /* Used to loop through N hash tables */ 002588 int iMinHash; 002589 002590 /* This routine is only be called from within a read transaction. */ 002591 assert( pWal->readLock>=0 || pWal->lockError ); 002592 002593 /* If the "last page" field of the wal-index header snapshot is 0, then 002594 ** no data will be read from the wal under any circumstances. Return early 002595 ** in this case as an optimization. Likewise, if pWal->readLock==0, 002596 ** then the WAL is ignored by the reader so return early, as if the 002597 ** WAL were empty. 002598 */ 002599 if( iLast==0 || pWal->readLock==0 ){ 002600 *piRead = 0; 002601 return SQLITE_OK; 002602 } 002603 002604 /* Search the hash table or tables for an entry matching page number 002605 ** pgno. Each iteration of the following for() loop searches one 002606 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 002607 ** 002608 ** This code might run concurrently to the code in walIndexAppend() 002609 ** that adds entries to the wal-index (and possibly to this hash 002610 ** table). This means the value just read from the hash 002611 ** slot (aHash[iKey]) may have been added before or after the 002612 ** current read transaction was opened. Values added after the 002613 ** read transaction was opened may have been written incorrectly - 002614 ** i.e. these slots may contain garbage data. However, we assume 002615 ** that any slots written before the current read transaction was 002616 ** opened remain unmodified. 002617 ** 002618 ** For the reasons above, the if(...) condition featured in the inner 002619 ** loop of the following block is more stringent that would be required 002620 ** if we had exclusive access to the hash-table: 002621 ** 002622 ** (aPgno[iFrame]==pgno): 002623 ** This condition filters out normal hash-table collisions. 002624 ** 002625 ** (iFrame<=iLast): 002626 ** This condition filters out entries that were added to the hash 002627 ** table after the current read-transaction had started. 002628 */ 002629 iMinHash = walFramePage(pWal->minFrame); 002630 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){ 002631 volatile ht_slot *aHash; /* Pointer to hash table */ 002632 volatile u32 *aPgno; /* Pointer to array of page numbers */ 002633 u32 iZero; /* Frame number corresponding to aPgno[0] */ 002634 int iKey; /* Hash slot index */ 002635 int nCollide; /* Number of hash collisions remaining */ 002636 int rc; /* Error code */ 002637 002638 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); 002639 if( rc!=SQLITE_OK ){ 002640 return rc; 002641 } 002642 nCollide = HASHTABLE_NSLOT; 002643 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ 002644 u32 iFrame = aHash[iKey] + iZero; 002645 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){ 002646 assert( iFrame>iRead || CORRUPT_DB ); 002647 iRead = iFrame; 002648 } 002649 if( (nCollide--)==0 ){ 002650 return SQLITE_CORRUPT_BKPT; 002651 } 002652 } 002653 } 002654 002655 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 002656 /* If expensive assert() statements are available, do a linear search 002657 ** of the wal-index file content. Make sure the results agree with the 002658 ** result obtained using the hash indexes above. */ 002659 { 002660 u32 iRead2 = 0; 002661 u32 iTest; 002662 assert( pWal->minFrame>0 ); 002663 for(iTest=iLast; iTest>=pWal->minFrame; iTest--){ 002664 if( walFramePgno(pWal, iTest)==pgno ){ 002665 iRead2 = iTest; 002666 break; 002667 } 002668 } 002669 assert( iRead==iRead2 ); 002670 } 002671 #endif 002672 002673 *piRead = iRead; 002674 return SQLITE_OK; 002675 } 002676 002677 /* 002678 ** Read the contents of frame iRead from the wal file into buffer pOut 002679 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 002680 ** error code otherwise. 002681 */ 002682 int sqlite3WalReadFrame( 002683 Wal *pWal, /* WAL handle */ 002684 u32 iRead, /* Frame to read */ 002685 int nOut, /* Size of buffer pOut in bytes */ 002686 u8 *pOut /* Buffer to write page data to */ 002687 ){ 002688 int sz; 002689 i64 iOffset; 002690 sz = pWal->hdr.szPage; 002691 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 002692 testcase( sz<=32768 ); 002693 testcase( sz>=65536 ); 002694 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 002695 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 002696 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 002697 } 002698 002699 /* 002700 ** Return the size of the database in pages (or zero, if unknown). 