000001 /* 000002 ** 2003 September 6 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains code used for creating, destroying, and populating 000013 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 000014 */ 000015 #include "sqliteInt.h" 000016 #include "vdbeInt.h" 000017 000018 /* 000019 ** Create a new virtual database engine. 000020 */ 000021 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 000022 sqlite3 *db = pParse->db; 000023 Vdbe *p; 000024 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 000025 if( p==0 ) return 0; 000026 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 000027 p->db = db; 000028 if( db->pVdbe ){ 000029 db->pVdbe->pPrev = p; 000030 } 000031 p->pNext = db->pVdbe; 000032 p->pPrev = 0; 000033 db->pVdbe = p; 000034 p->magic = VDBE_MAGIC_INIT; 000035 p->pParse = pParse; 000036 assert( pParse->aLabel==0 ); 000037 assert( pParse->nLabel==0 ); 000038 assert( pParse->nOpAlloc==0 ); 000039 assert( pParse->szOpAlloc==0 ); 000040 return p; 000041 } 000042 000043 /* 000044 ** Change the error string stored in Vdbe.zErrMsg 000045 */ 000046 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 000047 va_list ap; 000048 sqlite3DbFree(p->db, p->zErrMsg); 000049 va_start(ap, zFormat); 000050 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 000051 va_end(ap); 000052 } 000053 000054 /* 000055 ** Remember the SQL string for a prepared statement. 000056 */ 000057 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 000058 assert( isPrepareV2==1 || isPrepareV2==0 ); 000059 if( p==0 ) return; 000060 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 000061 if( !isPrepareV2 ) return; 000062 #endif 000063 assert( p->zSql==0 ); 000064 p->zSql = sqlite3DbStrNDup(p->db, z, n); 000065 p->isPrepareV2 = (u8)isPrepareV2; 000066 } 000067 000068 /* 000069 ** Swap all content between two VDBE structures. 000070 */ 000071 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 000072 Vdbe tmp, *pTmp; 000073 char *zTmp; 000074 assert( pA->db==pB->db ); 000075 tmp = *pA; 000076 *pA = *pB; 000077 *pB = tmp; 000078 pTmp = pA->pNext; 000079 pA->pNext = pB->pNext; 000080 pB->pNext = pTmp; 000081 pTmp = pA->pPrev; 000082 pA->pPrev = pB->pPrev; 000083 pB->pPrev = pTmp; 000084 zTmp = pA->zSql; 000085 pA->zSql = pB->zSql; 000086 pB->zSql = zTmp; 000087 pB->isPrepareV2 = pA->isPrepareV2; 000088 } 000089 000090 /* 000091 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 000092 ** than its current size. nOp is guaranteed to be less than or equal 000093 ** to 1024/sizeof(Op). 000094 ** 000095 ** If an out-of-memory error occurs while resizing the array, return 000096 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 000097 ** unchanged (this is so that any opcodes already allocated can be 000098 ** correctly deallocated along with the rest of the Vdbe). 000099 */ 000100 static int growOpArray(Vdbe *v, int nOp){ 000101 VdbeOp *pNew; 000102 Parse *p = v->pParse; 000103 000104 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 000105 ** more frequent reallocs and hence provide more opportunities for 000106 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 000107 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 000108 ** by the minimum* amount required until the size reaches 512. Normal 000109 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 000110 ** size of the op array or add 1KB of space, whichever is smaller. */ 000111 #ifdef SQLITE_TEST_REALLOC_STRESS 000112 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 000113 #else 000114 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 000115 UNUSED_PARAMETER(nOp); 000116 #endif 000117 000118 assert( nOp<=(1024/sizeof(Op)) ); 000119 assert( nNew>=(p->nOpAlloc+nOp) ); 000120 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 000121 if( pNew ){ 000122 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 000123 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 000124 v->aOp = pNew; 000125 } 000126 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 000127 } 000128 000129 #ifdef SQLITE_DEBUG 000130 /* This routine is just a convenient place to set a breakpoint that will 000131 ** fire after each opcode is inserted and displayed using 000132 ** "PRAGMA vdbe_addoptrace=on". 000133 */ 000134 static void test_addop_breakpoint(void){ 000135 static int n = 0; 000136 n++; 000137 } 000138 #endif 000139 000140 /* 000141 ** Add a new instruction to the list of instructions current in the 000142 ** VDBE. Return the address of the new instruction. 000143 ** 000144 ** Parameters: 000145 ** 000146 ** p Pointer to the VDBE 000147 ** 000148 ** op The opcode for this instruction 000149 ** 000150 ** p1, p2, p3 Operands 000151 ** 000152 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 000153 ** the sqlite3VdbeChangeP4() function to change the value of the P4 000154 ** operand. 000155 */ 000156 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 000157 assert( p->pParse->nOpAlloc<=p->nOp ); 000158 if( growOpArray(p, 1) ) return 1; 000159 assert( p->pParse->nOpAlloc>p->nOp ); 000160 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 000161 } 000162 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 000163 int i; 000164 VdbeOp *pOp; 000165 000166 i = p->nOp; 000167 assert( p->magic==VDBE_MAGIC_INIT ); 000168 assert( op>=0 && op<0xff ); 000169 if( p->pParse->nOpAlloc<=i ){ 000170 return growOp3(p, op, p1, p2, p3); 000171 } 000172 p->nOp++; 000173 pOp = &p->aOp[i]; 000174 pOp->opcode = (u8)op; 000175 pOp->p5 = 0; 000176 pOp->p1 = p1; 000177 pOp->p2 = p2; 000178 pOp->p3 = p3; 000179 pOp->p4.p = 0; 000180 pOp->p4type = P4_NOTUSED; 000181 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 000182 pOp->zComment = 0; 000183 #endif 000184 #ifdef SQLITE_DEBUG 000185 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 000186 int jj, kk; 000187 Parse *pParse = p->pParse; 000188 for(jj=kk=0; jj<pParse->nColCache; jj++){ 000189 struct yColCache *x = pParse->aColCache + jj; 000190 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 000191 kk++; 000192 } 000193 if( kk ) printf("\n"); 000194 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 000195 test_addop_breakpoint(); 000196 } 000197 #endif 000198 #ifdef VDBE_PROFILE 000199 pOp->cycles = 0; 000200 pOp->cnt = 0; 000201 #endif 000202 #ifdef SQLITE_VDBE_COVERAGE 000203 pOp->iSrcLine = 0; 000204 #endif 000205 return i; 000206 } 000207 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 000208 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 000209 } 000210 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 000211 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 000212 } 000213 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 000214 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 000215 } 000216 000217 /* Generate code for an unconditional jump to instruction iDest 000218 */ 000219 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 000220 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 000221 } 000222 000223 /* Generate code to cause the string zStr to be loaded into 000224 ** register iDest 000225 */ 000226 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 000227 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 000228 } 000229 000230 /* 000231 ** Generate code that initializes multiple registers to string or integer 000232 ** constants. The registers begin with iDest and increase consecutively. 000233 ** One register is initialized for each characgter in zTypes[]. For each 000234 ** "s" character in zTypes[], the register is a string if the argument is 000235 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 000236 ** in zTypes[], the register is initialized to an integer. 000237 */ 000238 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 000239 va_list ap; 000240 int i; 000241 char c; 000242 va_start(ap, zTypes); 000243 for(i=0; (c = zTypes[i])!=0; i++){ 000244 if( c=='s' ){ 000245 const char *z = va_arg(ap, const char*); 000246 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0); 000247 }else{ 000248 assert( c=='i' ); 000249 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); 000250 } 000251 } 000252 va_end(ap); 000253 } 000254 000255 /* 000256 ** Add an opcode that includes the p4 value as a pointer. 000257 */ 000258 int sqlite3VdbeAddOp4( 000259 Vdbe *p, /* Add the opcode to this VM */ 000260 int op, /* The new opcode */ 000261 int p1, /* The P1 operand */ 000262 int p2, /* The P2 operand */ 000263 int p3, /* The P3 operand */ 000264 const char *zP4, /* The P4 operand */ 000265 int p4type /* P4 operand type */ 000266 ){ 000267 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 000268 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 000269 return addr; 000270 } 000271 000272 /* 000273 ** Add an opcode that includes the p4 value with a P4_INT64 or 000274 ** P4_REAL type. 000275 */ 000276 int sqlite3VdbeAddOp4Dup8( 000277 Vdbe *p, /* Add the opcode to this VM */ 000278 int op, /* The new opcode */ 000279 int p1, /* The P1 operand */ 000280 int p2, /* The P2 operand */ 000281 int p3, /* The P3 operand */ 000282 const u8 *zP4, /* The P4 operand */ 000283 int p4type /* P4 operand type */ 000284 ){ 000285 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 000286 if( p4copy ) memcpy(p4copy, zP4, 8); 000287 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 000288 } 000289 000290 /* 000291 ** Add an OP_ParseSchema opcode. This routine is broken out from 000292 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 000293 ** as having been used. 000294 ** 000295 ** The zWhere string must have been obtained from sqlite3_malloc(). 000296 ** This routine will take ownership of the allocated memory. 000297 */ 000298 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 000299 int j; 000300 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 000301 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 000302 } 000303 000304 /* 000305 ** Add an opcode that includes the p4 value as an integer. 000306 */ 000307 int sqlite3VdbeAddOp4Int( 000308 Vdbe *p, /* Add the opcode to this VM */ 000309 int op, /* The new opcode */ 000310 int p1, /* The P1 operand */ 000311 int p2, /* The P2 operand */ 000312 int p3, /* The P3 operand */ 000313 int p4 /* The P4 operand as an integer */ 000314 ){ 000315 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 000316 if( p->db->mallocFailed==0 ){ 000317 VdbeOp *pOp = &p->aOp[addr]; 000318 pOp->p4type = P4_INT32; 000319 pOp->p4.i = p4; 000320 } 000321 return addr; 000322 } 000323 000324 /* Insert the end of a co-routine 000325 */ 000326 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 000327 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 000328 000329 /* Clear the temporary register cache, thereby ensuring that each 000330 ** co-routine has its own independent set of registers, because co-routines 000331 ** might expect their registers to be preserved across an OP_Yield, and 000332 ** that could cause problems if two or more co-routines are using the same 000333 ** temporary register. 000334 */ 000335 v->pParse->nTempReg = 0; 000336 v->pParse->nRangeReg = 0; 000337 } 000338 000339 /* 000340 ** Create a new symbolic label for an instruction that has yet to be 000341 ** coded. The symbolic label is really just a negative number. The 000342 ** label can be used as the P2 value of an operation. Later, when 000343 ** the label is resolved to a specific address, the VDBE will scan 000344 ** through its operation list and change all values of P2 which match 000345 ** the label into the resolved address. 000346 ** 000347 ** The VDBE knows that a P2 value is a label because labels are 000348 ** always negative and P2 values are suppose to be non-negative. 000349 ** Hence, a negative P2 value is a label that has yet to be resolved. 000350 ** 000351 ** Zero is returned if a malloc() fails. 000352 */ 000353 int sqlite3VdbeMakeLabel(Vdbe *v){ 000354 Parse *p = v->pParse; 000355 int i = p->nLabel++; 000356 assert( v->magic==VDBE_MAGIC_INIT ); 000357 if( (i & (i-1))==0 ){ 000358 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 000359 (i*2+1)*sizeof(p->aLabel[0])); 000360 } 000361 if( p->aLabel ){ 000362 p->aLabel[i] = -1; 000363 } 000364 return ADDR(i); 000365 } 000366 000367 /* 000368 ** Resolve label "x" to be the address of the next instruction to 000369 ** be inserted. The parameter "x" must have been obtained from 000370 ** a prior call to sqlite3VdbeMakeLabel(). 000371 */ 000372 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 000373 Parse *p = v->pParse; 000374 int j = ADDR(x); 000375 assert( v->magic==VDBE_MAGIC_INIT ); 000376 assert( j<p->nLabel ); 000377 assert( j>=0 ); 000378 if( p->aLabel ){ 000379 p->aLabel[j] = v->nOp; 000380 } 000381 } 000382 000383 /* 000384 ** Mark the VDBE as one that can only be run one time. 000385 */ 000386 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 000387 p->runOnlyOnce = 1; 000388 } 000389 000390 /* 000391 ** Mark the VDBE as one that can only be run multiple times. 000392 */ 000393 void sqlite3VdbeReusable(Vdbe *p){ 000394 p->runOnlyOnce = 0; 000395 } 000396 000397 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 000398 000399 /* 000400 ** The following type and function are used to iterate through all opcodes 000401 ** in a Vdbe main program and each of the sub-programs (triggers) it may 000402 ** invoke directly or indirectly. It should be used as follows: 000403 ** 000404 ** Op *pOp; 000405 ** VdbeOpIter sIter; 000406 ** 000407 ** memset(&sIter, 0, sizeof(sIter)); 000408 ** sIter.v = v; // v is of type Vdbe* 000409 ** while( (pOp = opIterNext(&sIter)) ){ 000410 ** // Do something with pOp 000411 ** } 000412 ** sqlite3DbFree(v->db, sIter.apSub); 000413 ** 000414 */ 000415 typedef struct VdbeOpIter VdbeOpIter; 000416 struct VdbeOpIter { 000417 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 000418 SubProgram **apSub; /* Array of subprograms */ 000419 int nSub; /* Number of entries in apSub */ 000420 int iAddr; /* Address of next instruction to return */ 000421 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 000422 }; 000423 static Op *opIterNext(VdbeOpIter *p){ 000424 Vdbe *v = p->v; 000425 Op *pRet = 0; 000426 Op *aOp; 000427 int nOp; 000428 000429 if( p->iSub<=p->nSub ){ 000430 000431 if( p->iSub==0 ){ 000432 aOp = v->aOp; 000433 nOp = v->nOp; 000434 }else{ 000435 aOp = p->apSub[p->iSub-1]->aOp; 000436 nOp = p->apSub[p->iSub-1]->nOp; 000437 } 000438 assert( p->iAddr<nOp ); 000439 000440 pRet = &aOp[p->iAddr]; 000441 p->iAddr++; 000442 if( p->iAddr==nOp ){ 000443 p->iSub++; 000444 p->iAddr = 0; 000445 } 000446 000447 if( pRet->p4type==P4_SUBPROGRAM ){ 000448 int nByte = (p->nSub+1)*sizeof(SubProgram*); 000449 int j; 000450 for(j=0; j<p->nSub; j++){ 000451 if( p->apSub[j]==pRet->p4.pProgram ) break; 000452 } 000453 if( j==p->nSub ){ 000454 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 000455 if( !p->apSub ){ 000456 pRet = 0; 000457 }else{ 000458 p->apSub[p->nSub++] = pRet->p4.pProgram; 000459 } 000460 } 000461 } 000462 } 000463 000464 return pRet; 000465 } 000466 000467 /* 000468 ** Check if the program stored in the VM associated with pParse may 000469 ** throw an ABORT exception (causing the statement, but not entire transaction 000470 ** to be rolled back). This condition is true if the main program or any 000471 ** sub-programs contains any of the following: 000472 ** 000473 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 000474 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 000475 ** * OP_Destroy 000476 ** * OP_VUpdate 000477 ** * OP_VRename 000478 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 000479 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 000480 ** 000481 ** Then check that the value of Parse.mayAbort is true if an 000482 ** ABORT may be thrown, or false otherwise. Return true if it does 000483 ** match, or false otherwise. This function is intended to be used as 000484 ** part of an assert statement in the compiler. Similar to: 000485 ** 000486 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 000487 */ 000488 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 000489 int hasAbort = 0; 000490 int hasFkCounter = 0; 000491 int hasCreateTable = 0; 000492 int hasInitCoroutine = 0; 000493 Op *pOp; 000494 VdbeOpIter sIter; 000495 memset(&sIter, 0, sizeof(sIter)); 000496 sIter.v = v; 000497 000498 while( (pOp = opIterNext(&sIter))!=0 ){ 000499 int opcode = pOp->opcode; 000500 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 000501 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 000502 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 000503 ){ 000504 hasAbort = 1; 000505 break; 000506 } 000507 if( opcode==OP_CreateTable ) hasCreateTable = 1; 000508 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 000509 #ifndef SQLITE_OMIT_FOREIGN_KEY 000510 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 000511 hasFkCounter = 1; 000512 } 000513 #endif 000514 } 000515 sqlite3DbFree(v->db, sIter.apSub); 000516 000517 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 000518 ** If malloc failed, then the while() loop above may not have iterated 000519 ** through all opcodes and hasAbort may be set incorrectly. Return 000520 ** true for this case to prevent the assert() in the callers frame 000521 ** from failing. */ 000522 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 000523 || (hasCreateTable && hasInitCoroutine) ); 000524 } 000525 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 000526 000527 /* 000528 ** This routine is called after all opcodes have been inserted. It loops 000529 ** through all the opcodes and fixes up some details. 000530 ** 000531 ** (1) For each jump instruction with a negative P2 value (a label) 000532 ** resolve the P2 value to an actual address. 000533 ** 000534 ** (2) Compute the maximum number of arguments used by any SQL function 000535 ** and store that value in *pMaxFuncArgs. 000536 ** 000537 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 000538 ** indicate what the prepared statement actually does. 000539 ** 000540 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 000541 ** 000542 ** (5) Reclaim the memory allocated for storing labels. 000543 ** 000544 ** This routine will only function correctly if the mkopcodeh.tcl generator 000545 ** script numbers the opcodes correctly. Changes to this routine must be 000546 ** coordinated with changes to mkopcodeh.tcl. 000547 */ 000548 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 000549 int nMaxArgs = *pMaxFuncArgs; 000550 Op *pOp; 000551 Parse *pParse = p->pParse; 000552 int *aLabel = pParse->aLabel; 000553 p->readOnly = 1; 000554 p->bIsReader = 0; 000555 pOp = &p->aOp[p->nOp-1]; 000556 while(1){ 000557 000558 /* Only JUMP opcodes and the short list of special opcodes in the switch 000559 ** below need to be considered. The mkopcodeh.tcl generator script groups 000560 ** all these opcodes together near the front of the opcode list. Skip 000561 ** any opcode that does not need processing by virtual of the fact that 000562 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 000563 */ 000564 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 000565 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 000566 ** cases from this switch! */ 000567 switch( pOp->opcode ){ 000568 case OP_Transaction: { 000569 if( pOp->p2!=0 ) p->readOnly = 0; 000570 /* fall thru */ 000571 } 000572 case OP_AutoCommit: 000573 case OP_Savepoint: { 000574 p->bIsReader = 1; 000575 break; 000576 } 000577 #ifndef SQLITE_OMIT_WAL 000578 case OP_Checkpoint: 000579 #endif 000580 case OP_Vacuum: 000581 case OP_JournalMode: { 000582 p->readOnly = 0; 000583 p->bIsReader = 1; 000584 break; 000585 } 000586 #ifndef SQLITE_OMIT_VIRTUALTABLE 000587 case OP_VUpdate: { 000588 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 000589 break; 000590 } 000591 case OP_VFilter: { 000592 int n; 000593 assert( (pOp - p->aOp) >= 3 ); 000594 assert( pOp[-1].opcode==OP_Integer ); 000595 n = pOp[-1].p1; 000596 if( n>nMaxArgs ) nMaxArgs = n; 000597 break; 000598 } 000599 #endif 000600 case OP_Next: 000601 case OP_NextIfOpen: 000602 case OP_SorterNext: { 000603 pOp->p4.xAdvance = sqlite3BtreeNext; 000604 pOp->p4type = P4_ADVANCE; 000605 break; 000606 } 000607 case OP_Prev: 000608 case OP_PrevIfOpen: { 000609 pOp->p4.xAdvance = sqlite3BtreePrevious; 000610 pOp->p4type = P4_ADVANCE; 000611 break; 000612 } 000613 } 000614 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 000615 assert( ADDR(pOp->p2)<pParse->nLabel ); 000616 pOp->p2 = aLabel[ADDR(pOp->p2)]; 000617 } 000618 } 000619 if( pOp==p->aOp ) break; 000620 pOp--; 000621 } 000622 sqlite3DbFree(p->db, pParse->aLabel); 000623 pParse->aLabel = 0; 000624 pParse->nLabel = 0; 000625 *pMaxFuncArgs = nMaxArgs; 000626 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 000627 } 000628 000629 /* 000630 ** Return the address of the next instruction to be inserted. 000631 */ 000632 int sqlite3VdbeCurrentAddr(Vdbe *p){ 000633 assert( p->magic==VDBE_MAGIC_INIT ); 000634 return p->nOp; 000635 } 000636 000637 /* 000638 ** Verify that at least N opcode slots are available in p without 000639 ** having to malloc for more space (except when compiled using 000640 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 000641 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 000642 ** fail due to a OOM fault and hence that the return value from 000643 ** sqlite3VdbeAddOpList() will always be non-NULL. 000644 */ 000645 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 000646 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 000647 assert( p->nOp + N <= p->pParse->nOpAlloc ); 000648 } 000649 #endif 000650 000651 /* 000652 ** This function returns a pointer to the array of opcodes associated with 000653 ** the Vdbe passed as the first argument. It is the callers responsibility 000654 ** to arrange for the returned array to be eventually freed using the 000655 ** vdbeFreeOpArray() function. 000656 ** 000657 ** Before returning, *pnOp is set to the number of entries in the returned 000658 ** array. Also, *pnMaxArg is set to the larger of its current value and 000659 ** the number of entries in the Vdbe.apArg[] array required to execute the 000660 ** returned program. 000661 */ 000662 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 000663 VdbeOp *aOp = p->aOp; 000664 assert( aOp && !p->db->mallocFailed ); 000665 000666 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 000667 assert( DbMaskAllZero(p->btreeMask) ); 000668 000669 resolveP2Values(p, pnMaxArg); 000670 *pnOp = p->nOp; 000671 p->aOp = 0; 000672 return aOp; 000673 } 000674 000675 /* 000676 ** Add a whole list of operations to the operation stack. Return a 000677 ** pointer to the first operation inserted. 000678 ** 000679 ** Non-zero P2 arguments to jump instructions are automatically adjusted 000680 ** so that the jump target is relative to the first operation inserted. 000681 */ 000682 VdbeOp *sqlite3VdbeAddOpList( 000683 Vdbe *p, /* Add opcodes to the prepared statement */ 000684 int nOp, /* Number of opcodes to add */ 000685 VdbeOpList const *aOp, /* The opcodes to be added */ 000686 int iLineno /* Source-file line number of first opcode */ 000687 ){ 000688 int i; 000689 VdbeOp *pOut, *pFirst; 000690 assert( nOp>0 ); 000691 assert( p->magic==VDBE_MAGIC_INIT ); 000692 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 000693 return 0; 000694 } 000695 pFirst = pOut = &p->aOp[p->nOp]; 000696 for(i=0; i<nOp; i++, aOp++, pOut++){ 000697 pOut->opcode = aOp->opcode; 000698 pOut->p1 = aOp->p1; 000699 pOut->p2 = aOp->p2; 000700 assert( aOp->p2>=0 ); 000701 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 000702 pOut->p2 += p->nOp; 000703 } 000704 pOut->p3 = aOp->p3; 000705 pOut->p4type = P4_NOTUSED; 000706 pOut->p4.p = 0; 000707 pOut->p5 = 0; 000708 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 000709 pOut->zComment = 0; 000710 #endif 000711 #ifdef SQLITE_VDBE_COVERAGE 000712 pOut->iSrcLine = iLineno+i; 000713 #else 000714 (void)iLineno; 000715 #endif 000716 #ifdef SQLITE_DEBUG 000717 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 000718 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 000719 } 000720 #endif 000721 } 000722 p->nOp += nOp; 000723 return pFirst; 000724 } 000725 000726 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 000727 /* 000728 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 000729 */ 000730 void sqlite3VdbeScanStatus( 000731 Vdbe *p, /* VM to add scanstatus() to */ 000732 int addrExplain, /* Address of OP_Explain (or 0) */ 000733 int addrLoop, /* Address of loop counter */ 000734 int addrVisit, /* Address of rows visited counter */ 000735 LogEst nEst, /* Estimated number of output rows */ 000736 const char *zName /* Name of table or index being scanned */ 000737 ){ 000738 int nByte = (p->nScan+1) * sizeof(ScanStatus); 000739 ScanStatus *aNew; 000740 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 000741 if( aNew ){ 000742 ScanStatus *pNew = &aNew[p->nScan++]; 000743 pNew->addrExplain = addrExplain; 000744 pNew->addrLoop = addrLoop; 000745 pNew->addrVisit = addrVisit; 000746 pNew->nEst = nEst; 000747 pNew->zName = sqlite3DbStrDup(p->db, zName); 000748 p->aScan = aNew; 000749 } 000750 } 000751 #endif 000752 000753 000754 /* 000755 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 000756 ** for a specific instruction. 000757 */ 000758 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 000759 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 000760 } 000761 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 000762 sqlite3VdbeGetOp(p,addr)->p1 = val; 000763 } 000764 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 000765 sqlite3VdbeGetOp(p,addr)->p2 = val; 000766 } 000767 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 000768 sqlite3VdbeGetOp(p,addr)->p3 = val; 000769 } 000770 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){ 000771 assert( p->nOp>0 || p->db->mallocFailed ); 000772 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 000773 } 000774 000775 /* 000776 ** Change the P2 operand of instruction addr so that it points to 000777 ** the address of the next instruction to be coded. 000778 */ 000779 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 000780 sqlite3VdbeChangeP2(p, addr, p->nOp); 000781 } 000782 000783 000784 /* 000785 ** If the input FuncDef structure is ephemeral, then free it. If 000786 ** the FuncDef is not ephermal, then do nothing. 000787 */ 000788 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 000789 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 000790 sqlite3DbFree(db, pDef); 000791 } 000792 } 000793 000794 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 000795 000796 /* 000797 ** Delete a P4 value if necessary. 000798 */ 000799 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 000800 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 000801 sqlite3DbFree(db, p); 000802 } 000803 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 000804 freeEphemeralFunction(db, p->pFunc); 000805 sqlite3DbFree(db, p); 000806 } 000807 static void freeP4(sqlite3 *db, int p4type, void *p4){ 000808 assert( db ); 000809 switch( p4type ){ 000810 case P4_FUNCCTX: { 000811 freeP4FuncCtx(db, (sqlite3_context*)p4); 000812 break; 000813 } 000814 case P4_REAL: 000815 case P4_INT64: 000816 case P4_DYNAMIC: 000817 case P4_INTARRAY: { 000818 sqlite3DbFree(db, p4); 000819 break; 000820 } 000821 case P4_KEYINFO: { 000822 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 000823 break; 000824 } 000825 #ifdef SQLITE_ENABLE_CURSOR_HINTS 000826 case P4_EXPR: { 000827 sqlite3ExprDelete(db, (Expr*)p4); 000828 break; 000829 } 000830 #endif 000831 case P4_FUNCDEF: { 000832 freeEphemeralFunction(db, (FuncDef*)p4); 000833 break; 000834 } 000835 case P4_MEM: { 000836 if( db->pnBytesFreed==0 ){ 000837 sqlite3ValueFree((sqlite3_value*)p4); 000838 }else{ 000839 freeP4Mem(db, (Mem*)p4); 000840 } 000841 break; 000842 } 000843 case P4_VTAB : { 000844 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 000845 break; 000846 } 000847 } 000848 } 000849 000850 /* 000851 ** Free the space allocated for aOp and any p4 values allocated for the 000852 ** opcodes contained within. If aOp is not NULL it is assumed to contain 000853 ** nOp entries. 000854 */ 000855 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 000856 if( aOp ){ 000857 Op *pOp; 000858 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 000859 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p); 000860 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 000861 sqlite3DbFree(db, pOp->zComment); 000862 #endif 000863 } 000864 } 000865 sqlite3DbFree(db, aOp); 000866 } 000867 000868 /* 000869 ** Link the SubProgram object passed as the second argument into the linked 000870 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 000871 ** objects when the VM is no longer required. 000872 */ 000873 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 000874 p->pNext = pVdbe->pProgram; 000875 pVdbe->pProgram = p; 000876 } 000877 000878 /* 000879 ** Change the opcode at addr into OP_Noop 000880 */ 000881 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 000882 VdbeOp *pOp; 000883 if( p->db->mallocFailed ) return 0; 000884 assert( addr>=0 && addr<p->nOp ); 000885 pOp = &p->aOp[addr]; 000886 freeP4(p->db, pOp->p4type, pOp->p4.p); 000887 pOp->p4type = P4_NOTUSED; 000888 pOp->p4.z = 0; 000889 pOp->opcode = OP_Noop; 000890 return 1; 000891 } 000892 000893 /* 000894 ** If the last opcode is "op" and it is not a jump destination, 000895 ** then remove it. Return true if and only if an opcode was removed. 000896 */ 000897 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 000898 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 000899 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 000900 }else{ 000901 return 0; 000902 } 000903 } 000904 000905 /* 000906 ** Change the value of the P4 operand for a specific instruction. 000907 ** This routine is useful when a large program is loaded from a 000908 ** static array using sqlite3VdbeAddOpList but we want to make a 000909 ** few minor changes to the program. 000910 ** 000911 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 000912 ** the string is made into memory obtained from sqlite3_malloc(). 000913 ** A value of n==0 means copy bytes of zP4 up to and including the 000914 ** first null byte. If n>0 then copy n+1 bytes of zP4. 000915 ** 000916 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 000917 ** to a string or structure that is guaranteed to exist for the lifetime of 000918 ** the Vdbe. In these cases we can just copy the pointer. 000919 ** 000920 ** If addr<0 then change P4 on the most recently inserted instruction. 000921 */ 000922 static void SQLITE_NOINLINE vdbeChangeP4Full( 000923 Vdbe *p, 000924 Op *pOp, 000925 const char *zP4, 000926 int n 000927 ){ 000928 if( pOp->p4type ){ 000929 freeP4(p->db, pOp->p4type, pOp->p4.p); 000930 pOp->p4type = 0; 000931 pOp->p4.p = 0; 000932 } 000933 if( n<0 ){ 000934 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 000935 }else{ 000936 if( n==0 ) n = sqlite3Strlen30(zP4); 000937 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 000938 pOp->p4type = P4_DYNAMIC; 000939 } 000940 } 000941 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 000942 Op *pOp; 000943 sqlite3 *db; 000944 assert( p!=0 ); 000945 db = p->db; 000946 assert( p->magic==VDBE_MAGIC_INIT ); 000947 assert( p->aOp!=0 || db->mallocFailed ); 000948 if( db->mallocFailed ){ 000949 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 000950 return; 000951 } 000952 assert( p->nOp>0 ); 000953 assert( addr<p->nOp ); 000954 if( addr<0 ){ 000955 addr = p->nOp - 1; 000956 } 000957 pOp = &p->aOp[addr]; 000958 if( n>=0 || pOp->p4type ){ 000959 vdbeChangeP4Full(p, pOp, zP4, n); 000960 return; 000961 } 000962 if( n==P4_INT32 ){ 000963 /* Note: this cast is safe, because the origin data point was an int 000964 ** that was cast to a (const char *). */ 000965 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 000966 pOp->p4type = P4_INT32; 000967 }else if( zP4!=0 ){ 000968 assert( n<0 ); 000969 pOp->p4.p = (void*)zP4; 000970 pOp->p4type = (signed char)n; 000971 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 000972 } 000973 } 000974 000975 /* 000976 ** Change the P4 operand of the most recently coded instruction 000977 ** to the value defined by the arguments. This is a high-speed 000978 ** version of sqlite3VdbeChangeP4(). 000979 ** 000980 ** The P4 operand must not have been previously defined. And the new 000981 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 000982 ** those cases. 000983 */ 000984 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 000985 VdbeOp *pOp; 000986 assert( n!=P4_INT32 && n!=P4_VTAB ); 000987 assert( n<=0 ); 000988 if( p->db->mallocFailed ){ 000989 freeP4(p->db, n, pP4); 000990 }else{ 000991 assert( pP4!=0 ); 000992 assert( p->nOp>0 ); 000993 pOp = &p->aOp[p->nOp-1]; 000994 assert( pOp->p4type==P4_NOTUSED ); 000995 pOp->p4type = n; 000996 pOp->p4.p = pP4; 000997 } 000998 } 000999 001000 /* 001001 ** Set the P4 on the most recently added opcode to the KeyInfo for the 001002 ** index given. 001003 */ 001004 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 001005 Vdbe *v = pParse->pVdbe; 001006 KeyInfo *pKeyInfo; 001007 assert( v!=0 ); 001008 assert( pIdx!=0 ); 001009 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 001010 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 001011 } 001012 001013 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 001014 /* 001015 ** Change the comment on the most recently coded instruction. Or 001016 ** insert a No-op and add the comment to that new instruction. This 001017 ** makes the code easier to read during debugging. None of this happens 001018 ** in a production build. 001019 */ 001020 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 001021 assert( p->nOp>0 || p->aOp==0 ); 001022 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 001023 if( p->nOp ){ 001024 assert( p->aOp ); 001025 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 001026 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 001027 } 001028 } 001029 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 001030 va_list ap; 001031 if( p ){ 001032 va_start(ap, zFormat); 001033 vdbeVComment(p, zFormat, ap); 001034 va_end(ap); 001035 } 001036 } 001037 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 001038 va_list ap; 001039 if( p ){ 001040 sqlite3VdbeAddOp0(p, OP_Noop); 001041 va_start(ap, zFormat); 001042 vdbeVComment(p, zFormat, ap); 001043 va_end(ap); 001044 } 001045 } 001046 #endif /* NDEBUG */ 001047 001048 #ifdef SQLITE_VDBE_COVERAGE 001049 /* 001050 ** Set the value if the iSrcLine field for the previously coded instruction. 001051 */ 001052 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 001053 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 001054 } 001055 #endif /* SQLITE_VDBE_COVERAGE */ 001056 001057 /* 001058 ** Return the opcode for a given address. If the address is -1, then 001059 ** return the most recently inserted opcode. 001060 ** 001061 ** If a memory allocation error has occurred prior to the calling of this 001062 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 001063 ** is readable but not writable, though it is cast to a writable value. 001064 ** The return of a dummy opcode allows the call to continue functioning 001065 ** after an OOM fault without having to check to see if the return from 001066 ** this routine is a valid pointer. But because the dummy.opcode is 0, 001067 ** dummy will never be written to. This is verified by code inspection and 001068 ** by running with Valgrind. 001069 */ 001070 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 001071 /* C89 specifies that the constant "dummy" will be initialized to all 001072 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 001073 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 001074 assert( p->magic==VDBE_MAGIC_INIT ); 001075 if( addr<0 ){ 001076 addr = p->nOp - 1; 001077 } 001078 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 001079 if( p->db->mallocFailed ){ 001080 return (VdbeOp*)&dummy; 001081 }else{ 001082 return &p->aOp[addr]; 001083 } 001084 } 001085 001086 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 001087 /* 001088 ** Return an integer value for one of the parameters to the opcode pOp 001089 ** determined by character c. 001090 */ 001091 static int translateP(char c, const Op *pOp){ 001092 if( c=='1' ) return pOp->p1; 001093 if( c=='2' ) return pOp->p2; 001094 if( c=='3' ) return pOp->p3; 001095 if( c=='4' ) return pOp->p4.i; 001096 return pOp->p5; 001097 } 001098 001099 /* 001100 ** Compute a string for the "comment" field of a VDBE opcode listing. 001101 ** 001102 ** The Synopsis: field in comments in the vdbe.c source file gets converted 001103 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 001104 ** absence of other comments, this synopsis becomes the comment on the opcode. 001105 ** Some translation occurs: 001106 ** 001107 ** "PX" -> "r[X]" 001108 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 001109 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 001110 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 001111 */ 001112 static int displayComment( 001113 const Op *pOp, /* The opcode to be commented */ 001114 const char *zP4, /* Previously obtained value for P4 */ 001115 char *zTemp, /* Write result here */ 001116 int nTemp /* Space available in zTemp[] */ 001117 ){ 001118 const char *zOpName; 001119 const char *zSynopsis; 001120 int nOpName; 001121 int ii, jj; 001122 char zAlt[50]; 001123 zOpName = sqlite3OpcodeName(pOp->opcode); 001124 nOpName = sqlite3Strlen30(zOpName); 001125 if( zOpName[nOpName+1] ){ 001126 int seenCom = 0; 001127 char c; 001128 zSynopsis = zOpName += nOpName + 1; 001129 if( strncmp(zSynopsis,"IF ",3)==0 ){ 001130 if( pOp->p5 & SQLITE_STOREP2 ){ 001131 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 001132 }else{ 001133 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 001134 } 001135 zSynopsis = zAlt; 001136 } 001137 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 001138 if( c=='P' ){ 001139 c = zSynopsis[++ii]; 001140 if( c=='4' ){ 001141 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 001142 }else if( c=='X' ){ 001143 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 001144 seenCom = 1; 001145 }else{ 001146 int v1 = translateP(c, pOp); 001147 int v2; 001148 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 001149 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 001150 ii += 3; 001151 jj += sqlite3Strlen30(zTemp+jj); 001152 v2 = translateP(zSynopsis[ii], pOp); 001153 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 001154 ii += 2; 001155 v2++; 001156 } 001157 if( v2>1 ){ 001158 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 001159 } 001160 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 001161 ii += 4; 001162 } 001163 } 001164 jj += sqlite3Strlen30(zTemp+jj); 001165 }else{ 001166 zTemp[jj++] = c; 001167 } 001168 } 001169 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 001170 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 001171 jj += sqlite3Strlen30(zTemp+jj); 001172 } 001173 if( jj<nTemp ) zTemp[jj] = 0; 001174 }else if( pOp->zComment ){ 001175 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 001176 jj = sqlite3Strlen30(zTemp); 001177 }else{ 001178 zTemp[0] = 0; 001179 jj = 0; 001180 } 001181 return jj; 001182 } 001183 #endif /* SQLITE_DEBUG */ 001184 001185 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 001186 /* 001187 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 001188 ** that can be displayed in the P4 column of EXPLAIN output. 