002701 */ 002702 Pgno sqlite3WalDbsize(Wal *pWal){ 002703 if( pWal && ALWAYS(pWal->readLock>=0) ){ 002704 return pWal->hdr.nPage; 002705 } 002706 return 0; 002707 } 002708 002709 002710 /* 002711 ** This function starts a write transaction on the WAL. 002712 ** 002713 ** A read transaction must have already been started by a prior call 002714 ** to sqlite3WalBeginReadTransaction(). 002715 ** 002716 ** If another thread or process has written into the database since 002717 ** the read transaction was started, then it is not possible for this 002718 ** thread to write as doing so would cause a fork. So this routine 002719 ** returns SQLITE_BUSY in that case and no write transaction is started. 002720 ** 002721 ** There can only be a single writer active at a time. 002722 */ 002723 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 002724 int rc; 002725 002726 /* Cannot start a write transaction without first holding a read 002727 ** transaction. */ 002728 assert( pWal->readLock>=0 ); 002729 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 002730 002731 if( pWal->readOnly ){ 002732 return SQLITE_READONLY; 002733 } 002734 002735 /* Only one writer allowed at a time. Get the write lock. Return 002736 ** SQLITE_BUSY if unable. 002737 */ 002738 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 002739 if( rc ){ 002740 return rc; 002741 } 002742 pWal->writeLock = 1; 002743 002744 /* If another connection has written to the database file since the 002745 ** time the read transaction on this connection was started, then 002746 ** the write is disallowed. 002747 */ 002748 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 002749 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 002750 pWal->writeLock = 0; 002751 rc = SQLITE_BUSY_SNAPSHOT; 002752 } 002753 002754 return rc; 002755 } 002756 002757 /* 002758 ** End a write transaction. The commit has already been done. This 002759 ** routine merely releases the lock. 002760 */ 002761 int sqlite3WalEndWriteTransaction(Wal *pWal){ 002762 if( pWal->writeLock ){ 002763 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 002764 pWal->writeLock = 0; 002765 pWal->iReCksum = 0; 002766 pWal->truncateOnCommit = 0; 002767 } 002768 return SQLITE_OK; 002769 } 002770 002771 /* 002772 ** If any data has been written (but not committed) to the log file, this 002773 ** function moves the write-pointer back to the start of the transaction. 002774 ** 002775 ** Additionally, the callback function is invoked for each frame written 002776 ** to the WAL since the start of the transaction. If the callback returns 002777 ** other than SQLITE_OK, it is not invoked again and the error code is 002778 ** returned to the caller. 002779 ** 002780 ** Otherwise, if the callback function does not return an error, this 002781 ** function returns SQLITE_OK. 002782 */ 002783 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 002784 int rc = SQLITE_OK; 002785 if( ALWAYS(pWal->writeLock) ){ 002786 Pgno iMax = pWal->hdr.mxFrame; 002787 Pgno iFrame; 002788 002789 /* Restore the clients cache of the wal-index header to the state it 002790 ** was in before the client began writing to the database. 002791 */ 002792 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 002793 002794 for(iFrame=pWal->hdr.mxFrame+1; 002795 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 002796 iFrame++ 002797 ){ 002798 /* This call cannot fail. Unless the page for which the page number 002799 ** is passed as the second argument is (a) in the cache and 002800 ** (b) has an outstanding reference, then xUndo is either a no-op 002801 ** (if (a) is false) or simply expels the page from the cache (if (b) 002802 ** is false). 002803 ** 002804 ** If the upper layer is doing a rollback, it is guaranteed that there 002805 ** are no outstanding references to any page other than page 1. And 002806 ** page 1 is never written to the log until the transaction is 002807 ** committed. As a result, the call to xUndo may not fail. 002808 */ 002809 assert( walFramePgno(pWal, iFrame)!=1 ); 002810 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 002811 } 002812 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 002813 } 002814 return rc; 002815 } 002816 002817 /* 002818 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 002819 ** values. This function populates the array with values required to 002820 ** "rollback" the write position of the WAL handle back to the current 002821 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 002822 */ 002823 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 002824 assert( pWal->writeLock ); 002825 aWalData[0] = pWal->hdr.mxFrame; 002826 aWalData[1] = pWal->hdr.aFrameCksum[0]; 002827 aWalData[2] = pWal->hdr.aFrameCksum[1]; 002828 aWalData[3] = pWal->nCkpt; 002829 } 002830 002831 /* 002832 ** Move the write position of the WAL back to the point identified by 002833 ** the values in the aWalData[] array. aWalData must point to an array 002834 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 002835 ** by a call to WalSavepoint(). 002836 */ 002837 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 002838 int rc = SQLITE_OK; 002839 002840 assert( pWal->writeLock ); 002841 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 002842 002843 if( aWalData[3]!=pWal->nCkpt ){ 002844 /* This savepoint was opened immediately after the write-transaction 002845 ** was started. Right after that, the writer decided to wrap around 002846 ** to the start of the log. Update the savepoint values to match. 002847 */ 002848 aWalData[0] = 0; 002849 aWalData[3] = pWal->nCkpt; 002850 } 002851 002852 if( aWalData[0]<pWal->hdr.mxFrame ){ 002853 pWal->hdr.mxFrame = aWalData[0]; 002854 pWal->hdr.aFrameCksum[0] = aWalData[1]; 002855 pWal->hdr.aFrameCksum[1] = aWalData[2]; 002856 walCleanupHash(pWal); 002857 } 002858 002859 return rc; 002860 } 002861 002862 /* 002863 ** This function is called just before writing a set of frames to the log 002864 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 002865 ** to the current log file, it is possible to overwrite the start of the 002866 ** existing log file with the new frames (i.e. "reset" the log). If so, 002867 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 002868 ** unchanged. 002869 ** 002870 ** SQLITE_OK is returned if no error is encountered (regardless of whether 002871 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 002872 ** if an error occurs. 002873 */ 002874 static int walRestartLog(Wal *pWal){ 002875 int rc = SQLITE_OK; 002876 int cnt; 002877 002878 if( pWal->readLock==0 ){ 002879 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 002880 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 002881 if( pInfo->nBackfill>0 ){ 002882 u32 salt1; 002883 sqlite3_randomness(4, &salt1); 002884 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 002885 if( rc==SQLITE_OK ){ 002886 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 002887 ** readers are currently using the WAL), then the transactions 002888 ** frames will overwrite the start of the existing log. Update the 002889 ** wal-index header to reflect this. 002890 ** 002891 ** In theory it would be Ok to update the cache of the header only 002892 ** at this point. But updating the actual wal-index header is also 002893 ** safe and means there is no special case for sqlite3WalUndo() 002894 ** to handle if this transaction is rolled back. */ 002895 walRestartHdr(pWal, salt1); 002896 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 002897 }else if( rc!=SQLITE_BUSY ){ 002898 return rc; 002899 } 002900 } 002901 walUnlockShared(pWal, WAL_READ_LOCK(0)); 002902 pWal->readLock = -1; 002903 cnt = 0; 002904 do{ 002905 int notUsed; 002906 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); 002907 }while( rc==WAL_RETRY ); 002908 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 002909 testcase( (rc&0xff)==SQLITE_IOERR ); 002910 testcase( rc==SQLITE_PROTOCOL ); 002911 testcase( rc==SQLITE_OK ); 002912 } 002913 return rc; 002914 } 002915 002916 /* 002917 ** Information about the current state of the WAL file and where 002918 ** the next fsync should occur - passed from sqlite3WalFrames() into 002919 ** walWriteToLog(). 002920 */ 002921 typedef struct WalWriter { 002922 Wal *pWal; /* The complete WAL information */ 002923 sqlite3_file *pFd; /* The WAL file to which we write */ 002924 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 002925 int syncFlags; /* Flags for the fsync */ 002926 int szPage; /* Size of one page */ 002927 } WalWriter; 002928 002929 /* 002930 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 002931 ** Do a sync when crossing the p->iSyncPoint boundary. 