001189 */ 001190 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 001191 const char *zOp = 0; 001192 switch( pExpr->op ){ 001193 case TK_STRING: 001194 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 001195 break; 001196 case TK_INTEGER: 001197 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 001198 break; 001199 case TK_NULL: 001200 sqlite3XPrintf(p, "NULL"); 001201 break; 001202 case TK_REGISTER: { 001203 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 001204 break; 001205 } 001206 case TK_COLUMN: { 001207 if( pExpr->iColumn<0 ){ 001208 sqlite3XPrintf(p, "rowid"); 001209 }else{ 001210 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 001211 } 001212 break; 001213 } 001214 case TK_LT: zOp = "LT"; break; 001215 case TK_LE: zOp = "LE"; break; 001216 case TK_GT: zOp = "GT"; break; 001217 case TK_GE: zOp = "GE"; break; 001218 case TK_NE: zOp = "NE"; break; 001219 case TK_EQ: zOp = "EQ"; break; 001220 case TK_IS: zOp = "IS"; break; 001221 case TK_ISNOT: zOp = "ISNOT"; break; 001222 case TK_AND: zOp = "AND"; break; 001223 case TK_OR: zOp = "OR"; break; 001224 case TK_PLUS: zOp = "ADD"; break; 001225 case TK_STAR: zOp = "MUL"; break; 001226 case TK_MINUS: zOp = "SUB"; break; 001227 case TK_REM: zOp = "REM"; break; 001228 case TK_BITAND: zOp = "BITAND"; break; 001229 case TK_BITOR: zOp = "BITOR"; break; 001230 case TK_SLASH: zOp = "DIV"; break; 001231 case TK_LSHIFT: zOp = "LSHIFT"; break; 001232 case TK_RSHIFT: zOp = "RSHIFT"; break; 001233 case TK_CONCAT: zOp = "CONCAT"; break; 001234 case TK_UMINUS: zOp = "MINUS"; break; 001235 case TK_UPLUS: zOp = "PLUS"; break; 001236 case TK_BITNOT: zOp = "BITNOT"; break; 001237 case TK_NOT: zOp = "NOT"; break; 001238 case TK_ISNULL: zOp = "ISNULL"; break; 001239 case TK_NOTNULL: zOp = "NOTNULL"; break; 001240 001241 default: 001242 sqlite3XPrintf(p, "%s", "expr"); 001243 break; 001244 } 001245 001246 if( zOp ){ 001247 sqlite3XPrintf(p, "%s(", zOp); 001248 displayP4Expr(p, pExpr->pLeft); 001249 if( pExpr->pRight ){ 001250 sqlite3StrAccumAppend(p, ",", 1); 001251 displayP4Expr(p, pExpr->pRight); 001252 } 001253 sqlite3StrAccumAppend(p, ")", 1); 001254 } 001255 } 001256 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 001257 001258 001259 #if VDBE_DISPLAY_P4 001260 /* 001261 ** Compute a string that describes the P4 parameter for an opcode. 001262 ** Use zTemp for any required temporary buffer space. 001263 */ 001264 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 001265 char *zP4 = zTemp; 001266 StrAccum x; 001267 assert( nTemp>=20 ); 001268 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 001269 switch( pOp->p4type ){ 001270 case P4_KEYINFO: { 001271 int j; 001272 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 001273 assert( pKeyInfo->aSortOrder!=0 ); 001274 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField); 001275 for(j=0; j<pKeyInfo->nField; j++){ 001276 CollSeq *pColl = pKeyInfo->aColl[j]; 001277 const char *zColl = pColl ? pColl->zName : ""; 001278 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 001279 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 001280 } 001281 sqlite3StrAccumAppend(&x, ")", 1); 001282 break; 001283 } 001284 #ifdef SQLITE_ENABLE_CURSOR_HINTS 001285 case P4_EXPR: { 001286 displayP4Expr(&x, pOp->p4.pExpr); 001287 break; 001288 } 001289 #endif 001290 case P4_COLLSEQ: { 001291 CollSeq *pColl = pOp->p4.pColl; 001292 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 001293 break; 001294 } 001295 case P4_FUNCDEF: { 001296 FuncDef *pDef = pOp->p4.pFunc; 001297 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 001298 break; 001299 } 001300 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 001301 case P4_FUNCCTX: { 001302 FuncDef *pDef = pOp->p4.pCtx->pFunc; 001303 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 001304 break; 001305 } 001306 #endif 001307 case P4_INT64: { 001308 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 001309 break; 001310 } 001311 case P4_INT32: { 001312 sqlite3XPrintf(&x, "%d", pOp->p4.i); 001313 break; 001314 } 001315 case P4_REAL: { 001316 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 001317 break; 001318 } 001319 case P4_MEM: { 001320 Mem *pMem = pOp->p4.pMem; 001321 if( pMem->flags & MEM_Str ){ 001322 zP4 = pMem->z; 001323 }else if( pMem->flags & MEM_Int ){ 001324 sqlite3XPrintf(&x, "%lld", pMem->u.i); 001325 }else if( pMem->flags & MEM_Real ){ 001326 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 001327 }else if( pMem->flags & MEM_Null ){ 001328 zP4 = "NULL"; 001329 }else{ 001330 assert( pMem->flags & MEM_Blob ); 001331 zP4 = "(blob)"; 001332 } 001333 break; 001334 } 001335 #ifndef SQLITE_OMIT_VIRTUALTABLE 001336 case P4_VTAB: { 001337 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 001338 sqlite3XPrintf(&x, "vtab:%p", pVtab); 001339 break; 001340 } 001341 #endif 001342 case P4_INTARRAY: { 001343 int i; 001344 int *ai = pOp->p4.ai; 001345 int n = ai[0]; /* The first element of an INTARRAY is always the 001346 ** count of the number of elements to follow */ 001347 for(i=1; i<n; i++){ 001348 sqlite3XPrintf(&x, ",%d", ai[i]); 001349 } 001350 zTemp[0] = '['; 001351 sqlite3StrAccumAppend(&x, "]", 1); 001352 break; 001353 } 001354 case P4_SUBPROGRAM: { 001355 sqlite3XPrintf(&x, "program"); 001356 break; 001357 } 001358 case P4_ADVANCE: { 001359 zTemp[0] = 0; 001360 break; 001361 } 001362 case P4_TABLE: { 001363 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName); 001364 break; 001365 } 001366 default: { 001367 zP4 = pOp->p4.z; 001368 if( zP4==0 ){ 001369 zP4 = zTemp; 001370 zTemp[0] = 0; 001371 } 001372 } 001373 } 001374 sqlite3StrAccumFinish(&x); 001375 assert( zP4!=0 ); 001376 return zP4; 001377 } 001378 #endif /* VDBE_DISPLAY_P4 */ 001379 001380 /* 001381 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 001382 ** 001383 ** The prepared statements need to know in advance the complete set of 001384 ** attached databases that will be use. A mask of these databases 001385 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 001386 ** p->btreeMask of databases that will require a lock. 001387 */ 001388 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 001389 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 001390 assert( i<(int)sizeof(p->btreeMask)*8 ); 001391 DbMaskSet(p->btreeMask, i); 001392 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 001393 DbMaskSet(p->lockMask, i); 001394 } 001395 } 001396 001397 #if !defined(SQLITE_OMIT_SHARED_CACHE) 001398 /* 001399 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 001400 ** this routine obtains the mutex associated with each BtShared structure 001401 ** that may be accessed by the VM passed as an argument. In doing so it also 001402 ** sets the BtShared.db member of each of the BtShared structures, ensuring 001403 ** that the correct busy-handler callback is invoked if required. 001404 ** 001405 ** If SQLite is not threadsafe but does support shared-cache mode, then 001406 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 001407 ** of all of BtShared structures accessible via the database handle 001408 ** associated with the VM. 001409 ** 001410 ** If SQLite is not threadsafe and does not support shared-cache mode, this 001411 ** function is a no-op. 001412 ** 001413 ** The p->btreeMask field is a bitmask of all btrees that the prepared 001414 ** statement p will ever use. Let N be the number of bits in p->btreeMask 001415 ** corresponding to btrees that use shared cache. Then the runtime of 001416 ** this routine is N*N. But as N is rarely more than 1, this should not 001417 ** be a problem. 001418 */ 001419 void sqlite3VdbeEnter(Vdbe *p){ 001420 int i; 001421 sqlite3 *db; 001422 Db *aDb; 001423 int nDb; 001424 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 001425 db = p->db; 001426 aDb = db->aDb; 001427 nDb = db->nDb; 001428 for(i=0; i<nDb; i++){ 001429 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 001430 sqlite3BtreeEnter(aDb[i].pBt); 001431 } 001432 } 001433 } 001434 #endif 001435 001436 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 001437 /* 001438 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 001439 */ 001440 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 001441 int i; 001442 sqlite3 *db; 001443 Db *aDb; 001444 int nDb; 001445 db = p->db; 001446 aDb = db->aDb; 001447 nDb = db->nDb; 001448 for(i=0; i<nDb; i++){ 001449 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 001450 sqlite3BtreeLeave(aDb[i].pBt); 001451 } 001452 } 001453 } 001454 void sqlite3VdbeLeave(Vdbe *p){ 001455 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 001456 vdbeLeave(p); 001457 } 001458 #endif 001459 001460 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 001461 /* 001462 ** Print a single opcode. This routine is used for debugging only. 001463 */ 001464 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 001465 char *zP4; 001466 char zPtr[50]; 001467 char zCom[100]; 001468 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 001469 if( pOut==0 ) pOut = stdout; 001470 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 001471 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 001472 displayComment(pOp, zP4, zCom, sizeof(zCom)); 001473 #else 001474 zCom[0] = 0; 001475 #endif 001476 /* NB: The sqlite3OpcodeName() function is implemented by code created 001477 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 001478 ** information from the vdbe.c source text */ 001479 fprintf(pOut, zFormat1, pc, 001480 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 001481 zCom 001482 ); 001483 fflush(pOut); 001484 } 001485 #endif 001486 001487 /* 001488 ** Initialize an array of N Mem element. 001489 */ 001490 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 001491 while( (N--)>0 ){ 001492 p->db = db; 001493 p->flags = flags; 001494 p->szMalloc = 0; 001495 #ifdef SQLITE_DEBUG 001496 p->pScopyFrom = 0; 001497 #endif 001498 p++; 001499 } 001500 } 001501 001502 /* 001503 ** Release an array of N Mem elements 001504 */ 001505 static void releaseMemArray(Mem *p, int N){ 001506 if( p && N ){ 001507 Mem *pEnd = &p[N]; 001508 sqlite3 *db = p->db; 001509 if( db->pnBytesFreed ){ 001510 do{ 001511 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 001512 }while( (++p)<pEnd ); 001513 return; 001514 } 001515 do{ 001516 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 001517 assert( sqlite3VdbeCheckMemInvariants(p) ); 001518 001519 /* This block is really an inlined version of sqlite3VdbeMemRelease() 001520 ** that takes advantage of the fact that the memory cell value is 001521 ** being set to NULL after releasing any dynamic resources. 001522 ** 001523 ** The justification for duplicating code is that according to 001524 ** callgrind, this causes a certain test case to hit the CPU 4.7 001525 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 001526 ** sqlite3MemRelease() were called from here. With -O2, this jumps 001527 ** to 6.6 percent. The test case is inserting 1000 rows into a table 001528 ** with no indexes using a single prepared INSERT statement, bind() 001529 ** and reset(). Inserts are grouped into a transaction. 001530 */ 001531 testcase( p->flags & MEM_Agg ); 001532 testcase( p->flags & MEM_Dyn ); 001533 testcase( p->flags & MEM_Frame ); 001534 testcase( p->flags & MEM_RowSet ); 001535 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 001536 sqlite3VdbeMemRelease(p); 001537 }else if( p->szMalloc ){ 001538 sqlite3DbFree(db, p->zMalloc); 001539 p->szMalloc = 0; 001540 } 001541 001542 p->flags = MEM_Undefined; 001543 }while( (++p)<pEnd ); 001544 } 001545 } 001546 001547 /* 001548 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 001549 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 001550 */ 001551 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 001552 int i; 001553 Mem *aMem = VdbeFrameMem(p); 001554 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 001555 for(i=0; i<p->nChildCsr; i++){ 001556 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 001557 } 001558 releaseMemArray(aMem, p->nChildMem); 001559 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 001560 sqlite3DbFree(p->v->db, p); 001561 } 001562 001563 #ifndef SQLITE_OMIT_EXPLAIN 001564 /* 001565 ** Give a listing of the program in the virtual machine. 001566 ** 001567 ** The interface is the same as sqlite3VdbeExec(). But instead of 001568 ** running the code, it invokes the callback once for each instruction. 001569 ** This feature is used to implement "EXPLAIN". 001570 ** 001571 ** When p->explain==1, each instruction is listed. When 001572 ** p->explain==2, only OP_Explain instructions are listed and these 001573 ** are shown in a different format. p->explain==2 is used to implement 001574 ** EXPLAIN QUERY PLAN. 001575 ** 001576 ** When p->explain==1, first the main program is listed, then each of 001577 ** the trigger subprograms are listed one by one. 001578 */ 001579 int sqlite3VdbeList( 001580 Vdbe *p /* The VDBE */ 001581 ){ 001582 int nRow; /* Stop when row count reaches this */ 001583 int nSub = 0; /* Number of sub-vdbes seen so far */ 001584 SubProgram **apSub = 0; /* Array of sub-vdbes */ 001585 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 001586 sqlite3 *db = p->db; /* The database connection */ 001587 int i; /* Loop counter */ 001588 int rc = SQLITE_OK; /* Return code */ 001589 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 001590 001591 assert( p->explain ); 001592 assert( p->magic==VDBE_MAGIC_RUN ); 001593 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 001594 001595 /* Even though this opcode does not use dynamic strings for 001596 ** the result, result columns may become dynamic if the user calls 001597 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 001598 */ 001599 releaseMemArray(pMem, 8); 001600 p->pResultSet = 0; 001601 001602 if( p->rc==SQLITE_NOMEM_BKPT ){ 001603 /* This happens if a malloc() inside a call to sqlite3_column_text() or 001604 ** sqlite3_column_text16() failed. */ 001605 sqlite3OomFault(db); 001606 return SQLITE_ERROR; 001607 } 001608 001609 /* When the number of output rows reaches nRow, that means the 001610 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 001611 ** nRow is the sum of the number of rows in the main program, plus 001612 ** the sum of the number of rows in all trigger subprograms encountered 001613 ** so far. The nRow value will increase as new trigger subprograms are 001614 ** encountered, but p->pc will eventually catch up to nRow. 001615 */ 001616 nRow = p->nOp; 001617 if( p->explain==1 ){ 001618 /* The first 8 memory cells are used for the result set. So we will 001619 ** commandeer the 9th cell to use as storage for an array of pointers 001620 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 001621 ** cells. */ 001622 assert( p->nMem>9 ); 001623 pSub = &p->aMem[9]; 001624 if( pSub->flags&MEM_Blob ){ 001625 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 001626 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 001627 nSub = pSub->n/sizeof(Vdbe*); 001628 apSub = (SubProgram **)pSub->z; 001629 } 001630 for(i=0; i<nSub; i++){ 001631 nRow += apSub[i]->nOp; 001632 } 001633 } 001634 001635 do{ 001636 i = p->pc++; 001637 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 001638 if( i>=nRow ){ 001639 p->rc = SQLITE_OK; 001640 rc = SQLITE_DONE; 001641 }else if( db->u1.isInterrupted ){ 001642 p->rc = SQLITE_INTERRUPT; 001643 rc = SQLITE_ERROR; 001644 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 001645 }else{ 001646 char *zP4; 001647 Op *pOp; 001648 if( i<p->nOp ){ 001649 /* The output line number is small enough that we are still in the 001650 ** main program. */ 001651 pOp = &p->aOp[i]; 001652 }else{ 001653 /* We are currently listing subprograms. Figure out which one and 001654 ** pick up the appropriate opcode. */ 001655 int j; 001656 i -= p->nOp; 001657 for(j=0; i>=apSub[j]->nOp; j++){ 001658 i -= apSub[j]->nOp; 001659 } 001660 pOp = &apSub[j]->aOp[i]; 001661 } 001662 if( p->explain==1 ){ 001663 pMem->flags = MEM_Int; 001664 pMem->u.i = i; /* Program counter */ 001665 pMem++; 001666 001667 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 001668 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 001669 assert( pMem->z!=0 ); 001670 pMem->n = sqlite3Strlen30(pMem->z); 001671 pMem->enc = SQLITE_UTF8; 001672 pMem++; 001673 001674 /* When an OP_Program opcode is encounter (the only opcode that has 001675 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 001676 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 001677 ** has not already been seen. 001678 */ 001679 if( pOp->p4type==P4_SUBPROGRAM ){ 001680 int nByte = (nSub+1)*sizeof(SubProgram*); 001681 int j; 001682 for(j=0; j<nSub; j++){ 001683 if( apSub[j]==pOp->p4.pProgram ) break; 001684 } 001685 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 001686 apSub = (SubProgram **)pSub->z; 001687 apSub[nSub++] = pOp->p4.pProgram; 001688 pSub->flags |= MEM_Blob; 001689 pSub->n = nSub*sizeof(SubProgram*); 001690 } 001691 } 001692 } 001693 001694 pMem->flags = MEM_Int; 001695 pMem->u.i = pOp->p1; /* P1 */ 001696 pMem++; 001697 001698 pMem->flags = MEM_Int; 001699 pMem->u.i = pOp->p2; /* P2 */ 001700 pMem++; 001701 001702 pMem->flags = MEM_Int; 001703 pMem->u.i = pOp->p3; /* P3 */ 001704 pMem++; 001705 001706 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 001707 assert( p->db->mallocFailed ); 001708 return SQLITE_ERROR; 001709 } 001710 pMem->flags = MEM_Str|MEM_Term; 001711 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 001712 if( zP4!=pMem->z ){ 001713 pMem->n = 0; 001714 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 001715 }else{ 001716 assert( pMem->z!=0 ); 001717 pMem->n = sqlite3Strlen30(pMem->z); 001718 pMem->enc = SQLITE_UTF8; 001719 } 001720 pMem++; 001721 001722 if( p->explain==1 ){ 001723 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 001724 assert( p->db->mallocFailed ); 001725 return SQLITE_ERROR; 001726 } 001727 pMem->flags = MEM_Str|MEM_Term; 001728 pMem->n = 2; 001729 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 001730 pMem->enc = SQLITE_UTF8; 001731 pMem++; 001732 001733 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 001734 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 001735 assert( p->db->mallocFailed ); 001736 return SQLITE_ERROR; 001737 } 001738 pMem->flags = MEM_Str|MEM_Term; 001739 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 001740 pMem->enc = SQLITE_UTF8; 001741 #else 001742 pMem->flags = MEM_Null; /* Comment */ 001743 #endif 001744 } 001745 001746 p->nResColumn = 8 - 4*(p->explain-1); 001747 p->pResultSet = &p->aMem[1]; 001748 p->rc = SQLITE_OK; 001749 rc = SQLITE_ROW; 001750 } 001751 return rc; 001752 } 001753 #endif /* SQLITE_OMIT_EXPLAIN */ 001754 001755 #ifdef SQLITE_DEBUG 001756 /* 001757 ** Print the SQL that was used to generate a VDBE program. 001758 */ 001759 void sqlite3VdbePrintSql(Vdbe *p){ 001760 const char *z = 0; 001761 if( p->zSql ){ 001762 z = p->zSql; 001763 }else if( p->nOp>=1 ){ 001764 const VdbeOp *pOp = &p->aOp[0]; 001765 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 001766 z = pOp->p4.z; 001767 while( sqlite3Isspace(*z) ) z++; 001768 } 001769 } 001770 if( z ) printf("SQL: [%s]\n", z); 001771 } 001772 #endif 001773 001774 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 001775 /* 001776 ** Print an IOTRACE message showing SQL content. 001777 */ 001778 void sqlite3VdbeIOTraceSql(Vdbe *p){ 001779 int nOp = p->nOp; 001780 VdbeOp *pOp; 001781 if( sqlite3IoTrace==0 ) return; 001782 if( nOp<1 ) return; 001783 pOp = &p->aOp[0]; 001784 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 001785 int i, j; 001786 char z[1000]; 001787 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 001788 for(i=0; sqlite3Isspace(z[i]); i++){} 001789 for(j=0; z[i]; i++){ 001790 if( sqlite3Isspace(z[i]) ){ 001791 if( z[i-1]!=' ' ){ 001792 z[j++] = ' '; 001793 } 001794 }else{ 001795 z[j++] = z[i]; 001796 } 001797 } 001798 z[j] = 0; 001799 sqlite3IoTrace("SQL %s\n", z); 001800 } 001801 } 001802 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 001803 001804 /* An instance of this object describes bulk memory available for use 001805 ** by subcomponents of a prepared statement. Space is allocated out 001806 ** of a ReusableSpace object by the allocSpace() routine below. 