002932 ** 002933 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 002934 ** first write the part before iSyncPoint, then sync, then write the 002935 ** rest. 002936 */ 002937 static int walWriteToLog( 002938 WalWriter *p, /* WAL to write to */ 002939 void *pContent, /* Content to be written */ 002940 int iAmt, /* Number of bytes to write */ 002941 sqlite3_int64 iOffset /* Start writing at this offset */ 002942 ){ 002943 int rc; 002944 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 002945 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 002946 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 002947 if( rc ) return rc; 002948 iOffset += iFirstAmt; 002949 iAmt -= iFirstAmt; 002950 pContent = (void*)(iFirstAmt + (char*)pContent); 002951 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); 002952 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); 002953 if( iAmt==0 || rc ) return rc; 002954 } 002955 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 002956 return rc; 002957 } 002958 002959 /* 002960 ** Write out a single frame of the WAL 002961 */ 002962 static int walWriteOneFrame( 002963 WalWriter *p, /* Where to write the frame */ 002964 PgHdr *pPage, /* The page of the frame to be written */ 002965 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 002966 sqlite3_int64 iOffset /* Byte offset at which to write */ 002967 ){ 002968 int rc; /* Result code from subfunctions */ 002969 void *pData; /* Data actually written */ 002970 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 002971 #if defined(SQLITE_HAS_CODEC) 002972 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT; 002973 #else 002974 pData = pPage->pData; 002975 #endif 002976 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 002977 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 002978 if( rc ) return rc; 002979 /* Write the page data */ 002980 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 002981 return rc; 002982 } 002983 002984 /* 002985 ** This function is called as part of committing a transaction within which 002986 ** one or more frames have been overwritten. It updates the checksums for 002987 ** all frames written to the wal file by the current transaction starting 002988 ** with the earliest to have been overwritten. 002989 ** 002990 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 002991 */ 002992 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 002993 const int szPage = pWal->szPage;/* Database page size */ 002994 int rc = SQLITE_OK; /* Return code */ 002995 u8 *aBuf; /* Buffer to load data from wal file into */ 002996 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 002997 u32 iRead; /* Next frame to read from wal file */ 002998 i64 iCksumOff; 002999 003000 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 003001 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 003002 003003 /* Find the checksum values to use as input for the recalculating the 003004 ** first checksum. If the first frame is frame 1 (implying that the current 003005 ** transaction restarted the wal file), these values must be read from the 003006 ** wal-file header. Otherwise, read them from the frame header of the 003007 ** previous frame. */ 003008 assert( pWal->iReCksum>0 ); 003009 if( pWal->iReCksum==1 ){ 003010 iCksumOff = 24; 003011 }else{ 003012 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 003013 } 003014 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 003015 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 003016 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 003017 003018 iRead = pWal->iReCksum; 003019 pWal->iReCksum = 0; 003020 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 003021 i64 iOff = walFrameOffset(iRead, szPage); 003022 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 003023 if( rc==SQLITE_OK ){ 003024 u32 iPgno, nDbSize; 003025 iPgno = sqlite3Get4byte(aBuf); 003026 nDbSize = sqlite3Get4byte(&aBuf[4]); 003027 003028 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 003029 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 003030 } 003031 } 003032 003033 sqlite3_free(aBuf); 003034 return rc; 003035 } 003036 003037 /* 003038 ** Write a set of frames to the log. The caller must hold the write-lock 003039 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 003040 */ 003041 int sqlite3WalFrames( 003042 Wal *pWal, /* Wal handle to write to */ 003043 int szPage, /* Database page-size in bytes */ 003044 PgHdr *pList, /* List of dirty pages to write */ 003045 Pgno nTruncate, /* Database size after this commit */ 003046 int isCommit, /* True if this is a commit */ 003047 int sync_flags /* Flags to pass to OsSync() (or 0) */ 003048 ){ 003049 int rc; /* Used to catch return codes */ 003050 u32 iFrame; /* Next frame address */ 003051 PgHdr *p; /* Iterator to run through pList with. */ 003052 PgHdr *pLast = 0; /* Last frame in list */ 003053 int nExtra = 0; /* Number of extra copies of last page */ 003054 int szFrame; /* The size of a single frame */ 003055 i64 iOffset; /* Next byte to write in WAL file */ 003056 WalWriter w; /* The writer */ 003057 u32 iFirst = 0; /* First frame that may be overwritten */ 003058 WalIndexHdr *pLive; /* Pointer to shared header */ 003059 003060 assert( pList ); 003061 assert( pWal->writeLock ); 003062 003063 /* If this frame set completes a transaction, then nTruncate>0. If 003064 ** nTruncate==0 then this frame set does not complete the transaction. */ 003065 assert( (isCommit!=0)==(nTruncate!=0) ); 003066 003067 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 003068 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 003069 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 003070 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 003071 } 003072 #endif 003073 003074 pLive = (WalIndexHdr*)walIndexHdr(pWal); 003075 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 003076 iFirst = pLive->mxFrame+1; 003077 } 003078 003079 /* See if it is possible to write these frames into the start of the 003080 ** log file, instead of appending to it at pWal->hdr.mxFrame. 003081 */ 003082 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 003083 return rc; 003084 } 003085 003086 /* If this is the first frame written into the log, write the WAL 003087 ** header to the start of the WAL file. See comments at the top of 003088 ** this source file for a description of the WAL header format. 003089 */ 003090 iFrame = pWal->hdr.mxFrame; 003091 if( iFrame==0 ){ 003092 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 003093 u32 aCksum[2]; /* Checksum for wal-header */ 003094 003095 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 003096 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 003097 sqlite3Put4byte(&aWalHdr[8], szPage); 003098 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 003099 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 003100 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 003101 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 003102 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 003103 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 003104 003105 pWal->szPage = szPage; 003106 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 003107 pWal->hdr.aFrameCksum[0] = aCksum[0]; 003108 pWal->hdr.aFrameCksum[1] = aCksum[1]; 003109 pWal->truncateOnCommit = 1; 003110 003111 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 003112 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 003113 if( rc!=SQLITE_OK ){ 003114 return rc; 003115 } 003116 003117 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 003118 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 003119 ** an out-of-order write following a WAL restart could result in 003120 ** database corruption. See the ticket: 003121 ** 003122 ** http://localhost:591/sqlite/info/ff5be73dee 003123 */ 003124 if( pWal->syncHeader && sync_flags ){ 003125 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); 003126 if( rc ) return rc; 003127 } 003128 } 003129 assert( (int)pWal->szPage==szPage ); 003130 003131 /* Setup information needed to write frames into the WAL */ 003132 w.pWal = pWal; 003133 w.pFd = pWal->pWalFd; 003134 w.iSyncPoint = 0; 003135 w.syncFlags = sync_flags; 003136 w.szPage = szPage; 003137 iOffset = walFrameOffset(iFrame+1, szPage); 003138 szFrame = szPage + WAL_FRAME_HDRSIZE; 003139 003140 /* Write all frames into the log file exactly once */ 003141 for(p=pList; p; p=p->pDirty){ 003142 int nDbSize; /* 0 normally. Positive == commit flag */ 003143 003144 /* Check if this page has already been written into the wal file by 003145 ** the current transaction. If so, overwrite the existing frame and 003146 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 003147 ** checksums must be recomputed when the transaction is committed. */ 003148 if( iFirst && (p->pDirty || isCommit==0) ){ 003149 u32 iWrite = 0; 003150 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite); 003151 assert( rc==SQLITE_OK || iWrite==0 ); 003152 if( iWrite>=iFirst ){ 003153 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 003154 void *pData; 003155 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 003156 pWal->iReCksum = iWrite; 003157 } 003158 #if defined(SQLITE_HAS_CODEC) 003159 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM; 003160 #else 003161 pData = p->pData; 003162 #endif 003163 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 003164 if( rc ) return rc; 003165 p->flags &= ~PGHDR_WAL_APPEND; 003166 continue; 003167 } 003168 } 003169 003170 iFrame++; 003171 assert( iOffset==walFrameOffset(iFrame, szPage) ); 003172 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 003173 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 003174 if( rc ) return rc; 003175 pLast = p; 003176 iOffset += szFrame; 003177 p->flags |= PGHDR_WAL_APPEND; 003178 } 003179 003180 /* Recalculate checksums within the wal file if required. */ 003181 if( isCommit && pWal->iReCksum ){ 003182 rc = walRewriteChecksums(pWal, iFrame); 003183 if( rc ) return rc; 003184 } 003185 003186 /* If this is the end of a transaction, then we might need to pad 003187 ** the transaction and/or sync the WAL file. 003188 ** 003189 ** Padding and syncing only occur if this set of frames complete a 003190 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 003191 ** or synchronous==OFF, then no padding or syncing are needed. 