001807 */ 001808 struct ReusableSpace { 001809 u8 *pSpace; /* Available memory */ 001810 int nFree; /* Bytes of available memory */ 001811 int nNeeded; /* Total bytes that could not be allocated */ 001812 }; 001813 001814 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 001815 ** from the ReusableSpace object. Return a pointer to the allocated 001816 ** memory on success. If insufficient memory is available in the 001817 ** ReusableSpace object, increase the ReusableSpace.nNeeded 001818 ** value by the amount needed and return NULL. 001819 ** 001820 ** If pBuf is not initially NULL, that means that the memory has already 001821 ** been allocated by a prior call to this routine, so just return a copy 001822 ** of pBuf and leave ReusableSpace unchanged. 001823 ** 001824 ** This allocator is employed to repurpose unused slots at the end of the 001825 ** opcode array of prepared state for other memory needs of the prepared 001826 ** statement. 001827 */ 001828 static void *allocSpace( 001829 struct ReusableSpace *p, /* Bulk memory available for allocation */ 001830 void *pBuf, /* Pointer to a prior allocation */ 001831 int nByte /* Bytes of memory needed */ 001832 ){ 001833 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 001834 if( pBuf==0 ){ 001835 nByte = ROUND8(nByte); 001836 if( nByte <= p->nFree ){ 001837 p->nFree -= nByte; 001838 pBuf = &p->pSpace[p->nFree]; 001839 }else{ 001840 p->nNeeded += nByte; 001841 } 001842 } 001843 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 001844 return pBuf; 001845 } 001846 001847 /* 001848 ** Rewind the VDBE back to the beginning in preparation for 001849 ** running it. 001850 */ 001851 void sqlite3VdbeRewind(Vdbe *p){ 001852 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 001853 int i; 001854 #endif 001855 assert( p!=0 ); 001856 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 001857 001858 /* There should be at least one opcode. 001859 */ 001860 assert( p->nOp>0 ); 001861 001862 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 001863 p->magic = VDBE_MAGIC_RUN; 001864 001865 #ifdef SQLITE_DEBUG 001866 for(i=0; i<p->nMem; i++){ 001867 assert( p->aMem[i].db==p->db ); 001868 } 001869 #endif 001870 p->pc = -1; 001871 p->rc = SQLITE_OK; 001872 p->errorAction = OE_Abort; 001873 p->nChange = 0; 001874 p->cacheCtr = 1; 001875 p->minWriteFileFormat = 255; 001876 p->iStatement = 0; 001877 p->nFkConstraint = 0; 001878 #ifdef VDBE_PROFILE 001879 for(i=0; i<p->nOp; i++){ 001880 p->aOp[i].cnt = 0; 001881 p->aOp[i].cycles = 0; 001882 } 001883 #endif 001884 } 001885 001886 /* 001887 ** Prepare a virtual machine for execution for the first time after 001888 ** creating the virtual machine. This involves things such 001889 ** as allocating registers and initializing the program counter. 001890 ** After the VDBE has be prepped, it can be executed by one or more 001891 ** calls to sqlite3VdbeExec(). 001892 ** 001893 ** This function may be called exactly once on each virtual machine. 001894 ** After this routine is called the VM has been "packaged" and is ready 001895 ** to run. After this routine is called, further calls to 001896 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 001897 ** the Vdbe from the Parse object that helped generate it so that the 001898 ** the Vdbe becomes an independent entity and the Parse object can be 001899 ** destroyed. 001900 ** 001901 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 001902 ** to its initial state after it has been run. 001903 */ 001904 void sqlite3VdbeMakeReady( 001905 Vdbe *p, /* The VDBE */ 001906 Parse *pParse /* Parsing context */ 001907 ){ 001908 sqlite3 *db; /* The database connection */ 001909 int nVar; /* Number of parameters */ 001910 int nMem; /* Number of VM memory registers */ 001911 int nCursor; /* Number of cursors required */ 001912 int nArg; /* Number of arguments in subprograms */ 001913 int n; /* Loop counter */ 001914 struct ReusableSpace x; /* Reusable bulk memory */ 001915 001916 assert( p!=0 ); 001917 assert( p->nOp>0 ); 001918 assert( pParse!=0 ); 001919 assert( p->magic==VDBE_MAGIC_INIT ); 001920 assert( pParse==p->pParse ); 001921 db = p->db; 001922 assert( db->mallocFailed==0 ); 001923 nVar = pParse->nVar; 001924 nMem = pParse->nMem; 001925 nCursor = pParse->nTab; 001926 nArg = pParse->nMaxArg; 001927 001928 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 001929 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 001930 ** space at the end of aMem[] for cursors 1 and greater. 001931 ** See also: allocateCursor(). 001932 */ 001933 nMem += nCursor; 001934 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 001935 001936 /* Figure out how much reusable memory is available at the end of the 001937 ** opcode array. This extra memory will be reallocated for other elements 001938 ** of the prepared statement. 001939 */ 001940 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 001941 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 001942 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 001943 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 001944 assert( x.nFree>=0 ); 001945 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 001946 001947 resolveP2Values(p, &nArg); 001948 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 001949 if( pParse->explain && nMem<10 ){ 001950 nMem = 10; 001951 } 001952 p->expired = 0; 001953 001954 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 001955 ** passes. On the first pass, we try to reuse unused memory at the 001956 ** end of the opcode array. If we are unable to satisfy all memory 001957 ** requirements by reusing the opcode array tail, then the second 001958 ** pass will fill in the remainder using a fresh memory allocation. 001959 ** 001960 ** This two-pass approach that reuses as much memory as possible from 001961 ** the leftover memory at the end of the opcode array. This can significantly 001962 ** reduce the amount of memory held by a prepared statement. 001963 */ 001964 do { 001965 x.nNeeded = 0; 001966 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 001967 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 001968 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 001969 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 001970 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 001971 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 001972 #endif 001973 if( x.nNeeded==0 ) break; 001974 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 001975 x.nFree = x.nNeeded; 001976 }while( !db->mallocFailed ); 001977 001978 p->pVList = pParse->pVList; 001979 pParse->pVList = 0; 001980 p->explain = pParse->explain; 001981 if( db->mallocFailed ){ 001982 p->nVar = 0; 001983 p->nCursor = 0; 001984 p->nMem = 0; 001985 }else{ 001986 p->nCursor = nCursor; 001987 p->nVar = (ynVar)nVar; 001988 initMemArray(p->aVar, nVar, db, MEM_Null); 001989 p->nMem = nMem; 001990 initMemArray(p->aMem, nMem, db, MEM_Undefined); 001991 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 001992 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 001993 memset(p->anExec, 0, p->nOp*sizeof(i64)); 001994 #endif 001995 } 001996 sqlite3VdbeRewind(p); 001997 } 001998 001999 /* 002000 ** Close a VDBE cursor and release all the resources that cursor 002001 ** happens to hold. 002002 */ 002003 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 002004 if( pCx==0 ){ 002005 return; 002006 } 002007 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 002008 switch( pCx->eCurType ){ 002009 case CURTYPE_SORTER: { 002010 sqlite3VdbeSorterClose(p->db, pCx); 002011 break; 002012 } 002013 case CURTYPE_BTREE: { 002014 if( pCx->pBtx ){ 002015 sqlite3BtreeClose(pCx->pBtx); 002016 /* The pCx->pCursor will be close automatically, if it exists, by 002017 ** the call above. */ 002018 }else{ 002019 assert( pCx->uc.pCursor!=0 ); 002020 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 002021 } 002022 break; 002023 } 002024 #ifndef SQLITE_OMIT_VIRTUALTABLE 002025 case CURTYPE_VTAB: { 002026 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 002027 const sqlite3_module *pModule = pVCur->pVtab->pModule; 002028 assert( pVCur->pVtab->nRef>0 ); 002029 pVCur->pVtab->nRef--; 002030 pModule->xClose(pVCur); 002031 break; 002032 } 002033 #endif 002034 } 002035 } 002036 002037 /* 002038 ** Close all cursors in the current frame. 002039 */ 002040 static void closeCursorsInFrame(Vdbe *p){ 002041 if( p->apCsr ){ 002042 int i; 002043 for(i=0; i<p->nCursor; i++){ 002044 VdbeCursor *pC = p->apCsr[i]; 002045 if( pC ){ 002046 sqlite3VdbeFreeCursor(p, pC); 002047 p->apCsr[i] = 0; 002048 } 002049 } 002050 } 002051 } 002052 002053 /* 002054 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 002055 ** is used, for example, when a trigger sub-program is halted to restore 002056 ** control to the main program. 002057 */ 002058 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 002059 Vdbe *v = pFrame->v; 002060 closeCursorsInFrame(v); 002061 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 002062 v->anExec = pFrame->anExec; 002063 #endif 002064 v->aOp = pFrame->aOp; 002065 v->nOp = pFrame->nOp; 002066 v->aMem = pFrame->aMem; 002067 v->nMem = pFrame->nMem; 002068 v->apCsr = pFrame->apCsr; 002069 v->nCursor = pFrame->nCursor; 002070 v->db->lastRowid = pFrame->lastRowid; 002071 v->nChange = pFrame->nChange; 002072 v->db->nChange = pFrame->nDbChange; 002073 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 002074 v->pAuxData = pFrame->pAuxData; 002075 pFrame->pAuxData = 0; 002076 return pFrame->pc; 002077 } 002078 002079 /* 002080 ** Close all cursors. 002081 ** 002082 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 002083 ** cell array. This is necessary as the memory cell array may contain 002084 ** pointers to VdbeFrame objects, which may in turn contain pointers to 002085 ** open cursors. 002086 */ 002087 static void closeAllCursors(Vdbe *p){ 002088 if( p->pFrame ){ 002089 VdbeFrame *pFrame; 002090 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 002091 sqlite3VdbeFrameRestore(pFrame); 002092 p->pFrame = 0; 002093 p->nFrame = 0; 002094 } 002095 assert( p->nFrame==0 ); 002096 closeCursorsInFrame(p); 002097 if( p->aMem ){ 002098 releaseMemArray(p->aMem, p->nMem); 002099 } 002100 while( p->pDelFrame ){ 002101 VdbeFrame *pDel = p->pDelFrame; 002102 p->pDelFrame = pDel->pParent; 002103 sqlite3VdbeFrameDelete(pDel); 002104 } 002105 002106 /* Delete any auxdata allocations made by the VM */ 002107 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 002108 assert( p->pAuxData==0 ); 002109 } 002110 002111 /* 002112 ** Clean up the VM after a single run. 002113 */ 002114 static void Cleanup(Vdbe *p){ 002115 sqlite3 *db = p->db; 002116 002117 #ifdef SQLITE_DEBUG 002118 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 002119 ** Vdbe.aMem[] arrays have already been cleaned up. */ 002120 int i; 002121 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 002122 if( p->aMem ){ 002123 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 002124 } 002125 #endif 002126 002127 sqlite3DbFree(db, p->zErrMsg); 002128 p->zErrMsg = 0; 002129 p->pResultSet = 0; 002130 } 002131 002132 /* 002133 ** Set the number of result columns that will be returned by this SQL 002134 ** statement. This is now set at compile time, rather than during 002135 ** execution of the vdbe program so that sqlite3_column_count() can 002136 ** be called on an SQL statement before sqlite3_step(). 002137 */ 002138 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 002139 Mem *pColName; 002140 int n; 002141 sqlite3 *db = p->db; 002142 002143 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 002144 sqlite3DbFree(db, p->aColName); 002145 n = nResColumn*COLNAME_N; 002146 p->nResColumn = (u16)nResColumn; 002147 p->aColName = pColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 002148 if( p->aColName==0 ) return; 002149 initMemArray(p->aColName, n, p->db, MEM_Null); 002150 } 002151 002152 /* 002153 ** Set the name of the idx'th column to be returned by the SQL statement. 002154 ** zName must be a pointer to a nul terminated string. 002155 ** 002156 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 002157 ** 002158 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 002159 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 002160 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 002161 */ 002162 int sqlite3VdbeSetColName( 002163 Vdbe *p, /* Vdbe being configured */ 002164 int idx, /* Index of column zName applies to */ 002165 int var, /* One of the COLNAME_* constants */ 002166 const char *zName, /* Pointer to buffer containing name */ 002167 void (*xDel)(void*) /* Memory management strategy for zName */ 002168 ){ 002169 int rc; 002170 Mem *pColName; 002171 assert( idx<p->nResColumn ); 002172 assert( var<COLNAME_N ); 002173 if( p->db->mallocFailed ){ 002174 assert( !zName || xDel!=SQLITE_DYNAMIC ); 002175 return SQLITE_NOMEM_BKPT; 002176 } 002177 assert( p->aColName!=0 ); 002178 pColName = &(p->aColName[idx+var*p->nResColumn]); 002179 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 002180 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 002181 return rc; 002182 } 002183 002184 /* 002185 ** A read or write transaction may or may not be active on database handle 002186 ** db. If a transaction is active, commit it. If there is a 002187 ** write-transaction spanning more than one database file, this routine 002188 ** takes care of the master journal trickery. 002189 */ 002190 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 002191 int i; 002192 int nTrans = 0; /* Number of databases with an active write-transaction 002193 ** that are candidates for a two-phase commit using a 002194 ** master-journal */ 002195 int rc = SQLITE_OK; 002196 int needXcommit = 0; 002197 002198 #ifdef SQLITE_OMIT_VIRTUALTABLE 002199 /* With this option, sqlite3VtabSync() is defined to be simply 002200 ** SQLITE_OK so p is not used. 002201 */ 002202 UNUSED_PARAMETER(p); 002203 #endif 002204 002205 /* Before doing anything else, call the xSync() callback for any 002206 ** virtual module tables written in this transaction. This has to 002207 ** be done before determining whether a master journal file is 002208 ** required, as an xSync() callback may add an attached database 002209 ** to the transaction. 002210 */ 002211 rc = sqlite3VtabSync(db, p); 002212 002213 /* This loop determines (a) if the commit hook should be invoked and 002214 ** (b) how many database files have open write transactions, not 002215 ** including the temp database. (b) is important because if more than 002216 ** one database file has an open write transaction, a master journal 002217 ** file is required for an atomic commit. 002218 */ 002219 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 002220 Btree *pBt = db->aDb[i].pBt; 002221 if( sqlite3BtreeIsInTrans(pBt) ){ 002222 /* Whether or not a database might need a master journal depends upon 002223 ** its journal mode (among other things). This matrix determines which 002224 ** journal modes use a master journal and which do not */ 002225 static const u8 aMJNeeded[] = { 002226 /* DELETE */ 1, 002227 /* PERSIST */ 1, 002228 /* OFF */ 0, 002229 /* TRUNCATE */ 1, 002230 /* MEMORY */ 0, 002231 /* WAL */ 0 002232 }; 002233 Pager *pPager; /* Pager associated with pBt */ 002234 needXcommit = 1; 002235 sqlite3BtreeEnter(pBt); 002236 pPager = sqlite3BtreePager(pBt); 002237 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 002238 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 002239 ){ 002240 assert( i!=1 ); 002241 nTrans++; 002242 } 002243 rc = sqlite3PagerExclusiveLock(pPager); 002244 sqlite3BtreeLeave(pBt); 002245 } 002246 } 002247 if( rc!=SQLITE_OK ){ 002248 return rc; 002249 } 002250 002251 /* If there are any write-transactions at all, invoke the commit hook */ 002252 if( needXcommit && db->xCommitCallback ){ 002253 rc = db->xCommitCallback(db->pCommitArg); 002254 if( rc ){ 002255 return SQLITE_CONSTRAINT_COMMITHOOK; 002256 } 002257 } 002258 002259 /* The simple case - no more than one database file (not counting the 002260 ** TEMP database) has a transaction active. There is no need for the 002261 ** master-journal. 002262 ** 002263 ** If the return value of sqlite3BtreeGetFilename() is a zero length 002264 ** string, it means the main database is :memory: or a temp file. In 002265 ** that case we do not support atomic multi-file commits, so use the 002266 ** simple case then too. 002267 */ 002268 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 002269 || nTrans<=1 002270 ){ 002271 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 002272 Btree *pBt = db->aDb[i].pBt; 002273 if( pBt ){ 002274 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 002275 } 002276 } 002277 002278 /* Do the commit only if all databases successfully complete phase 1. 002279 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 002280 ** IO error while deleting or truncating a journal file. It is unlikely, 002281 ** but could happen. In this case abandon processing and return the error. 002282 */ 002283 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 002284 Btree *pBt = db->aDb[i].pBt; 002285 if( pBt ){ 002286 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 002287 } 002288 } 002289 if( rc==SQLITE_OK ){ 002290 sqlite3VtabCommit(db); 002291 } 002292 } 002293 002294 /* The complex case - There is a multi-file write-transaction active. 002295 ** This requires a master journal file to ensure the transaction is 002296 ** committed atomically. 002297 */ 002298 #ifndef SQLITE_OMIT_DISKIO 002299 else{ 002300 sqlite3_vfs *pVfs = db->pVfs; 002301 char *zMaster = 0; /* File-name for the master journal */ 002302 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 002303 sqlite3_file *pMaster = 0; 002304 i64 offset = 0; 002305 int res; 002306 int retryCount = 0; 002307 int nMainFile; 002308 002309 /* Select a master journal file name */ 002310 nMainFile = sqlite3Strlen30(zMainFile); 002311 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 002312 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 002313 do { 002314 u32 iRandom; 002315 if( retryCount ){ 002316 if( retryCount>100 ){ 002317 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 002318 sqlite3OsDelete(pVfs, zMaster, 0); 002319 break; 002320 }else if( retryCount==1 ){ 002321 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 002322 } 002323 } 002324 retryCount++; 002325 sqlite3_randomness(sizeof(iRandom), &iRandom); 002326 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 002327 (iRandom>>8)&0xffffff, iRandom&0xff); 002328 /* The antipenultimate character of the master journal name must 002329 ** be "9" to avoid name collisions when using 8+3 filenames. */ 002330 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 002331 sqlite3FileSuffix3(zMainFile, zMaster); 002332 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 002333 }while( rc==SQLITE_OK && res ); 002334 if( rc==SQLITE_OK ){ 002335 /* Open the master journal. */ 002336 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 002337 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 002338 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 002339 ); 002340 } 002341 if( rc!=SQLITE_OK ){ 002342 sqlite3DbFree(db, zMaster); 002343 return rc; 002344 } 002345 002346 /* Write the name of each database file in the transaction into the new 002347 ** master journal file. If an error occurs at this point close 002348 ** and delete the master journal file. All the individual journal files 002349 ** still have 'null' as the master journal pointer, so they will roll 002350 ** back independently if a failure occurs. 002351 */ 002352 for(i=0; i<db->nDb; i++){ 002353 Btree *pBt = db->aDb[i].pBt; 002354 if( sqlite3BtreeIsInTrans(pBt) ){ 002355 char const *zFile = sqlite3BtreeGetJournalname(pBt); 002356 if( zFile==0 ){ 002357 continue; /* Ignore TEMP and :memory: databases */ 002358 } 002359 assert( zFile[0]!=0 ); 002360 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 002361 offset += sqlite3Strlen30(zFile)+1; 002362 if( rc!=SQLITE_OK ){ 002363 sqlite3OsCloseFree(pMaster); 002364 sqlite3OsDelete(pVfs, zMaster, 0); 002365 sqlite3DbFree(db, zMaster); 002366 return rc; 002367 } 002368 } 002369 } 002370 002371 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 002372 ** flag is set this is not required. 