003192 ** 003193 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 003194 ** needed and only the sync is done. If padding is needed, then the 003195 ** final frame is repeated (with its commit mark) until the next sector 003196 ** boundary is crossed. Only the part of the WAL prior to the last 003197 ** sector boundary is synced; the part of the last frame that extends 003198 ** past the sector boundary is written after the sync. 003199 */ 003200 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ 003201 int bSync = 1; 003202 if( pWal->padToSectorBoundary ){ 003203 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 003204 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 003205 bSync = (w.iSyncPoint==iOffset); 003206 testcase( bSync ); 003207 while( iOffset<w.iSyncPoint ){ 003208 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 003209 if( rc ) return rc; 003210 iOffset += szFrame; 003211 nExtra++; 003212 } 003213 } 003214 if( bSync ){ 003215 assert( rc==SQLITE_OK ); 003216 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); 003217 } 003218 } 003219 003220 /* If this frame set completes the first transaction in the WAL and 003221 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 003222 ** journal size limit, if possible. 003223 */ 003224 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 003225 i64 sz = pWal->mxWalSize; 003226 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 003227 sz = walFrameOffset(iFrame+nExtra+1, szPage); 003228 } 003229 walLimitSize(pWal, sz); 003230 pWal->truncateOnCommit = 0; 003231 } 003232 003233 /* Append data to the wal-index. It is not necessary to lock the 003234 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 003235 ** guarantees that there are no other writers, and no data that may 003236 ** be in use by existing readers is being overwritten. 003237 */ 003238 iFrame = pWal->hdr.mxFrame; 003239 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 003240 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 003241 iFrame++; 003242 rc = walIndexAppend(pWal, iFrame, p->pgno); 003243 } 003244 while( rc==SQLITE_OK && nExtra>0 ){ 003245 iFrame++; 003246 nExtra--; 003247 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 003248 } 003249 003250 if( rc==SQLITE_OK ){ 003251 /* Update the private copy of the header. */ 003252 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 003253 testcase( szPage<=32768 ); 003254 testcase( szPage>=65536 ); 003255 pWal->hdr.mxFrame = iFrame; 003256 if( isCommit ){ 003257 pWal->hdr.iChange++; 003258 pWal->hdr.nPage = nTruncate; 003259 } 003260 /* If this is a commit, update the wal-index header too. */ 003261 if( isCommit ){ 003262 walIndexWriteHdr(pWal); 003263 pWal->iCallback = iFrame; 003264 } 003265 } 003266 003267 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 003268 return rc; 003269 } 003270 003271 /* 003272 ** This routine is called to implement sqlite3_wal_checkpoint() and 003273 ** related interfaces. 003274 ** 003275 ** Obtain a CHECKPOINT lock and then backfill as much information as 003276 ** we can from WAL into the database. 003277 ** 003278 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 003279 ** callback. In this case this function runs a blocking checkpoint. 003280 */ 003281 int sqlite3WalCheckpoint( 003282 Wal *pWal, /* Wal connection */ 003283 sqlite3 *db, /* Check this handle's interrupt flag */ 003284 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 003285 int (*xBusy)(void*), /* Function to call when busy */ 003286 void *pBusyArg, /* Context argument for xBusyHandler */ 003287 int sync_flags, /* Flags to sync db file with (or 0) */ 003288 int nBuf, /* Size of temporary buffer */ 003289 u8 *zBuf, /* Temporary buffer to use */ 003290 int *pnLog, /* OUT: Number of frames in WAL */ 003291 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 003292 ){ 003293 int rc; /* Return code */ 003294 int isChanged = 0; /* True if a new wal-index header is loaded */ 003295 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 003296 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 003297 003298 assert( pWal->ckptLock==0 ); 003299 assert( pWal->writeLock==0 ); 003300 003301 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 003302 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 003303 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 003304 003305 if( pWal->readOnly ) return SQLITE_READONLY; 003306 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 003307 003308 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 003309 ** "checkpoint" lock on the database file. */ 003310 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 003311 if( rc ){ 003312 /* EVIDENCE-OF: R-10421-19736 If any other process is running a 003313 ** checkpoint operation at the same time, the lock cannot be obtained and 003314 ** SQLITE_BUSY is returned. 003315 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 003316 ** it will not be invoked in this case. 003317 */ 003318 testcase( rc==SQLITE_BUSY ); 003319 testcase( xBusy!=0 ); 003320 return rc; 003321 } 003322 pWal->ckptLock = 1; 003323 003324 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 003325 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 003326 ** file. 003327 ** 003328 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 003329 ** immediately, and a busy-handler is configured, it is invoked and the 003330 ** writer lock retried until either the busy-handler returns 0 or the 003331 ** lock is successfully obtained. 003332 */ 003333 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 003334 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); 003335 if( rc==SQLITE_OK ){ 003336 pWal->writeLock = 1; 003337 }else if( rc==SQLITE_BUSY ){ 003338 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 003339 xBusy2 = 0; 003340 rc = SQLITE_OK; 003341 } 003342 } 003343 003344 /* Read the wal-index header. */ 003345 if( rc==SQLITE_OK ){ 003346 rc = walIndexReadHdr(pWal, &isChanged); 003347 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 003348 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 003349 } 003350 } 003351 003352 /* Copy data from the log to the database file. */ 003353 if( rc==SQLITE_OK ){ 003354 003355 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 003356 rc = SQLITE_CORRUPT_BKPT; 003357 }else{ 003358 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); 003359 } 003360 003361 /* If no error occurred, set the output variables. */ 003362 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 003363 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 003364 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 003365 } 003366 } 003367 003368 if( isChanged ){ 003369 /* If a new wal-index header was loaded before the checkpoint was 003370 ** performed, then the pager-cache associated with pWal is now 003371 ** out of date. So zero the cached wal-index header to ensure that 003372 ** next time the pager opens a snapshot on this database it knows that 003373 ** the cache needs to be reset. 003374 */ 003375 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 003376 } 003377 003378 /* Release the locks. */ 003379 sqlite3WalEndWriteTransaction(pWal); 003380 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 003381 pWal->ckptLock = 0; 003382 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 003383 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 003384 } 003385 003386 /* Return the value to pass to a sqlite3_wal_hook callback, the 003387 ** number of frames in the WAL at the point of the last commit since 003388 ** sqlite3WalCallback() was called. If no commits have occurred since 003389 ** the last call, then return 0. 003390 */ 003391 int sqlite3WalCallback(Wal *pWal){ 003392 u32 ret = 0; 003393 if( pWal ){ 003394 ret = pWal->iCallback; 003395 pWal->iCallback = 0; 003396 } 003397 return (int)ret; 003398 } 003399 003400 /* 003401 ** This function is called to change the WAL subsystem into or out 003402 ** of locking_mode=EXCLUSIVE. 003403 ** 003404 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 003405 ** into locking_mode=NORMAL. This means that we must acquire a lock 003406 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 003407 ** or if the acquisition of the lock fails, then return 0. If the 003408 ** transition out of exclusive-mode is successful, return 1. This 003409 ** operation must occur while the pager is still holding the exclusive 003410 ** lock on the main database file. 003411 ** 003412 ** If op is one, then change from locking_mode=NORMAL into 003413 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 003414 ** be released. Return 1 if the transition is made and 0 if the 003415 ** WAL is already in exclusive-locking mode - meaning that this 003416 ** routine is a no-op. The pager must already hold the exclusive lock 003417 ** on the main database file before invoking this operation. 