002373 */ 002374 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 002375 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 002376 ){ 002377 sqlite3OsCloseFree(pMaster); 002378 sqlite3OsDelete(pVfs, zMaster, 0); 002379 sqlite3DbFree(db, zMaster); 002380 return rc; 002381 } 002382 002383 /* Sync all the db files involved in the transaction. The same call 002384 ** sets the master journal pointer in each individual journal. If 002385 ** an error occurs here, do not delete the master journal file. 002386 ** 002387 ** If the error occurs during the first call to 002388 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 002389 ** master journal file will be orphaned. But we cannot delete it, 002390 ** in case the master journal file name was written into the journal 002391 ** file before the failure occurred. 002392 */ 002393 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 002394 Btree *pBt = db->aDb[i].pBt; 002395 if( pBt ){ 002396 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 002397 } 002398 } 002399 sqlite3OsCloseFree(pMaster); 002400 assert( rc!=SQLITE_BUSY ); 002401 if( rc!=SQLITE_OK ){ 002402 sqlite3DbFree(db, zMaster); 002403 return rc; 002404 } 002405 002406 /* Delete the master journal file. This commits the transaction. After 002407 ** doing this the directory is synced again before any individual 002408 ** transaction files are deleted. 002409 */ 002410 rc = sqlite3OsDelete(pVfs, zMaster, 1); 002411 sqlite3DbFree(db, zMaster); 002412 zMaster = 0; 002413 if( rc ){ 002414 return rc; 002415 } 002416 002417 /* All files and directories have already been synced, so the following 002418 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 002419 ** deleting or truncating journals. If something goes wrong while 002420 ** this is happening we don't really care. The integrity of the 002421 ** transaction is already guaranteed, but some stray 'cold' journals 002422 ** may be lying around. Returning an error code won't help matters. 002423 */ 002424 disable_simulated_io_errors(); 002425 sqlite3BeginBenignMalloc(); 002426 for(i=0; i<db->nDb; i++){ 002427 Btree *pBt = db->aDb[i].pBt; 002428 if( pBt ){ 002429 sqlite3BtreeCommitPhaseTwo(pBt, 1); 002430 } 002431 } 002432 sqlite3EndBenignMalloc(); 002433 enable_simulated_io_errors(); 002434 002435 sqlite3VtabCommit(db); 002436 } 002437 #endif 002438 002439 return rc; 002440 } 002441 002442 /* 002443 ** This routine checks that the sqlite3.nVdbeActive count variable 002444 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 002445 ** currently active. An assertion fails if the two counts do not match. 002446 ** This is an internal self-check only - it is not an essential processing 002447 ** step. 002448 ** 002449 ** This is a no-op if NDEBUG is defined. 002450 */ 002451 #ifndef NDEBUG 002452 static void checkActiveVdbeCnt(sqlite3 *db){ 002453 Vdbe *p; 002454 int cnt = 0; 002455 int nWrite = 0; 002456 int nRead = 0; 002457 p = db->pVdbe; 002458 while( p ){ 002459 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 002460 cnt++; 002461 if( p->readOnly==0 ) nWrite++; 002462 if( p->bIsReader ) nRead++; 002463 } 002464 p = p->pNext; 002465 } 002466 assert( cnt==db->nVdbeActive ); 002467 assert( nWrite==db->nVdbeWrite ); 002468 assert( nRead==db->nVdbeRead ); 002469 } 002470 #else 002471 #define checkActiveVdbeCnt(x) 002472 #endif 002473 002474 /* 002475 ** If the Vdbe passed as the first argument opened a statement-transaction, 002476 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 002477 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 002478 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 002479 ** statement transaction is committed. 002480 ** 002481 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 002482 ** Otherwise SQLITE_OK. 002483 */ 002484 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 002485 sqlite3 *const db = p->db; 002486 int rc = SQLITE_OK; 002487 002488 /* If p->iStatement is greater than zero, then this Vdbe opened a 002489 ** statement transaction that should be closed here. The only exception 002490 ** is that an IO error may have occurred, causing an emergency rollback. 002491 ** In this case (db->nStatement==0), and there is nothing to do. 002492 */ 002493 if( db->nStatement && p->iStatement ){ 002494 int i; 002495 const int iSavepoint = p->iStatement-1; 002496 002497 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 002498 assert( db->nStatement>0 ); 002499 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 002500 002501 for(i=0; i<db->nDb; i++){ 002502 int rc2 = SQLITE_OK; 002503 Btree *pBt = db->aDb[i].pBt; 002504 if( pBt ){ 002505 if( eOp==SAVEPOINT_ROLLBACK ){ 002506 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 002507 } 002508 if( rc2==SQLITE_OK ){ 002509 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 002510 } 002511 if( rc==SQLITE_OK ){ 002512 rc = rc2; 002513 } 002514 } 002515 } 002516 db->nStatement--; 002517 p->iStatement = 0; 002518 002519 if( rc==SQLITE_OK ){ 002520 if( eOp==SAVEPOINT_ROLLBACK ){ 002521 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 002522 } 002523 if( rc==SQLITE_OK ){ 002524 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 002525 } 002526 } 002527 002528 /* If the statement transaction is being rolled back, also restore the 002529 ** database handles deferred constraint counter to the value it had when 002530 ** the statement transaction was opened. */ 002531 if( eOp==SAVEPOINT_ROLLBACK ){ 002532 db->nDeferredCons = p->nStmtDefCons; 002533 db->nDeferredImmCons = p->nStmtDefImmCons; 002534 } 002535 } 002536 return rc; 002537 } 002538 002539 /* 002540 ** This function is called when a transaction opened by the database 002541 ** handle associated with the VM passed as an argument is about to be 002542 ** committed. If there are outstanding deferred foreign key constraint 002543 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 002544 ** 002545 ** If there are outstanding FK violations and this function returns 002546 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 002547 ** and write an error message to it. Then return SQLITE_ERROR. 002548 */ 002549 #ifndef SQLITE_OMIT_FOREIGN_KEY 002550 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 002551 sqlite3 *db = p->db; 002552 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 002553 || (!deferred && p->nFkConstraint>0) 002554 ){ 002555 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 002556 p->errorAction = OE_Abort; 002557 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 002558 return SQLITE_ERROR; 002559 } 002560 return SQLITE_OK; 002561 } 002562 #endif 002563 002564 /* 002565 ** This routine is called the when a VDBE tries to halt. If the VDBE 002566 ** has made changes and is in autocommit mode, then commit those 002567 ** changes. If a rollback is needed, then do the rollback. 002568 ** 002569 ** This routine is the only way to move the state of a VM from 002570 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 002571 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 002572 ** 002573 ** Return an error code. If the commit could not complete because of 002574 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 002575 ** means the close did not happen and needs to be repeated. 002576 */ 002577 int sqlite3VdbeHalt(Vdbe *p){ 002578 int rc; /* Used to store transient return codes */ 002579 sqlite3 *db = p->db; 002580 002581 /* This function contains the logic that determines if a statement or 002582 ** transaction will be committed or rolled back as a result of the 002583 ** execution of this virtual machine. 002584 ** 002585 ** If any of the following errors occur: 002586 ** 002587 ** SQLITE_NOMEM 002588 ** SQLITE_IOERR 002589 ** SQLITE_FULL 002590 ** SQLITE_INTERRUPT 002591 ** 002592 ** Then the internal cache might have been left in an inconsistent 002593 ** state. We need to rollback the statement transaction, if there is 002594 ** one, or the complete transaction if there is no statement transaction. 002595 */ 002596 002597 if( db->mallocFailed ){ 002598 p->rc = SQLITE_NOMEM_BKPT; 002599 } 002600 closeAllCursors(p); 002601 if( p->magic!=VDBE_MAGIC_RUN ){ 002602 return SQLITE_OK; 002603 } 002604 checkActiveVdbeCnt(db); 002605 002606 /* No commit or rollback needed if the program never started or if the 002607 ** SQL statement does not read or write a database file. */ 002608 if( p->pc>=0 && p->bIsReader ){ 002609 int mrc; /* Primary error code from p->rc */ 002610 int eStatementOp = 0; 002611 int isSpecialError; /* Set to true if a 'special' error */ 002612 002613 /* Lock all btrees used by the statement */ 002614 sqlite3VdbeEnter(p); 002615 002616 /* Check for one of the special errors */ 002617 mrc = p->rc & 0xff; 002618 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 002619 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 002620 if( isSpecialError ){ 002621 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 002622 ** no rollback is necessary. Otherwise, at least a savepoint 002623 ** transaction must be rolled back to restore the database to a 002624 ** consistent state. 002625 ** 002626 ** Even if the statement is read-only, it is important to perform 002627 ** a statement or transaction rollback operation. If the error 002628 ** occurred while writing to the journal, sub-journal or database 002629 ** file as part of an effort to free up cache space (see function 002630 ** pagerStress() in pager.c), the rollback is required to restore 002631 ** the pager to a consistent state. 002632 */ 002633 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 002634 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 002635 eStatementOp = SAVEPOINT_ROLLBACK; 002636 }else{ 002637 /* We are forced to roll back the active transaction. Before doing 002638 ** so, abort any other statements this handle currently has active. 002639 */ 002640 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 002641 sqlite3CloseSavepoints(db); 002642 db->autoCommit = 1; 002643 p->nChange = 0; 002644 } 002645 } 002646 } 002647 002648 /* Check for immediate foreign key violations. */ 002649 if( p->rc==SQLITE_OK ){ 002650 sqlite3VdbeCheckFk(p, 0); 002651 } 002652 002653 /* If the auto-commit flag is set and this is the only active writer 002654 ** VM, then we do either a commit or rollback of the current transaction. 002655 ** 002656 ** Note: This block also runs if one of the special errors handled 002657 ** above has occurred. 002658 */ 002659 if( !sqlite3VtabInSync(db) 002660 && db->autoCommit 002661 && db->nVdbeWrite==(p->readOnly==0) 002662 ){ 002663 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 002664 rc = sqlite3VdbeCheckFk(p, 1); 002665 if( rc!=SQLITE_OK ){ 002666 if( NEVER(p->readOnly) ){ 002667 sqlite3VdbeLeave(p); 002668 return SQLITE_ERROR; 002669 } 002670 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 002671 }else{ 002672 /* The auto-commit flag is true, the vdbe program was successful 002673 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 002674 ** key constraints to hold up the transaction. This means a commit 002675 ** is required. */ 002676 rc = vdbeCommit(db, p); 002677 } 002678 if( rc==SQLITE_BUSY && p->readOnly ){ 002679 sqlite3VdbeLeave(p); 002680 return SQLITE_BUSY; 002681 }else if( rc!=SQLITE_OK ){ 002682 p->rc = rc; 002683 sqlite3RollbackAll(db, SQLITE_OK); 002684 p->nChange = 0; 002685 }else{ 002686 db->nDeferredCons = 0; 002687 db->nDeferredImmCons = 0; 002688 db->flags &= ~SQLITE_DeferFKs; 002689 sqlite3CommitInternalChanges(db); 002690 } 002691 }else{ 002692 sqlite3RollbackAll(db, SQLITE_OK); 002693 p->nChange = 0; 002694 } 002695 db->nStatement = 0; 002696 }else if( eStatementOp==0 ){ 002697 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 002698 eStatementOp = SAVEPOINT_RELEASE; 002699 }else if( p->errorAction==OE_Abort ){ 002700 eStatementOp = SAVEPOINT_ROLLBACK; 002701 }else{ 002702 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 002703 sqlite3CloseSavepoints(db); 002704 db->autoCommit = 1; 002705 p->nChange = 0; 002706 } 002707 } 002708 002709 /* If eStatementOp is non-zero, then a statement transaction needs to 002710 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 002711 ** do so. If this operation returns an error, and the current statement 002712 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 002713 ** current statement error code. 002714 */ 002715 if( eStatementOp ){ 002716 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 002717 if( rc ){ 002718 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 002719 p->rc = rc; 002720 sqlite3DbFree(db, p->zErrMsg); 002721 p->zErrMsg = 0; 002722 } 002723 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 002724 sqlite3CloseSavepoints(db); 002725 db->autoCommit = 1; 002726 p->nChange = 0; 002727 } 002728 } 002729 002730 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 002731 ** has been rolled back, update the database connection change-counter. 002732 */ 002733 if( p->changeCntOn ){ 002734 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 002735 sqlite3VdbeSetChanges(db, p->nChange); 002736 }else{ 002737 sqlite3VdbeSetChanges(db, 0); 002738 } 002739 p->nChange = 0; 002740 } 002741 002742 /* Release the locks */ 002743 sqlite3VdbeLeave(p); 002744 } 002745 002746 /* We have successfully halted and closed the VM. Record this fact. */ 002747 if( p->pc>=0 ){ 002748 db->nVdbeActive--; 002749 if( !p->readOnly ) db->nVdbeWrite--; 002750 if( p->bIsReader ) db->nVdbeRead--; 002751 assert( db->nVdbeActive>=db->nVdbeRead ); 002752 assert( db->nVdbeRead>=db->nVdbeWrite ); 002753 assert( db->nVdbeWrite>=0 ); 002754 } 002755 p->magic = VDBE_MAGIC_HALT; 002756 checkActiveVdbeCnt(db); 002757 if( db->mallocFailed ){ 002758 p->rc = SQLITE_NOMEM_BKPT; 002759 } 002760 002761 /* If the auto-commit flag is set to true, then any locks that were held 002762 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 002763 ** to invoke any required unlock-notify callbacks. 002764 */ 002765 if( db->autoCommit ){ 002766 sqlite3ConnectionUnlocked(db); 002767 } 002768 002769 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 002770 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 002771 } 002772 002773 002774 /* 002775 ** Each VDBE holds the result of the most recent sqlite3_step() call 002776 ** in p->rc. This routine sets that result back to SQLITE_OK. 002777 */ 002778 void sqlite3VdbeResetStepResult(Vdbe *p){ 002779 p->rc = SQLITE_OK; 002780 } 002781 002782 /* 002783 ** Copy the error code and error message belonging to the VDBE passed 002784 ** as the first argument to its database handle (so that they will be 002785 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 002786 ** 002787 ** This function does not clear the VDBE error code or message, just 002788 ** copies them to the database handle. 002789 */ 002790 int sqlite3VdbeTransferError(Vdbe *p){ 002791 sqlite3 *db = p->db; 002792 int rc = p->rc; 002793 if( p->zErrMsg ){ 002794 db->bBenignMalloc++; 002795 sqlite3BeginBenignMalloc(); 002796 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 002797 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 002798 sqlite3EndBenignMalloc(); 002799 db->bBenignMalloc--; 002800 db->errCode = rc; 002801 }else{ 002802 sqlite3Error(db, rc); 002803 } 002804 return rc; 002805 } 002806 002807 #ifdef SQLITE_ENABLE_SQLLOG 002808 /* 002809 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 002810 ** invoke it. 002811 */ 002812 static void vdbeInvokeSqllog(Vdbe *v){ 002813 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 002814 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 002815 assert( v->db->init.busy==0 ); 002816 if( zExpanded ){ 002817 sqlite3GlobalConfig.xSqllog( 002818 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 002819 ); 002820 sqlite3DbFree(v->db, zExpanded); 002821 } 002822 } 002823 } 002824 #else 002825 # define vdbeInvokeSqllog(x) 002826 #endif 002827 002828 /* 002829 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 002830 ** Write any error messages into *pzErrMsg. Return the result code. 002831 ** 002832 ** After this routine is run, the VDBE should be ready to be executed 002833 ** again. 002834 ** 002835 ** To look at it another way, this routine resets the state of the 002836 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 002837 ** VDBE_MAGIC_INIT. 002838 */ 002839 int sqlite3VdbeReset(Vdbe *p){ 002840 sqlite3 *db; 002841 db = p->db; 002842 002843 /* If the VM did not run to completion or if it encountered an 002844 ** error, then it might not have been halted properly. So halt 002845 ** it now. 002846 */ 002847 sqlite3VdbeHalt(p); 002848 002849 /* If the VDBE has be run even partially, then transfer the error code 002850 ** and error message from the VDBE into the main database structure. But 002851 ** if the VDBE has just been set to run but has not actually executed any 002852 ** instructions yet, leave the main database error information unchanged. 002853 */ 002854 if( p->pc>=0 ){ 002855 vdbeInvokeSqllog(p); 002856 sqlite3VdbeTransferError(p); 002857 sqlite3DbFree(db, p->zErrMsg); 002858 p->zErrMsg = 0; 002859 if( p->runOnlyOnce ) p->expired = 1; 002860 }else if( p->rc && p->expired ){ 002861 /* The expired flag was set on the VDBE before the first call 002862 ** to sqlite3_step(). For consistency (since sqlite3_step() was 002863 ** called), set the database error in this case as well. 002864 */ 002865 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 002866 sqlite3DbFree(db, p->zErrMsg); 002867 p->zErrMsg = 0; 002868 } 002869 002870 /* Reclaim all memory used by the VDBE 002871 */ 002872 Cleanup(p); 002873 002874 /* Save profiling information from this VDBE run. 002875 */ 002876 #ifdef VDBE_PROFILE 002877 { 002878 FILE *out = fopen("vdbe_profile.out", "a"); 002879 if( out ){ 002880 int i; 002881 fprintf(out, "---- "); 002882 for(i=0; i<p->nOp; i++){ 002883 fprintf(out, "%02x", p->aOp[i].opcode); 002884 } 002885 fprintf(out, "\n"); 002886 if( p->zSql ){ 002887 char c, pc = 0; 002888 fprintf(out, "-- "); 002889 for(i=0; (c = p->zSql[i])!=0; i++){ 002890 if( pc=='\n' ) fprintf(out, "-- "); 002891 putc(c, out); 002892 pc = c; 002893 } 002894 if( pc!='\n' ) fprintf(out, "\n"); 002895 } 002896 for(i=0; i<p->nOp; i++){ 002897 char zHdr[100]; 002898 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 002899 p->aOp[i].cnt, 002900 p->aOp[i].cycles, 002901 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 002902 ); 002903 fprintf(out, "%s", zHdr); 002904 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 002905 } 002906 fclose(out); 002907 } 002908 } 002909 #endif 002910 p->iCurrentTime = 0; 002911 p->magic = VDBE_MAGIC_RESET; 002912 return p->rc & db->errMask; 002913 } 002914 002915 /* 002916 ** Clean up and delete a VDBE after execution. Return an integer which is 002917 ** the result code. Write any error message text into *pzErrMsg. 002918 */ 002919 int sqlite3VdbeFinalize(Vdbe *p){ 002920 int rc = SQLITE_OK; 002921 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 002922 rc = sqlite3VdbeReset(p); 002923 assert( (rc & p->db->errMask)==rc ); 002924 } 002925 sqlite3VdbeDelete(p); 002926 return rc; 002927 } 002928 002929 /* 002930 ** If parameter iOp is less than zero, then invoke the destructor for 002931 ** all auxiliary data pointers currently cached by the VM passed as 002932 ** the first argument. 002933 ** 002934 ** Or, if iOp is greater than or equal to zero, then the destructor is 002935 ** only invoked for those auxiliary data pointers created by the user 002936 ** function invoked by the OP_Function opcode at instruction iOp of 002937 ** VM pVdbe, and only then if: 002938 ** 002939 ** * the associated function parameter is the 32nd or later (counting 002940 ** from left to right), or 002941 ** 002942 ** * the corresponding bit in argument mask is clear (where the first 002943 ** function parameter corresponds to bit 0 etc.). 