003418 ** 003419 ** If op is negative, then do a dry-run of the op==1 case but do 003420 ** not actually change anything. The pager uses this to see if it 003421 ** should acquire the database exclusive lock prior to invoking 003422 ** the op==1 case. 003423 */ 003424 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 003425 int rc; 003426 assert( pWal->writeLock==0 ); 003427 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 003428 003429 /* pWal->readLock is usually set, but might be -1 if there was a 003430 ** prior error while attempting to acquire are read-lock. This cannot 003431 ** happen if the connection is actually in exclusive mode (as no xShmLock 003432 ** locks are taken in this case). Nor should the pager attempt to 003433 ** upgrade to exclusive-mode following such an error. 003434 */ 003435 assert( pWal->readLock>=0 || pWal->lockError ); 003436 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 003437 003438 if( op==0 ){ 003439 if( pWal->exclusiveMode ){ 003440 pWal->exclusiveMode = 0; 003441 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 003442 pWal->exclusiveMode = 1; 003443 } 003444 rc = pWal->exclusiveMode==0; 003445 }else{ 003446 /* Already in locking_mode=NORMAL */ 003447 rc = 0; 003448 } 003449 }else if( op>0 ){ 003450 assert( pWal->exclusiveMode==0 ); 003451 assert( pWal->readLock>=0 ); 003452 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 003453 pWal->exclusiveMode = 1; 003454 rc = 1; 003455 }else{ 003456 rc = pWal->exclusiveMode==0; 003457 } 003458 return rc; 003459 } 003460 003461 /* 003462 ** Return true if the argument is non-NULL and the WAL module is using 003463 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 003464 ** WAL module is using shared-memory, return false. 003465 */ 003466 int sqlite3WalHeapMemory(Wal *pWal){ 003467 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 003468 } 003469 003470 #ifdef SQLITE_ENABLE_SNAPSHOT 003471 /* Create a snapshot object. The content of a snapshot is opaque to 003472 ** every other subsystem, so the WAL module can put whatever it needs 003473 ** in the object. 003474 */ 003475 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 003476 int rc = SQLITE_OK; 003477 WalIndexHdr *pRet; 003478 static const u32 aZero[4] = { 0, 0, 0, 0 }; 003479 003480 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 003481 003482 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 003483 *ppSnapshot = 0; 003484 return SQLITE_ERROR; 003485 } 003486 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 003487 if( pRet==0 ){ 003488 rc = SQLITE_NOMEM_BKPT; 003489 }else{ 003490 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 003491 *ppSnapshot = (sqlite3_snapshot*)pRet; 003492 } 003493 003494 return rc; 003495 } 003496 003497 /* Try to open on pSnapshot when the next read-transaction starts 003498 */ 003499 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){ 003500 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 003501 } 003502 003503 /* 003504 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 003505 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 003506 */ 003507 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 003508 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 003509 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 003510 003511 /* aSalt[0] is a copy of the value stored in the wal file header. It 003512 ** is incremented each time the wal file is restarted. */ 003513 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 003514 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 003515 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 003516 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 003517 return 0; 003518 } 003519 #endif /* SQLITE_ENABLE_SNAPSHOT */ 003520 003521 #ifdef SQLITE_ENABLE_ZIPVFS 003522 /* 003523 ** If the argument is not NULL, it points to a Wal object that holds a 003524 ** read-lock. This function returns the database page-size if it is known, 003525 ** or zero if it is not (or if pWal is NULL). 003526 */ 003527 int sqlite3WalFramesize(Wal *pWal){ 003528 assert( pWal==0 || pWal->readLock>=0 ); 003529 return (pWal ? pWal->szPage : 0); 003530 } 003531 #endif 003532 003533 /* Return the sqlite3_file object for the WAL file 003534 */ 003535 sqlite3_file *sqlite3WalFile(Wal *pWal){ 003536 return pWal->pWalFd; 003537 } 003538 003539 #endif /* #ifndef SQLITE_OMIT_WAL */