002944 */ 002945 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 002946 while( *pp ){ 002947 AuxData *pAux = *pp; 002948 if( (iOp<0) 002949 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 002950 ){ 002951 testcase( pAux->iArg==31 ); 002952 if( pAux->xDelete ){ 002953 pAux->xDelete(pAux->pAux); 002954 } 002955 *pp = pAux->pNext; 002956 sqlite3DbFree(db, pAux); 002957 }else{ 002958 pp= &pAux->pNext; 002959 } 002960 } 002961 } 002962 002963 /* 002964 ** Free all memory associated with the Vdbe passed as the second argument, 002965 ** except for object itself, which is preserved. 002966 ** 002967 ** The difference between this function and sqlite3VdbeDelete() is that 002968 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 002969 ** the database connection and frees the object itself. 002970 */ 002971 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 002972 SubProgram *pSub, *pNext; 002973 assert( p->db==0 || p->db==db ); 002974 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 002975 for(pSub=p->pProgram; pSub; pSub=pNext){ 002976 pNext = pSub->pNext; 002977 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 002978 sqlite3DbFree(db, pSub); 002979 } 002980 if( p->magic!=VDBE_MAGIC_INIT ){ 002981 releaseMemArray(p->aVar, p->nVar); 002982 sqlite3DbFree(db, p->pVList); 002983 sqlite3DbFree(db, p->pFree); 002984 } 002985 vdbeFreeOpArray(db, p->aOp, p->nOp); 002986 sqlite3DbFree(db, p->aColName); 002987 sqlite3DbFree(db, p->zSql); 002988 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 002989 { 002990 int i; 002991 for(i=0; i<p->nScan; i++){ 002992 sqlite3DbFree(db, p->aScan[i].zName); 002993 } 002994 sqlite3DbFree(db, p->aScan); 002995 } 002996 #endif 002997 } 002998 002999 /* 003000 ** Delete an entire VDBE. 003001 */ 003002 void sqlite3VdbeDelete(Vdbe *p){ 003003 sqlite3 *db; 003004 003005 if( NEVER(p==0) ) return; 003006 db = p->db; 003007 assert( sqlite3_mutex_held(db->mutex) ); 003008 sqlite3VdbeClearObject(db, p); 003009 if( p->pPrev ){ 003010 p->pPrev->pNext = p->pNext; 003011 }else{ 003012 assert( db->pVdbe==p ); 003013 db->pVdbe = p->pNext; 003014 } 003015 if( p->pNext ){ 003016 p->pNext->pPrev = p->pPrev; 003017 } 003018 p->magic = VDBE_MAGIC_DEAD; 003019 p->db = 0; 003020 sqlite3DbFree(db, p); 003021 } 003022 003023 /* 003024 ** The cursor "p" has a pending seek operation that has not yet been 003025 ** carried out. Seek the cursor now. If an error occurs, return 003026 ** the appropriate error code. 003027 */ 003028 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 003029 int res, rc; 003030 #ifdef SQLITE_TEST 003031 extern int sqlite3_search_count; 003032 #endif 003033 assert( p->deferredMoveto ); 003034 assert( p->isTable ); 003035 assert( p->eCurType==CURTYPE_BTREE ); 003036 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 003037 if( rc ) return rc; 003038 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 003039 #ifdef SQLITE_TEST 003040 sqlite3_search_count++; 003041 #endif 003042 p->deferredMoveto = 0; 003043 p->cacheStatus = CACHE_STALE; 003044 return SQLITE_OK; 003045 } 003046 003047 /* 003048 ** Something has moved cursor "p" out of place. Maybe the row it was 003049 ** pointed to was deleted out from under it. Or maybe the btree was 003050 ** rebalanced. Whatever the cause, try to restore "p" to the place it 003051 ** is supposed to be pointing. If the row was deleted out from under the 003052 ** cursor, set the cursor to point to a NULL row. 003053 */ 003054 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 003055 int isDifferentRow, rc; 003056 assert( p->eCurType==CURTYPE_BTREE ); 003057 assert( p->uc.pCursor!=0 ); 003058 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 003059 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 003060 p->cacheStatus = CACHE_STALE; 003061 if( isDifferentRow ) p->nullRow = 1; 003062 return rc; 003063 } 003064 003065 /* 003066 ** Check to ensure that the cursor is valid. Restore the cursor 003067 ** if need be. Return any I/O error from the restore operation. 003068 */ 003069 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 003070 assert( p->eCurType==CURTYPE_BTREE ); 003071 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 003072 return handleMovedCursor(p); 003073 } 003074 return SQLITE_OK; 003075 } 003076 003077 /* 003078 ** Make sure the cursor p is ready to read or write the row to which it 003079 ** was last positioned. Return an error code if an OOM fault or I/O error 003080 ** prevents us from positioning the cursor to its correct position. 003081 ** 003082 ** If a MoveTo operation is pending on the given cursor, then do that 003083 ** MoveTo now. If no move is pending, check to see if the row has been 003084 ** deleted out from under the cursor and if it has, mark the row as 003085 ** a NULL row. 003086 ** 003087 ** If the cursor is already pointing to the correct row and that row has 003088 ** not been deleted out from under the cursor, then this routine is a no-op. 003089 */ 003090 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 003091 VdbeCursor *p = *pp; 003092 if( p->eCurType==CURTYPE_BTREE ){ 003093 if( p->deferredMoveto ){ 003094 int iMap; 003095 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 003096 *pp = p->pAltCursor; 003097 *piCol = iMap - 1; 003098 return SQLITE_OK; 003099 } 003100 return handleDeferredMoveto(p); 003101 } 003102 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 003103 return handleMovedCursor(p); 003104 } 003105 } 003106 return SQLITE_OK; 003107 } 003108 003109 /* 003110 ** The following functions: 003111 ** 003112 ** sqlite3VdbeSerialType() 003113 ** sqlite3VdbeSerialTypeLen() 003114 ** sqlite3VdbeSerialLen() 003115 ** sqlite3VdbeSerialPut() 003116 ** sqlite3VdbeSerialGet() 003117 ** 003118 ** encapsulate the code that serializes values for storage in SQLite 003119 ** data and index records. Each serialized value consists of a 003120 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 003121 ** integer, stored as a varint. 003122 ** 003123 ** In an SQLite index record, the serial type is stored directly before 003124 ** the blob of data that it corresponds to. In a table record, all serial 003125 ** types are stored at the start of the record, and the blobs of data at 003126 ** the end. Hence these functions allow the caller to handle the 003127 ** serial-type and data blob separately. 003128 ** 003129 ** The following table describes the various storage classes for data: 003130 ** 003131 ** serial type bytes of data type 003132 ** -------------- --------------- --------------- 003133 ** 0 0 NULL 003134 ** 1 1 signed integer 003135 ** 2 2 signed integer 003136 ** 3 3 signed integer 003137 ** 4 4 signed integer 003138 ** 5 6 signed integer 003139 ** 6 8 signed integer 003140 ** 7 8 IEEE float 003141 ** 8 0 Integer constant 0 003142 ** 9 0 Integer constant 1 003143 ** 10,11 reserved for expansion 003144 ** N>=12 and even (N-12)/2 BLOB 003145 ** N>=13 and odd (N-13)/2 text 003146 ** 003147 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 003148 ** of SQLite will not understand those serial types. 003149 */ 003150 003151 /* 003152 ** Return the serial-type for the value stored in pMem. 003153 */ 003154 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 003155 int flags = pMem->flags; 003156 u32 n; 003157 003158 assert( pLen!=0 ); 003159 if( flags&MEM_Null ){ 003160 *pLen = 0; 003161 return 0; 003162 } 003163 if( flags&MEM_Int ){ 003164 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 003165 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 003166 i64 i = pMem->u.i; 003167 u64 u; 003168 if( i<0 ){ 003169 u = ~i; 003170 }else{ 003171 u = i; 003172 } 003173 if( u<=127 ){ 003174 if( (i&1)==i && file_format>=4 ){ 003175 *pLen = 0; 003176 return 8+(u32)u; 003177 }else{ 003178 *pLen = 1; 003179 return 1; 003180 } 003181 } 003182 if( u<=32767 ){ *pLen = 2; return 2; } 003183 if( u<=8388607 ){ *pLen = 3; return 3; } 003184 if( u<=2147483647 ){ *pLen = 4; return 4; } 003185 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 003186 *pLen = 8; 003187 return 6; 003188 } 003189 if( flags&MEM_Real ){ 003190 *pLen = 8; 003191 return 7; 003192 } 003193 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 003194 assert( pMem->n>=0 ); 003195 n = (u32)pMem->n; 003196 if( flags & MEM_Zero ){ 003197 n += pMem->u.nZero; 003198 } 003199 *pLen = n; 003200 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 003201 } 003202 003203 /* 003204 ** The sizes for serial types less than 128 003205 */ 003206 static const u8 sqlite3SmallTypeSizes[] = { 003207 /* 0 1 2 3 4 5 6 7 8 9 */ 003208 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 003209 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 003210 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 003211 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 003212 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 003213 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 003214 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 003215 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 003216 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 003217 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 003218 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 003219 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 003220 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 003221 }; 003222 003223 /* 003224 ** Return the length of the data corresponding to the supplied serial-type. 003225 */ 003226 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 003227 if( serial_type>=128 ){ 003228 return (serial_type-12)/2; 003229 }else{ 003230 assert( serial_type<12 003231 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 003232 return sqlite3SmallTypeSizes[serial_type]; 003233 } 003234 } 003235 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 003236 assert( serial_type<128 ); 003237 return sqlite3SmallTypeSizes[serial_type]; 003238 } 003239 003240 /* 003241 ** If we are on an architecture with mixed-endian floating 003242 ** points (ex: ARM7) then swap the lower 4 bytes with the 003243 ** upper 4 bytes. Return the result. 003244 ** 003245 ** For most architectures, this is a no-op. 003246 ** 003247 ** (later): It is reported to me that the mixed-endian problem 003248 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 003249 ** that early versions of GCC stored the two words of a 64-bit 003250 ** float in the wrong order. And that error has been propagated 003251 ** ever since. The blame is not necessarily with GCC, though. 003252 ** GCC might have just copying the problem from a prior compiler. 003253 ** I am also told that newer versions of GCC that follow a different 003254 ** ABI get the byte order right. 003255 ** 003256 ** Developers using SQLite on an ARM7 should compile and run their 003257 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 003258 ** enabled, some asserts below will ensure that the byte order of 003259 ** floating point values is correct. 003260 ** 003261 ** (2007-08-30) Frank van Vugt has studied this problem closely 003262 ** and has send his findings to the SQLite developers. Frank 003263 ** writes that some Linux kernels offer floating point hardware 003264 ** emulation that uses only 32-bit mantissas instead of a full 003265 ** 48-bits as required by the IEEE standard. (This is the 003266 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 003267 ** byte swapping becomes very complicated. To avoid problems, 003268 ** the necessary byte swapping is carried out using a 64-bit integer 003269 ** rather than a 64-bit float. Frank assures us that the code here 003270 ** works for him. We, the developers, have no way to independently 003271 ** verify this, but Frank seems to know what he is talking about 003272 ** so we trust him. 003273 */ 003274 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 003275 static u64 floatSwap(u64 in){ 003276 union { 003277 u64 r; 003278 u32 i[2]; 003279 } u; 003280 u32 t; 003281 003282 u.r = in; 003283 t = u.i[0]; 003284 u.i[0] = u.i[1]; 003285 u.i[1] = t; 003286 return u.r; 003287 } 003288 # define swapMixedEndianFloat(X) X = floatSwap(X) 003289 #else 003290 # define swapMixedEndianFloat(X) 003291 #endif 003292 003293 /* 003294 ** Write the serialized data blob for the value stored in pMem into 003295 ** buf. It is assumed that the caller has allocated sufficient space. 003296 ** Return the number of bytes written. 003297 ** 003298 ** nBuf is the amount of space left in buf[]. The caller is responsible 003299 ** for allocating enough space to buf[] to hold the entire field, exclusive 003300 ** of the pMem->u.nZero bytes for a MEM_Zero value. 003301 ** 003302 ** Return the number of bytes actually written into buf[]. The number 003303 ** of bytes in the zero-filled tail is included in the return value only 003304 ** if those bytes were zeroed in buf[]. 003305 */ 003306 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 003307 u32 len; 003308 003309 /* Integer and Real */ 003310 if( serial_type<=7 && serial_type>0 ){ 003311 u64 v; 003312 u32 i; 003313 if( serial_type==7 ){ 003314 assert( sizeof(v)==sizeof(pMem->u.r) ); 003315 memcpy(&v, &pMem->u.r, sizeof(v)); 003316 swapMixedEndianFloat(v); 003317 }else{ 003318 v = pMem->u.i; 003319 } 003320 len = i = sqlite3SmallTypeSizes[serial_type]; 003321 assert( i>0 ); 003322 do{ 003323 buf[--i] = (u8)(v&0xFF); 003324 v >>= 8; 003325 }while( i ); 003326 return len; 003327 } 003328 003329 /* String or blob */ 003330 if( serial_type>=12 ){ 003331 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 003332 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 003333 len = pMem->n; 003334 if( len>0 ) memcpy(buf, pMem->z, len); 003335 return len; 003336 } 003337 003338 /* NULL or constants 0 or 1 */ 003339 return 0; 003340 } 003341 003342 /* Input "x" is a sequence of unsigned characters that represent a 003343 ** big-endian integer. Return the equivalent native integer 003344 */ 003345 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 003346 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 003347 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 003348 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 003349 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 003350 003351 /* 003352 ** Deserialize the data blob pointed to by buf as serial type serial_type 003353 ** and store the result in pMem. Return the number of bytes read. 003354 ** 003355 ** This function is implemented as two separate routines for performance. 003356 ** The few cases that require local variables are broken out into a separate 003357 ** routine so that in most cases the overhead of moving the stack pointer 003358 ** is avoided. 003359 */ 003360 static u32 SQLITE_NOINLINE serialGet( 003361 const unsigned char *buf, /* Buffer to deserialize from */ 003362 u32 serial_type, /* Serial type to deserialize */ 003363 Mem *pMem /* Memory cell to write value into */ 003364 ){ 003365 u64 x = FOUR_BYTE_UINT(buf); 003366 u32 y = FOUR_BYTE_UINT(buf+4); 003367 x = (x<<32) + y; 003368 if( serial_type==6 ){ 003369 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 003370 ** twos-complement integer. */ 003371 pMem->u.i = *(i64*)&x; 003372 pMem->flags = MEM_Int; 003373 testcase( pMem->u.i<0 ); 003374 }else{ 003375 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 003376 ** floating point number. */ 003377 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 003378 /* Verify that integers and floating point values use the same 003379 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 003380 ** defined that 64-bit floating point values really are mixed 003381 ** endian. 003382 */ 003383 static const u64 t1 = ((u64)0x3ff00000)<<32; 003384 static const double r1 = 1.0; 003385 u64 t2 = t1; 003386 swapMixedEndianFloat(t2); 003387 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 003388 #endif 003389 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 003390 swapMixedEndianFloat(x); 003391 memcpy(&pMem->u.r, &x, sizeof(x)); 003392 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 003393 } 003394 return 8; 003395 } 003396 u32 sqlite3VdbeSerialGet( 003397 const unsigned char *buf, /* Buffer to deserialize from */ 003398 u32 serial_type, /* Serial type to deserialize */ 003399 Mem *pMem /* Memory cell to write value into */ 003400 ){ 003401 switch( serial_type ){ 003402 case 10: /* Reserved for future use */ 003403 case 11: /* Reserved for future use */ 003404 case 0: { /* Null */ 003405 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 003406 pMem->flags = MEM_Null; 003407 break; 003408 } 003409 case 1: { 003410 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 003411 ** integer. */ 003412 pMem->u.i = ONE_BYTE_INT(buf); 003413 pMem->flags = MEM_Int; 003414 testcase( pMem->u.i<0 ); 003415 return 1; 003416 } 003417 case 2: { /* 2-byte signed integer */ 003418 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 003419 ** twos-complement integer. */ 003420 pMem->u.i = TWO_BYTE_INT(buf); 003421 pMem->flags = MEM_Int; 003422 testcase( pMem->u.i<0 ); 003423 return 2; 003424 } 003425 case 3: { /* 3-byte signed integer */ 003426 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 003427 ** twos-complement integer. */ 003428 pMem->u.i = THREE_BYTE_INT(buf); 003429 pMem->flags = MEM_Int; 003430 testcase( pMem->u.i<0 ); 003431 return 3; 003432 } 003433 case 4: { /* 4-byte signed integer */ 003434 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 003435 ** twos-complement integer. */ 003436 pMem->u.i = FOUR_BYTE_INT(buf); 003437 #ifdef __HP_cc 003438 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 003439 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 003440 #endif 003441 pMem->flags = MEM_Int; 003442 testcase( pMem->u.i<0 ); 003443 return 4; 003444 } 003445 case 5: { /* 6-byte signed integer */ 003446 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 003447 ** twos-complement integer. */ 003448 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 003449 pMem->flags = MEM_Int; 003450 testcase( pMem->u.i<0 ); 003451 return 6; 003452 } 003453 case 6: /* 8-byte signed integer */ 003454 case 7: { /* IEEE floating point */ 003455 /* These use local variables, so do them in a separate routine 003456 ** to avoid having to move the frame pointer in the common case */ 003457 return serialGet(buf,serial_type,pMem); 003458 } 003459 case 8: /* Integer 0 */ 003460 case 9: { /* Integer 1 */ 003461 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 003462 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 003463 pMem->u.i = serial_type-8; 003464 pMem->flags = MEM_Int; 003465 return 0; 003466 } 003467 default: { 003468 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 003469 ** length. 003470 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 003471 ** (N-13)/2 bytes in length. */ 003472 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 003473 pMem->z = (char *)buf; 003474 pMem->n = (serial_type-12)/2; 003475 pMem->flags = aFlag[serial_type&1]; 003476 return pMem->n; 003477 } 003478 } 003479 return 0; 003480 } 003481 /* 003482 ** This routine is used to allocate sufficient space for an UnpackedRecord 003483 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 003484 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 003485 ** 003486 ** The space is either allocated using sqlite3DbMallocRaw() or from within 003487 ** the unaligned buffer passed via the second and third arguments (presumably 003488 ** stack space). If the former, then *ppFree is set to a pointer that should 003489 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 003490 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 003491 ** before returning. 003492 ** 003493 ** If an OOM error occurs, NULL is returned. 003494 */ 003495 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 003496 KeyInfo *pKeyInfo /* Description of the record */ 003497 ){ 003498 UnpackedRecord *p; /* Unpacked record to return */ 003499 int nByte; /* Number of bytes required for *p */ 003500 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 003501 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 003502 if( !p ) return 0; 003503 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 003504 assert( pKeyInfo->aSortOrder!=0 ); 003505 p->pKeyInfo = pKeyInfo; 003506 p->nField = pKeyInfo->nField + 1; 003507 return p; 003508 } 003509 003510 /* 003511 ** Given the nKey-byte encoding of a record in pKey[], populate the 003512 ** UnpackedRecord structure indicated by the fourth argument with the 003513 ** contents of the decoded record. 003514 */ 003515 void sqlite3VdbeRecordUnpack( 003516 KeyInfo *pKeyInfo, /* Information about the record format */ 003517 int nKey, /* Size of the binary record */ 003518 const void *pKey, /* The binary record */ 003519 UnpackedRecord *p /* Populate this structure before returning. */ 003520 ){ 003521 const unsigned char *aKey = (const unsigned char *)pKey; 003522 int d; 003523 u32 idx; /* Offset in aKey[] to read from */ 003524 u16 u; /* Unsigned loop counter */ 003525 u32 szHdr; 003526 Mem *pMem = p->aMem; 003527 003528 p->default_rc = 0; 003529 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 003530 idx = getVarint32(aKey, szHdr); 003531 d = szHdr; 003532 u = 0; 003533 while( idx<szHdr && d<=nKey ){ 003534 u32 serial_type; 003535 003536 idx += getVarint32(&aKey[idx], serial_type); 003537 pMem->enc = pKeyInfo->enc; 003538 pMem->db = pKeyInfo->db; 003539 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 003540 pMem->szMalloc = 0; 003541 pMem->z = 0; 003542 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 003543 pMem++; 003544 if( (++u)>=p->nField ) break; 003545 } 003546 assert( u<=pKeyInfo->nField + 1 ); 003547 p->nField = u; 003548 } 003549 003550 #if SQLITE_DEBUG 003551 /* 003552 ** This function compares two index or table record keys in the same way 003553 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 003554 ** this function deserializes and compares values using the 003555 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 003556 ** in assert() statements to ensure that the optimized code in 003557 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 003558 ** 003559 ** Return true if the result of comparison is equivalent to desiredResult. 003560 ** Return false if there is a disagreement. 003561 */ 003562 static int vdbeRecordCompareDebug( 003563 int nKey1, const void *pKey1, /* Left key */ 003564 const UnpackedRecord *pPKey2, /* Right key */ 003565 int desiredResult /* Correct answer */ 003566 ){ 003567 u32 d1; /* Offset into aKey[] of next data element */ 003568 u32 idx1; /* Offset into aKey[] of next header element */ 003569 u32 szHdr1; /* Number of bytes in header */ 003570 int i = 0; 003571 int rc = 0; 003572 const unsigned char *aKey1 = (const unsigned char *)pKey1; 003573 KeyInfo *pKeyInfo; 003574 Mem mem1; 003575 003576 pKeyInfo = pPKey2->pKeyInfo; 003577 if( pKeyInfo->db==0 ) return 1; 003578 mem1.enc = pKeyInfo->enc; 003579 mem1.db = pKeyInfo->db; 003580 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 003581 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 003582 003583 /* Compilers may complain that mem1.u.i is potentially uninitialized. 003584 ** We could initialize it, as shown here, to silence those complaints. 003585 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 003586 ** the unnecessary initialization has a measurable negative performance 003587 ** impact, since this routine is a very high runner. And so, we choose 003588 ** to ignore the compiler warnings and leave this variable uninitialized. 003589 */ 003590 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 003591 003592 idx1 = getVarint32(aKey1, szHdr1); 003593 if( szHdr1>98307 ) return SQLITE_CORRUPT; 003594 d1 = szHdr1; 003595 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 003596 assert( pKeyInfo->aSortOrder!=0 ); 003597 assert( pKeyInfo->nField>0 ); 003598 assert( idx1<=szHdr1 || CORRUPT_DB ); 003599 do{ 003600 u32 serial_type1; 003601 003602 /* Read the serial types for the next element in each key. */ 003603 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 003604 003605 /* Verify that there is enough key space remaining to avoid 003606 ** a buffer overread. The "d1+serial_type1+2" subexpression will 003607 ** always be greater than or equal to the amount of required key space. 003608 ** Use that approximation to avoid the more expensive call to 003609 ** sqlite3VdbeSerialTypeLen() in the common case. 003610 */ 003611 if( d1+serial_type1+2>(u32)nKey1 003612 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 003613 ){ 003614 break; 003615 } 003616 003617 /* Extract the values to be compared. 003618 */ 003619 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 003620 003621 /* Do the comparison 003622 */ 003623 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 003624 if( rc!=0 ){ 003625 assert( mem1.szMalloc==0 ); /* See comment below */ 003626 if( pKeyInfo->aSortOrder[i] ){ 003627 rc = -rc; /* Invert the result for DESC sort order. */ 003628 } 003629 goto debugCompareEnd; 003630 } 003631 i++; 003632 }while( idx1<szHdr1 && i<pPKey2->nField ); 003633 003634 /* No memory allocation is ever used on mem1. Prove this using 003635 ** the following assert(). If the assert() fails, it indicates a 003636 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 003637 */ 003638 assert( mem1.szMalloc==0 ); 003639 003640 /* rc==0 here means that one of the keys ran out of fields and 003641 ** all the fields up to that point were equal. Return the default_rc 003642 ** value. */ 003643 rc = pPKey2->default_rc; 003644 003645 debugCompareEnd: 003646 if( desiredResult==0 && rc==0 ) return 1; 003647 if( desiredResult<0 && rc<0 ) return 1; 003648 if( desiredResult>0 && rc>0 ) return 1; 003649 if( CORRUPT_DB ) return 1; 003650 if( pKeyInfo->db->mallocFailed ) return 1; 003651 return 0; 003652 } 003653 #endif 003654 003655 #if SQLITE_DEBUG 003656 /* 003657 ** Count the number of fields (a.k.a. columns) in the record given by 003658 ** pKey,nKey. The verify that this count is less than or equal to the 003659 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 003660 ** 003661 ** If this constraint is not satisfied, it means that the high-speed 003662 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 003663 ** not work correctly. If this assert() ever fires, it probably means 003664 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 003665 ** incorrectly. 003666 */ 003667 static void vdbeAssertFieldCountWithinLimits( 003668 int nKey, const void *pKey, /* The record to verify */ 003669 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 003670 ){ 003671 int nField = 0; 003672 u32 szHdr; 003673 u32 idx; 003674 u32 notUsed; 003675 const unsigned char *aKey = (const unsigned char*)pKey; 003676 003677 if( CORRUPT_DB ) return; 003678 idx = getVarint32(aKey, szHdr); 003679 assert( nKey>=0 ); 003680 assert( szHdr<=(u32)nKey ); 003681 while( idx<szHdr ){ 003682 idx += getVarint32(aKey+idx, notUsed); 003683 nField++; 003684 } 003685 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 003686 } 003687 #else 003688 # define vdbeAssertFieldCountWithinLimits(A,B,C) 003689 #endif 003690 003691 /* 003692 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 003693 ** using the collation sequence pColl. As usual, return a negative , zero 003694 ** or positive value if *pMem1 is less than, equal to or greater than 003695 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 003696 */ 003697 static int vdbeCompareMemString( 003698 const Mem *pMem1, 003699 const Mem *pMem2, 003700 const CollSeq *pColl, 003701 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 003702 ){ 003703 if( pMem1->enc==pColl->enc ){ 003704 /* The strings are already in the correct encoding. Call the 003705 ** comparison function directly */ 003706 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 003707 }else{ 003708 int rc; 003709 const void *v1, *v2; 003710 int n1, n2; 003711 Mem c1; 003712 Mem c2; 003713 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 003714 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 003715 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 003716 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 003717 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 003718 n1 = v1==0 ? 0 : c1.n; 003719 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 003720 n2 = v2==0 ? 0 : c2.n; 003721 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 003722 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 003723 sqlite3VdbeMemRelease(&c1); 003724 sqlite3VdbeMemRelease(&c2); 003725 return rc; 003726 } 003727 } 003728 003729 /* 003730 ** The input pBlob is guaranteed to be a Blob that is not marked 003731 ** with MEM_Zero. Return true if it could be a zero-blob. 003732 */ 003733 static int isAllZero(const char *z, int n){ 003734 int i; 003735 for(i=0; i<n; i++){ 003736 if( z[i] ) return 0; 003737 } 003738 return 1; 003739 } 003740 003741 /* 003742 ** Compare two blobs. Return negative, zero, or positive if the first 003743 ** is less than, equal to, or greater than the second, respectively. 003744 ** If one blob is a prefix of the other, then the shorter is the lessor. 003745 */ 003746 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 003747 int c; 003748 int n1 = pB1->n; 003749 int n2 = pB2->n; 003750 003751 /* It is possible to have a Blob value that has some non-zero content 003752 ** followed by zero content. But that only comes up for Blobs formed 003753 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 003754 ** sqlite3MemCompare(). */ 003755 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 003756 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 003757 003758 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 003759 if( pB1->flags & pB2->flags & MEM_Zero ){ 003760 return pB1->u.nZero - pB2->u.nZero; 003761 }else if( pB1->flags & MEM_Zero ){ 003762 if( !isAllZero(pB2->z, pB2->n) ) return -1; 003763 return pB1->u.nZero - n2; 003764 }else{ 003765 if( !isAllZero(pB1->z, pB1->n) ) return +1; 003766 return n1 - pB2->u.nZero; 003767 } 003768 } 003769 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 003770 if( c ) return c; 003771 return n1 - n2; 003772 } 003773 003774 /* 003775 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 003776 ** number. Return negative, zero, or positive if the first (i64) is less than, 003777 ** equal to, or greater than the second (double). 003778 */ 003779 static int sqlite3IntFloatCompare(i64 i, double r){ 003780 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 003781 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 003782 if( x<r ) return -1; 003783 if( x>r ) return +1; 003784 return 0; 003785 }else{ 003786 i64 y; 003787 double s; 003788 if( r<-9223372036854775808.0 ) return +1; 003789 if( r>9223372036854775807.0 ) return -1; 003790 y = (i64)r; 003791 if( i<y ) return -1; 003792 if( i>y ){ 003793 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 003794 return +1; 003795 } 003796 s = (double)i; 003797 if( s<r ) return -1; 003798 if( s>r ) return +1; 003799 return 0; 003800 } 003801 } 003802 003803 /* 003804 ** Compare the values contained by the two memory cells, returning 003805 ** negative, zero or positive if pMem1 is less than, equal to, or greater 003806 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 003807 ** and reals) sorted numerically, followed by text ordered by the collating 003808 ** sequence pColl and finally blob's ordered by memcmp(). 003809 ** 003810 ** Two NULL values are considered equal by this function. 003811 */ 003812 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 003813 int f1, f2; 003814 int combined_flags; 003815 003816 f1 = pMem1->flags; 003817 f2 = pMem2->flags; 003818 combined_flags = f1|f2; 003819 assert( (combined_flags & MEM_RowSet)==0 ); 003820 003821 /* If one value is NULL, it is less than the other. If both values 003822 ** are NULL, return 0. 003823 */ 003824 if( combined_flags&MEM_Null ){ 003825 return (f2&MEM_Null) - (f1&MEM_Null); 003826 } 003827 003828 /* At least one of the two values is a number 003829 */ 003830 if( combined_flags&(MEM_Int|MEM_Real) ){ 003831 if( (f1 & f2 & MEM_Int)!=0 ){ 003832 if( pMem1->u.i < pMem2->u.i ) return -1; 003833 if( pMem1->u.i > pMem2->u.i ) return +1; 003834 return 0; 003835 } 003836 if( (f1 & f2 & MEM_Real)!=0 ){ 003837 if( pMem1->u.r < pMem2->u.r ) return -1; 003838 if( pMem1->u.r > pMem2->u.r ) return +1; 003839 return 0; 003840 } 003841 if( (f1&MEM_Int)!=0 ){ 003842 if( (f2&MEM_Real)!=0 ){ 003843 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 003844 }else{ 003845 return -1; 003846 } 003847 } 003848 if( (f1&MEM_Real)!=0 ){ 003849 if( (f2&MEM_Int)!=0 ){ 003850 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 003851 }else{ 003852 return -1; 003853 } 003854 } 003855 return +1; 003856 } 003857 003858 /* If one value is a string and the other is a blob, the string is less. 003859 ** If both are strings, compare using the collating functions. 003860 */ 003861 if( combined_flags&MEM_Str ){ 003862 if( (f1 & MEM_Str)==0 ){ 003863 return 1; 003864 } 003865 if( (f2 & MEM_Str)==0 ){ 003866 return -1; 003867 } 003868 003869 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 003870 assert( pMem1->enc==SQLITE_UTF8 || 003871 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 003872 003873 /* The collation sequence must be defined at this point, even if 003874 ** the user deletes the collation sequence after the vdbe program is 003875 ** compiled (this was not always the case). 003876 */ 003877 assert( !pColl || pColl->xCmp ); 003878 003879 if( pColl ){ 003880 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 003881 } 003882 /* If a NULL pointer was passed as the collate function, fall through 003883 ** to the blob case and use memcmp(). */ 003884 } 003885 003886 /* Both values must be blobs. Compare using memcmp(). */ 003887 return sqlite3BlobCompare(pMem1, pMem2); 003888 } 003889 003890 003891 /* 003892 ** The first argument passed to this function is a serial-type that 003893 ** corresponds to an integer - all values between 1 and 9 inclusive 003894 ** except 7. The second points to a buffer containing an integer value 003895 ** serialized according to serial_type. This function deserializes 003896 ** and returns the value. 003897 */ 003898 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 003899 u32 y; 003900 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 003901 switch( serial_type ){ 003902 case 0: 003903 case 1: 003904 testcase( aKey[0]&0x80 ); 003905 return ONE_BYTE_INT(aKey); 003906 case 2: 003907 testcase( aKey[0]&0x80 ); 003908 return TWO_BYTE_INT(aKey); 003909 case 3: 003910 testcase( aKey[0]&0x80 ); 003911 return THREE_BYTE_INT(aKey); 003912 case 4: { 003913 testcase( aKey[0]&0x80 ); 003914 y = FOUR_BYTE_UINT(aKey); 003915 return (i64)*(int*)&y; 003916 } 003917 case 5: { 003918 testcase( aKey[0]&0x80 ); 003919 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 003920 } 003921 case 6: { 003922 u64 x = FOUR_BYTE_UINT(aKey); 003923 testcase( aKey[0]&0x80 ); 003924 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 003925 return (i64)*(i64*)&x; 003926 } 003927 } 003928 003929 return (serial_type - 8); 003930 } 003931 003932 /* 003933 ** This function compares the two table rows or index records 003934 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 003935 ** or positive integer if key1 is less than, equal to or 003936 ** greater than key2. The {nKey1, pKey1} key must be a blob 003937 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 003938 ** key must be a parsed key such as obtained from 003939 ** sqlite3VdbeParseRecord. 003940 ** 003941 ** If argument bSkip is non-zero, it is assumed that the caller has already 003942 ** determined that the first fields of the keys are equal. 003943 ** 003944 ** Key1 and Key2 do not have to contain the same number of fields. If all 003945 ** fields that appear in both keys are equal, then pPKey2->default_rc is 003946 ** returned. 003947 ** 003948 ** If database corruption is discovered, set pPKey2->errCode to 003949 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 003950 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 003951 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 003952 */ 003953 int sqlite3VdbeRecordCompareWithSkip( 003954 int nKey1, const void *pKey1, /* Left key */ 003955 UnpackedRecord *pPKey2, /* Right key */ 003956 int bSkip /* If true, skip the first field */ 003957 ){ 003958 u32 d1; /* Offset into aKey[] of next data element */ 003959 int i; /* Index of next field to compare */ 003960 u32 szHdr1; /* Size of record header in bytes */ 003961 u32 idx1; /* Offset of first type in header */ 003962 int rc = 0; /* Return value */ 003963 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 003964 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 003965 const unsigned char *aKey1 = (const unsigned char *)pKey1; 003966 Mem mem1; 003967 003968 /* If bSkip is true, then the caller has already determined that the first 003969 ** two elements in the keys are equal. Fix the various stack variables so 003970 ** that this routine begins comparing at the second field. */ 003971 if( bSkip ){ 003972 u32 s1; 003973 idx1 = 1 + getVarint32(&aKey1[1], s1); 003974 szHdr1 = aKey1[0]; 003975 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 003976 i = 1; 003977 pRhs++; 003978 }else{ 003979 idx1 = getVarint32(aKey1, szHdr1); 003980 d1 = szHdr1; 003981 if( d1>(unsigned)nKey1 ){ 003982 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 003983 return 0; /* Corruption */ 003984 } 003985 i = 0; 003986 } 003987 003988 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 003989 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 003990 || CORRUPT_DB ); 003991 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 003992 assert( pPKey2->pKeyInfo->nField>0 ); 003993 assert( idx1<=szHdr1 || CORRUPT_DB ); 003994 do{ 003995 u32 serial_type; 003996 003997 /* RHS is an integer */ 003998 if( pRhs->flags & MEM_Int ){ 003999 serial_type = aKey1[idx1]; 004000 testcase( serial_type==12 ); 004001 if( serial_type>=10 ){ 004002 rc = +1; 004003 }else if( serial_type==0 ){ 004004 rc = -1; 004005 }else if( serial_type==7 ){ 004006 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 004007 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 004008 }else{ 004009 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 004010 i64 rhs = pRhs->u.i; 004011 if( lhs<rhs ){ 004012 rc = -1; 004013 }else if( lhs>rhs ){ 004014 rc = +1; 004015 } 004016 } 004017 } 004018 004019 /* RHS is real */ 004020 else if( pRhs->flags & MEM_Real ){ 004021 serial_type = aKey1[idx1]; 004022 if( serial_type>=10 ){ 004023 /* Serial types 12 or greater are strings and blobs (greater than 004024 ** numbers). Types 10 and 11 are currently "reserved for future 004025 ** use", so it doesn't really matter what the results of comparing 004026 ** them to numberic values are. */ 004027 rc = +1; 004028 }else if( serial_type==0 ){ 004029 rc = -1; 004030 }else{ 004031 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 004032 if( serial_type==7 ){ 004033 if( mem1.u.r<pRhs->u.r ){ 004034 rc = -1; 004035 }else if( mem1.u.r>pRhs->u.r ){ 004036 rc = +1; 004037 } 004038 }else{ 004039 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 004040 } 004041 } 004042 } 004043 004044 /* RHS is a string */ 004045 else if( pRhs->flags & MEM_Str ){ 004046 getVarint32(&aKey1[idx1], serial_type); 004047 testcase( serial_type==12 ); 004048 if( serial_type<12 ){ 004049 rc = -1; 004050 }else if( !(serial_type & 0x01) ){ 004051 rc = +1; 004052 }else{ 004053 mem1.n = (serial_type - 12) / 2; 004054 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 004055 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 004056 if( (d1+mem1.n) > (unsigned)nKey1 ){ 004057 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004058 return 0; /* Corruption */ 004059 }else if( pKeyInfo->aColl[i] ){ 004060 mem1.enc = pKeyInfo->enc; 004061 mem1.db = pKeyInfo->db; 004062 mem1.flags = MEM_Str; 004063 mem1.z = (char*)&aKey1[d1]; 004064 rc = vdbeCompareMemString( 004065 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 004066 ); 004067 }else{ 004068 int nCmp = MIN(mem1.n, pRhs->n); 004069 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 004070 if( rc==0 ) rc = mem1.n - pRhs->n; 004071 } 004072 } 004073 } 004074 004075 /* RHS is a blob */ 004076 else if( pRhs->flags & MEM_Blob ){ 004077 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 004078 getVarint32(&aKey1[idx1], serial_type); 004079 testcase( serial_type==12 ); 004080 if( serial_type<12 || (serial_type & 0x01) ){ 004081 rc = -1; 004082 }else{ 004083 int nStr = (serial_type - 12) / 2; 004084 testcase( (d1+nStr)==(unsigned)nKey1 ); 004085 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 004086 if( (d1+nStr) > (unsigned)nKey1 ){ 004087 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004088 return 0; /* Corruption */ 004089 }else if( pRhs->flags & MEM_Zero ){ 004090 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 004091 rc = 1; 004092 }else{ 004093 rc = nStr - pRhs->u.nZero; 004094 } 004095 }else{ 004096 int nCmp = MIN(nStr, pRhs->n); 004097 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 004098 if( rc==0 ) rc = nStr - pRhs->n; 004099 } 004100 } 004101 } 004102 004103 /* RHS is null */ 004104 else{ 004105 serial_type = aKey1[idx1]; 004106 rc = (serial_type!=0); 004107 } 004108 004109 if( rc!=0 ){ 004110 if( pKeyInfo->aSortOrder[i] ){ 004111 rc = -rc; 004112 } 004113 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 004114 assert( mem1.szMalloc==0 ); /* See comment below */ 004115 return rc; 004116 } 004117 004118 i++; 004119 pRhs++; 004120 d1 += sqlite3VdbeSerialTypeLen(serial_type); 004121 idx1 += sqlite3VarintLen(serial_type); 004122 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 004123 004124 /* No memory allocation is ever used on mem1. Prove this using 004125 ** the following assert(). If the assert() fails, it indicates a 004126 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 004127 assert( mem1.szMalloc==0 ); 004128 004129 /* rc==0 here means that one or both of the keys ran out of fields and 004130 ** all the fields up to that point were equal. Return the default_rc 004131 ** value. */ 004132 assert( CORRUPT_DB 004133 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 004134 || pKeyInfo->db->mallocFailed 004135 ); 004136 pPKey2->eqSeen = 1; 004137 return pPKey2->default_rc; 004138 } 004139 int sqlite3VdbeRecordCompare( 004140 int nKey1, const void *pKey1, /* Left key */ 004141 UnpackedRecord *pPKey2 /* Right key */ 004142 ){ 004143 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 004144 } 004145 004146 004147 /* 004148 ** This function is an optimized version of sqlite3VdbeRecordCompare() 004149 ** that (a) the first field of pPKey2 is an integer, and (b) the 004150 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 004151 ** byte (i.e. is less than 128). 004152 ** 004153 ** To avoid concerns about buffer overreads, this routine is only used 004154 ** on schemas where the maximum valid header size is 63 bytes or less. 004155 */ 004156 static int vdbeRecordCompareInt( 004157 int nKey1, const void *pKey1, /* Left key */ 004158 UnpackedRecord *pPKey2 /* Right key */ 004159 ){ 004160 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 004161 int serial_type = ((const u8*)pKey1)[1]; 004162 int res; 004163 u32 y; 004164 u64 x; 004165 i64 v; 004166 i64 lhs; 004167 004168 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 004169 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 004170 switch( serial_type ){ 004171 case 1: { /* 1-byte signed integer */ 004172 lhs = ONE_BYTE_INT(aKey); 004173 testcase( lhs<0 ); 004174 break; 004175 } 004176 case 2: { /* 2-byte signed integer */ 004177 lhs = TWO_BYTE_INT(aKey); 004178 testcase( lhs<0 ); 004179 break; 004180 } 004181 case 3: { /* 3-byte signed integer */ 004182 lhs = THREE_BYTE_INT(aKey); 004183 testcase( lhs<0 ); 004184 break; 004185 } 004186 case 4: { /* 4-byte signed integer */ 004187 y = FOUR_BYTE_UINT(aKey); 004188 lhs = (i64)*(int*)&y; 004189 testcase( lhs<0 ); 004190 break; 004191 } 004192 case 5: { /* 6-byte signed integer */ 004193 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 004194 testcase( lhs<0 ); 004195 break; 004196 } 004197 case 6: { /* 8-byte signed integer */ 004198 x = FOUR_BYTE_UINT(aKey); 004199 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 004200 lhs = *(i64*)&x; 004201 testcase( lhs<0 ); 004202 break; 004203 } 004204 case 8: 004205 lhs = 0; 004206 break; 004207 case 9: 004208 lhs = 1; 004209 break; 004210 004211 /* This case could be removed without changing the results of running 004212 ** this code. Including it causes gcc to generate a faster switch 004213 ** statement (since the range of switch targets now starts at zero and 004214 ** is contiguous) but does not cause any duplicate code to be generated 004215 ** (as gcc is clever enough to combine the two like cases). Other 004216 ** compilers might be similar. */ 004217 case 0: case 7: 004218 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 004219 004220 default: 004221 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 004222 } 004223 004224 v = pPKey2->aMem[0].u.i; 004225 if( v>lhs ){ 004226 res = pPKey2->r1; 004227 }else if( v<lhs ){ 004228 res = pPKey2->r2; 004229 }else if( pPKey2->nField>1 ){ 004230 /* The first fields of the two keys are equal. Compare the trailing 004231 ** fields. */ 004232 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 004233 }else{ 004234 /* The first fields of the two keys are equal and there are no trailing 004235 ** fields. Return pPKey2->default_rc in this case. */ 004236 res = pPKey2->default_rc; 004237 pPKey2->eqSeen = 1; 004238 } 004239 004240 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 004241 return res; 004242 } 004243 004244 /* 004245 ** This function is an optimized version of sqlite3VdbeRecordCompare() 004246 ** that (a) the first field of pPKey2 is a string, that (b) the first field 004247 ** uses the collation sequence BINARY and (c) that the size-of-header varint 004248 ** at the start of (pKey1/nKey1) fits in a single byte. 004249 */ 004250 static int vdbeRecordCompareString( 004251 int nKey1, const void *pKey1, /* Left key */ 004252 UnpackedRecord *pPKey2 /* Right key */ 004253 ){ 004254 const u8 *aKey1 = (const u8*)pKey1; 004255 int serial_type; 004256 int res; 004257 004258 assert( pPKey2->aMem[0].flags & MEM_Str ); 004259 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 004260 getVarint32(&aKey1[1], serial_type); 004261 if( serial_type<12 ){ 004262 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 004263 }else if( !(serial_type & 0x01) ){ 004264 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 004265 }else{ 004266 int nCmp; 004267 int nStr; 004268 int szHdr = aKey1[0]; 004269 004270 nStr = (serial_type-12) / 2; 004271 if( (szHdr + nStr) > nKey1 ){ 004272 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004273 return 0; /* Corruption */ 004274 } 004275 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 004276 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 004277 004278 if( res==0 ){ 004279 res = nStr - pPKey2->aMem[0].n; 004280 if( res==0 ){ 004281 if( pPKey2->nField>1 ){ 004282 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 004283 }else{ 004284 res = pPKey2->default_rc; 004285 pPKey2->eqSeen = 1; 004286 } 004287 }else if( res>0 ){ 004288 res = pPKey2->r2; 004289 }else{ 004290 res = pPKey2->r1; 004291 } 004292 }else if( res>0 ){ 004293 res = pPKey2->r2; 004294 }else{ 004295 res = pPKey2->r1; 004296 } 004297 } 004298 004299 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 004300 || CORRUPT_DB 004301 || pPKey2->pKeyInfo->db->mallocFailed 004302 ); 004303 return res; 004304 } 004305 004306 /* 004307 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 004308 ** suitable for comparing serialized records to the unpacked record passed 004309 ** as the only argument. 004310 */ 004311 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 004312 /* varintRecordCompareInt() and varintRecordCompareString() both assume 004313 ** that the size-of-header varint that occurs at the start of each record 004314 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 004315 ** also assumes that it is safe to overread a buffer by at least the 004316 ** maximum possible legal header size plus 8 bytes. Because there is 004317 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 004318 ** buffer passed to varintRecordCompareInt() this makes it convenient to 004319 ** limit the size of the header to 64 bytes in cases where the first field 004320 ** is an integer. 004321 ** 004322 ** The easiest way to enforce this limit is to consider only records with 004323 ** 13 fields or less. If the first field is an integer, the maximum legal 004324 ** header size is (12*5 + 1 + 1) bytes. */ 004325 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 004326 int flags = p->aMem[0].flags; 004327 if( p->pKeyInfo->aSortOrder[0] ){ 004328 p->r1 = 1; 004329 p->r2 = -1; 004330 }else{ 004331 p->r1 = -1; 004332 p->r2 = 1; 004333 } 004334 if( (flags & MEM_Int) ){ 004335 return vdbeRecordCompareInt; 004336 } 004337 testcase( flags & MEM_Real ); 004338 testcase( flags & MEM_Null ); 004339 testcase( flags & MEM_Blob ); 004340 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 004341 assert( flags & MEM_Str ); 004342 return vdbeRecordCompareString; 004343 } 004344 } 004345 004346 return sqlite3VdbeRecordCompare; 004347 } 004348 004349 /* 004350 ** pCur points at an index entry created using the OP_MakeRecord opcode. 004351 ** Read the rowid (the last field in the record) and store it in *rowid. 004352 ** Return SQLITE_OK if everything works, or an error code otherwise. 004353 ** 004354 ** pCur might be pointing to text obtained from a corrupt database file. 004355 ** So the content cannot be trusted. Do appropriate checks on the content. 004356 */ 004357 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 004358 i64 nCellKey = 0; 004359 int rc; 004360 u32 szHdr; /* Size of the header */ 004361 u32 typeRowid; /* Serial type of the rowid */ 004362 u32 lenRowid; /* Size of the rowid */ 004363 Mem m, v; 004364 004365 /* Get the size of the index entry. Only indices entries of less 004366 ** than 2GiB are support - anything large must be database corruption. 004367 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 004368 ** this code can safely assume that nCellKey is 32-bits 004369 */ 004370 assert( sqlite3BtreeCursorIsValid(pCur) ); 004371 nCellKey = sqlite3BtreePayloadSize(pCur); 004372 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 004373 004374 /* Read in the complete content of the index entry */ 004375 sqlite3VdbeMemInit(&m, db, 0); 004376 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 004377 if( rc ){ 004378 return rc; 004379 } 004380 004381 /* The index entry must begin with a header size */ 004382 (void)getVarint32((u8*)m.z, szHdr); 004383 testcase( szHdr==3 ); 004384 testcase( szHdr==m.n ); 004385 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 004386 goto idx_rowid_corruption; 004387 } 004388 004389 /* The last field of the index should be an integer - the ROWID. 004390 ** Verify that the last entry really is an integer. */ 004391 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 004392 testcase( typeRowid==1 ); 004393 testcase( typeRowid==2 ); 004394 testcase( typeRowid==3 ); 004395 testcase( typeRowid==4 ); 004396 testcase( typeRowid==5 ); 004397 testcase( typeRowid==6 ); 004398 testcase( typeRowid==8 ); 004399 testcase( typeRowid==9 ); 004400 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 004401 goto idx_rowid_corruption; 004402 } 004403 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 004404 testcase( (u32)m.n==szHdr+lenRowid ); 004405 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 004406 goto idx_rowid_corruption; 004407 } 004408 004409 /* Fetch the integer off the end of the index record */ 004410 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 004411 *rowid = v.u.i; 004412 sqlite3VdbeMemRelease(&m); 004413 return SQLITE_OK; 004414 004415 /* Jump here if database corruption is detected after m has been 004416 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 004417 idx_rowid_corruption: 004418 testcase( m.szMalloc!=0 ); 004419 sqlite3VdbeMemRelease(&m); 004420 return SQLITE_CORRUPT_BKPT; 004421 } 004422 004423 /* 004424 ** Compare the key of the index entry that cursor pC is pointing to against 004425 ** the key string in pUnpacked. Write into *pRes a number 004426 ** that is negative, zero, or positive if pC is less than, equal to, 004427 ** or greater than pUnpacked. Return SQLITE_OK on success. 004428 ** 004429 ** pUnpacked is either created without a rowid or is truncated so that it 004430 ** omits the rowid at the end. The rowid at the end of the index entry 004431 ** is ignored as well. Hence, this routine only compares the prefixes 004432 ** of the keys prior to the final rowid, not the entire key. 004433 */ 004434 int sqlite3VdbeIdxKeyCompare( 004435 sqlite3 *db, /* Database connection */ 004436 VdbeCursor *pC, /* The cursor to compare against */ 004437 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 004438 int *res /* Write the comparison result here */ 004439 ){ 004440 i64 nCellKey = 0; 004441 int rc; 004442 BtCursor *pCur; 004443 Mem m; 004444 004445 assert( pC->eCurType==CURTYPE_BTREE ); 004446 pCur = pC->uc.pCursor; 004447 assert( sqlite3BtreeCursorIsValid(pCur) ); 004448 nCellKey = sqlite3BtreePayloadSize(pCur); 004449 /* nCellKey will always be between 0 and 0xffffffff because of the way 004450 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 004451 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 004452 *res = 0; 004453 return SQLITE_CORRUPT_BKPT; 004454 } 004455 sqlite3VdbeMemInit(&m, db, 0); 004456 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 004457 if( rc ){ 004458 return rc; 004459 } 004460 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 004461 sqlite3VdbeMemRelease(&m); 004462 return SQLITE_OK; 004463 } 004464 004465 /* 004466 ** This routine sets the value to be returned by subsequent calls to 004467 ** sqlite3_changes() on the database handle 'db'. 004468 */ 004469 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 004470 assert( sqlite3_mutex_held(db->mutex) ); 004471 db->nChange = nChange; 004472 db->nTotalChange += nChange; 004473 } 004474 004475 /* 004476 ** Set a flag in the vdbe to update the change counter when it is finalised 004477 ** or reset. 004478 */ 004479 void sqlite3VdbeCountChanges(Vdbe *v){ 004480 v->changeCntOn = 1; 004481 } 004482 004483 /* 004484 ** Mark every prepared statement associated with a database connection 004485 ** as expired. 004486 ** 004487 ** An expired statement means that recompilation of the statement is 004488 ** recommend. Statements expire when things happen that make their 004489 ** programs obsolete. Removing user-defined functions or collating 004490 ** sequences, or changing an authorization function are the types of 004491 ** things that make prepared statements obsolete. 004492 */ 004493 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 004494 Vdbe *p; 004495 for(p = db->pVdbe; p; p=p->pNext){ 004496 p->expired = 1; 004497 } 004498 } 004499 004500 /* 004501 ** Return the database associated with the Vdbe. 004502 */ 004503 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 004504 return v->db; 004505 } 004506 004507 /* 004508 ** Return a pointer to an sqlite3_value structure containing the value bound 004509 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 004510 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 004511 ** constants) to the value before returning it. 004512 ** 004513 ** The returned value must be freed by the caller using sqlite3ValueFree(). 004514 */ 004515 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 004516 assert( iVar>0 ); 004517 if( v ){ 004518 Mem *pMem = &v->aVar[iVar-1]; 004519 if( 0==(pMem->flags & MEM_Null) ){ 004520 sqlite3_value *pRet = sqlite3ValueNew(v->db); 004521 if( pRet ){ 004522 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 004523 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 004524 } 004525 return pRet; 004526 } 004527 } 004528 return 0; 004529 } 004530 004531 /* 004532 ** Configure SQL variable iVar so that binding a new value to it signals 004533 ** to sqlite3_reoptimize() that re-preparing the statement may result 004534 ** in a better query plan. 004535 */ 004536 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 004537 assert( iVar>0 ); 004538 if( iVar>32 ){ 004539 v->expmask = 0xffffffff; 004540 }else{ 004541 v->expmask |= ((u32)1 << (iVar-1)); 004542 } 004543 } 004544 004545 #ifndef SQLITE_OMIT_VIRTUALTABLE 004546 /* 004547 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 004548 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 004549 ** in memory obtained from sqlite3DbMalloc). 004550 */ 004551 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 004552 if( pVtab->zErrMsg ){ 004553 sqlite3 *db = p->db; 004554 sqlite3DbFree(db, p->zErrMsg); 004555 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 004556 sqlite3_free(pVtab->zErrMsg); 004557 pVtab->zErrMsg = 0; 004558 } 004559 } 004560 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 004561 004562 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 004563 004564 /* 004565 ** If the second argument is not NULL, release any allocations associated 004566 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 004567 ** structure itself, using sqlite3DbFree(). 004568 ** 004569 ** This function is used to free UnpackedRecord structures allocated by 004570 ** the vdbeUnpackRecord() function found in vdbeapi.c. 004571 */ 004572 static void vdbeFreeUnpacked(sqlite3 *db, UnpackedRecord *p){ 004573 if( p ){ 004574 int i; 004575 for(i=0; i<p->nField; i++){ 004576 Mem *pMem = &p->aMem[i]; 004577 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 004578 } 004579 sqlite3DbFree(db, p); 004580 } 004581 } 004582 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 004583 004584 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 004585 /* 004586 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 004587 ** then cursor passed as the second argument should point to the row about 004588 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 004589 ** the required value will be read from the row the cursor points to. 004590 */ 004591 void sqlite3VdbePreUpdateHook( 004592 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 004593 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 004594 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 004595 const char *zDb, /* Database name */ 004596 Table *pTab, /* Modified table */ 004597 i64 iKey1, /* Initial key value */ 004598 int iReg /* Register for new.* record */ 004599 ){ 004600 sqlite3 *db = v->db; 004601 i64 iKey2; 004602 PreUpdate preupdate; 004603 const char *zTbl = pTab->zName; 004604 static const u8 fakeSortOrder = 0; 004605 004606 assert( db->pPreUpdate==0 ); 004607 memset(&preupdate, 0, sizeof(PreUpdate)); 004608 if( op==SQLITE_UPDATE ){ 004609 iKey2 = v->aMem[iReg].u.i; 004610 }else{ 004611 iKey2 = iKey1; 004612 } 004613 004614 assert( pCsr->nField==pTab->nCol 004615 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 004616 ); 004617 004618 preupdate.v = v; 004619 preupdate.pCsr = pCsr; 004620 preupdate.op = op; 004621 preupdate.iNewReg = iReg; 004622 preupdate.keyinfo.db = db; 004623 preupdate.keyinfo.enc = ENC(db); 004624 preupdate.keyinfo.nField = pTab->nCol; 004625 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 004626 preupdate.iKey1 = iKey1; 004627 preupdate.iKey2 = iKey2; 004628 preupdate.pTab = pTab; 004629 004630 db->pPreUpdate = &preupdate; 004631 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 004632 db->pPreUpdate = 0; 004633 sqlite3DbFree(db, preupdate.aRecord); 004634 vdbeFreeUnpacked(db, preupdate.pUnpacked); 004635 vdbeFreeUnpacked(db, preupdate.pNewUnpacked); 004636 if( preupdate.aNew ){ 004637 int i; 004638 for(i=0; i<pCsr->nField; i++){ 004639 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 004640 } 004641 sqlite3DbFree(db, preupdate.aNew); 004642 } 004643 } 004644 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */