000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** Internal interface definitions for SQLite. 000013 ** 000014 */ 000015 #ifndef SQLITEINT_H 000016 #define SQLITEINT_H 000017 000018 /* Special Comments: 000019 ** 000020 ** Some comments have special meaning to the tools that measure test 000021 ** coverage: 000022 ** 000023 ** NO_TEST - The branches on this line are not 000024 ** measured by branch coverage. This is 000025 ** used on lines of code that actually 000026 ** implement parts of coverage testing. 000027 ** 000028 ** OPTIMIZATION-IF-TRUE - This branch is allowed to alway be false 000029 ** and the correct answer is still obtained, 000030 ** though perhaps more slowly. 000031 ** 000032 ** OPTIMIZATION-IF-FALSE - This branch is allowed to alway be true 000033 ** and the correct answer is still obtained, 000034 ** though perhaps more slowly. 000035 ** 000036 ** PREVENTS-HARMLESS-OVERREAD - This branch prevents a buffer overread 000037 ** that would be harmless and undetectable 000038 ** if it did occur. 000039 ** 000040 ** In all cases, the special comment must be enclosed in the usual 000041 ** slash-asterisk...asterisk-slash comment marks, with no spaces between the 000042 ** asterisks and the comment text. 000043 */ 000044 000045 /* 000046 ** Make sure the Tcl calling convention macro is defined. This macro is 000047 ** only used by test code and Tcl integration code. 000048 */ 000049 #ifndef SQLITE_TCLAPI 000050 # define SQLITE_TCLAPI 000051 #endif 000052 000053 /* 000054 ** Make sure that rand_s() is available on Windows systems with MSVC 2005 000055 ** or higher. 000056 */ 000057 #if defined(_MSC_VER) && _MSC_VER>=1400 000058 # define _CRT_RAND_S 000059 #endif 000060 000061 /* 000062 ** Include the header file used to customize the compiler options for MSVC. 000063 ** This should be done first so that it can successfully prevent spurious 000064 ** compiler warnings due to subsequent content in this file and other files 000065 ** that are included by this file. 000066 */ 000067 #include "msvc.h" 000068 000069 /* 000070 ** Special setup for VxWorks 000071 */ 000072 #include "vxworks.h" 000073 000074 /* 000075 ** These #defines should enable >2GB file support on POSIX if the 000076 ** underlying operating system supports it. If the OS lacks 000077 ** large file support, or if the OS is windows, these should be no-ops. 000078 ** 000079 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 000080 ** system #includes. Hence, this block of code must be the very first 000081 ** code in all source files. 000082 ** 000083 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 000084 ** on the compiler command line. This is necessary if you are compiling 000085 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 000086 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 000087 ** without this option, LFS is enable. But LFS does not exist in the kernel 000088 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 000089 ** portability you should omit LFS. 000090 ** 000091 ** The previous paragraph was written in 2005. (This paragraph is written 000092 ** on 2008-11-28.) These days, all Linux kernels support large files, so 000093 ** you should probably leave LFS enabled. But some embedded platforms might 000094 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 000095 ** 000096 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 000097 */ 000098 #ifndef SQLITE_DISABLE_LFS 000099 # define _LARGE_FILE 1 000100 # ifndef _FILE_OFFSET_BITS 000101 # define _FILE_OFFSET_BITS 64 000102 # endif 000103 # define _LARGEFILE_SOURCE 1 000104 #endif 000105 000106 /* What version of GCC is being used. 0 means GCC is not being used */ 000107 #ifdef __GNUC__ 000108 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 000109 #else 000110 # define GCC_VERSION 0 000111 #endif 000112 000113 /* Needed for various definitions... */ 000114 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 000115 # define _GNU_SOURCE 000116 #endif 000117 000118 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 000119 # define _BSD_SOURCE 000120 #endif 000121 000122 /* 000123 ** For MinGW, check to see if we can include the header file containing its 000124 ** version information, among other things. Normally, this internal MinGW 000125 ** header file would [only] be included automatically by other MinGW header 000126 ** files; however, the contained version information is now required by this 000127 ** header file to work around binary compatibility issues (see below) and 000128 ** this is the only known way to reliably obtain it. This entire #if block 000129 ** would be completely unnecessary if there was any other way of detecting 000130 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 000131 ** some MinGW-specific macros). When compiling for MinGW, either the 000132 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 000133 ** defined; otherwise, detection of conditions specific to MinGW will be 000134 ** disabled. 000135 */ 000136 #if defined(_HAVE_MINGW_H) 000137 # include "mingw.h" 000138 #elif defined(_HAVE__MINGW_H) 000139 # include "_mingw.h" 000140 #endif 000141 000142 /* 000143 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 000144 ** define is required to maintain binary compatibility with the MSVC runtime 000145 ** library in use (e.g. for Windows XP). 000146 */ 000147 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 000148 defined(_WIN32) && !defined(_WIN64) && \ 000149 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 000150 defined(__MSVCRT__) 000151 # define _USE_32BIT_TIME_T 000152 #endif 000153 000154 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 000155 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 000156 ** MinGW. 000157 */ 000158 #include "sqlite3.h" 000159 000160 /* 000161 ** Include the configuration header output by 'configure' if we're using the 000162 ** autoconf-based build 000163 */ 000164 #ifdef _HAVE_SQLITE_CONFIG_H 000165 #include "config.h" 000166 #endif 000167 000168 #include "sqliteLimit.h" 000169 000170 /* Disable nuisance warnings on Borland compilers */ 000171 #if defined(__BORLANDC__) 000172 #pragma warn -rch /* unreachable code */ 000173 #pragma warn -ccc /* Condition is always true or false */ 000174 #pragma warn -aus /* Assigned value is never used */ 000175 #pragma warn -csu /* Comparing signed and unsigned */ 000176 #pragma warn -spa /* Suspicious pointer arithmetic */ 000177 #endif 000178 000179 /* 000180 ** Include standard header files as necessary 000181 */ 000182 #ifdef HAVE_STDINT_H 000183 #include <stdint.h> 000184 #endif 000185 #ifdef HAVE_INTTYPES_H 000186 #include <inttypes.h> 000187 #endif 000188 000189 /* 000190 ** The following macros are used to cast pointers to integers and 000191 ** integers to pointers. The way you do this varies from one compiler 000192 ** to the next, so we have developed the following set of #if statements 000193 ** to generate appropriate macros for a wide range of compilers. 000194 ** 000195 ** The correct "ANSI" way to do this is to use the intptr_t type. 000196 ** Unfortunately, that typedef is not available on all compilers, or 000197 ** if it is available, it requires an #include of specific headers 000198 ** that vary from one machine to the next. 000199 ** 000200 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 000201 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 000202 ** So we have to define the macros in different ways depending on the 000203 ** compiler. 000204 */ 000205 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 000206 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 000207 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 000208 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 000209 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 000210 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 000211 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 000212 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 000213 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 000214 #else /* Generates a warning - but it always works */ 000215 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 000216 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 000217 #endif 000218 000219 /* 000220 ** A macro to hint to the compiler that a function should not be 000221 ** inlined. 000222 */ 000223 #if defined(__GNUC__) 000224 # define SQLITE_NOINLINE __attribute__((noinline)) 000225 #elif defined(_MSC_VER) && _MSC_VER>=1310 000226 # define SQLITE_NOINLINE __declspec(noinline) 000227 #else 000228 # define SQLITE_NOINLINE 000229 #endif 000230 000231 /* 000232 ** Make sure that the compiler intrinsics we desire are enabled when 000233 ** compiling with an appropriate version of MSVC unless prevented by 000234 ** the SQLITE_DISABLE_INTRINSIC define. 000235 */ 000236 #if !defined(SQLITE_DISABLE_INTRINSIC) 000237 # if defined(_MSC_VER) && _MSC_VER>=1400 000238 # if !defined(_WIN32_WCE) 000239 # include <intrin.h> 000240 # pragma intrinsic(_byteswap_ushort) 000241 # pragma intrinsic(_byteswap_ulong) 000242 # pragma intrinsic(_ReadWriteBarrier) 000243 # else 000244 # include <cmnintrin.h> 000245 # endif 000246 # endif 000247 #endif 000248 000249 /* 000250 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 000251 ** 0 means mutexes are permanently disable and the library is never 000252 ** threadsafe. 1 means the library is serialized which is the highest 000253 ** level of threadsafety. 2 means the library is multithreaded - multiple 000254 ** threads can use SQLite as long as no two threads try to use the same 000255 ** database connection at the same time. 000256 ** 000257 ** Older versions of SQLite used an optional THREADSAFE macro. 000258 ** We support that for legacy. 000259 */ 000260 #if !defined(SQLITE_THREADSAFE) 000261 # if defined(THREADSAFE) 000262 # define SQLITE_THREADSAFE THREADSAFE 000263 # else 000264 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 000265 # endif 000266 #endif 000267 000268 /* 000269 ** Powersafe overwrite is on by default. But can be turned off using 000270 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 000271 */ 000272 #ifndef SQLITE_POWERSAFE_OVERWRITE 000273 # define SQLITE_POWERSAFE_OVERWRITE 1 000274 #endif 000275 000276 /* 000277 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 000278 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 000279 ** which case memory allocation statistics are disabled by default. 000280 */ 000281 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 000282 # define SQLITE_DEFAULT_MEMSTATUS 1 000283 #endif 000284 000285 /* 000286 ** Exactly one of the following macros must be defined in order to 000287 ** specify which memory allocation subsystem to use. 000288 ** 000289 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 000290 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 000291 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 000292 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 000293 ** 000294 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 000295 ** assert() macro is enabled, each call into the Win32 native heap subsystem 000296 ** will cause HeapValidate to be called. If heap validation should fail, an 000297 ** assertion will be triggered. 000298 ** 000299 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 000300 ** the default. 000301 */ 000302 #if defined(SQLITE_SYSTEM_MALLOC) \ 000303 + defined(SQLITE_WIN32_MALLOC) \ 000304 + defined(SQLITE_ZERO_MALLOC) \ 000305 + defined(SQLITE_MEMDEBUG)>1 000306 # error "Two or more of the following compile-time configuration options\ 000307 are defined but at most one is allowed:\ 000308 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 000309 SQLITE_ZERO_MALLOC" 000310 #endif 000311 #if defined(SQLITE_SYSTEM_MALLOC) \ 000312 + defined(SQLITE_WIN32_MALLOC) \ 000313 + defined(SQLITE_ZERO_MALLOC) \ 000314 + defined(SQLITE_MEMDEBUG)==0 000315 # define SQLITE_SYSTEM_MALLOC 1 000316 #endif 000317 000318 /* 000319 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 000320 ** sizes of memory allocations below this value where possible. 000321 */ 000322 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 000323 # define SQLITE_MALLOC_SOFT_LIMIT 1024 000324 #endif 000325 000326 /* 000327 ** We need to define _XOPEN_SOURCE as follows in order to enable 000328 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 000329 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 000330 ** it. 000331 */ 000332 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 000333 # define _XOPEN_SOURCE 600 000334 #endif 000335 000336 /* 000337 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 000338 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 000339 ** make it true by defining or undefining NDEBUG. 000340 ** 000341 ** Setting NDEBUG makes the code smaller and faster by disabling the 000342 ** assert() statements in the code. So we want the default action 000343 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 000344 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 000345 ** feature. 000346 */ 000347 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 000348 # define NDEBUG 1 000349 #endif 000350 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 000351 # undef NDEBUG 000352 #endif 000353 000354 /* 000355 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 000356 */ 000357 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 000358 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 000359 #endif 000360 000361 /* 000362 ** The testcase() macro is used to aid in coverage testing. When 000363 ** doing coverage testing, the condition inside the argument to 000364 ** testcase() must be evaluated both true and false in order to 000365 ** get full branch coverage. The testcase() macro is inserted 000366 ** to help ensure adequate test coverage in places where simple 000367 ** condition/decision coverage is inadequate. For example, testcase() 000368 ** can be used to make sure boundary values are tested. For 000369 ** bitmask tests, testcase() can be used to make sure each bit 000370 ** is significant and used at least once. On switch statements 000371 ** where multiple cases go to the same block of code, testcase() 000372 ** can insure that all cases are evaluated. 000373 ** 000374 */ 000375 #ifdef SQLITE_COVERAGE_TEST 000376 void sqlite3Coverage(int); 000377 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 000378 #else 000379 # define testcase(X) 000380 #endif 000381 000382 /* 000383 ** The TESTONLY macro is used to enclose variable declarations or 000384 ** other bits of code that are needed to support the arguments 000385 ** within testcase() and assert() macros. 000386 */ 000387 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 000388 # define TESTONLY(X) X 000389 #else 000390 # define TESTONLY(X) 000391 #endif 000392 000393 /* 000394 ** Sometimes we need a small amount of code such as a variable initialization 000395 ** to setup for a later assert() statement. We do not want this code to 000396 ** appear when assert() is disabled. The following macro is therefore 000397 ** used to contain that setup code. The "VVA" acronym stands for 000398 ** "Verification, Validation, and Accreditation". In other words, the 000399 ** code within VVA_ONLY() will only run during verification processes. 000400 */ 000401 #ifndef NDEBUG 000402 # define VVA_ONLY(X) X 000403 #else 000404 # define VVA_ONLY(X) 000405 #endif 000406 000407 /* 000408 ** The ALWAYS and NEVER macros surround boolean expressions which 000409 ** are intended to always be true or false, respectively. Such 000410 ** expressions could be omitted from the code completely. But they 000411 ** are included in a few cases in order to enhance the resilience 000412 ** of SQLite to unexpected behavior - to make the code "self-healing" 000413 ** or "ductile" rather than being "brittle" and crashing at the first 000414 ** hint of unplanned behavior. 000415 ** 000416 ** In other words, ALWAYS and NEVER are added for defensive code. 000417 ** 000418 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 000419 ** be true and false so that the unreachable code they specify will 000420 ** not be counted as untested code. 000421 */ 000422 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) 000423 # define ALWAYS(X) (1) 000424 # define NEVER(X) (0) 000425 #elif !defined(NDEBUG) 000426 # define ALWAYS(X) ((X)?1:(assert(0),0)) 000427 # define NEVER(X) ((X)?(assert(0),1):0) 000428 #else 000429 # define ALWAYS(X) (X) 000430 # define NEVER(X) (X) 000431 #endif 000432 000433 /* 000434 ** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is 000435 ** defined. We need to defend against those failures when testing with 000436 ** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches 000437 ** during a normal build. The following macro can be used to disable tests 000438 ** that are always false except when SQLITE_TEST_REALLOC_STRESS is set. 000439 */ 000440 #if defined(SQLITE_TEST_REALLOC_STRESS) 000441 # define ONLY_IF_REALLOC_STRESS(X) (X) 000442 #elif !defined(NDEBUG) 000443 # define ONLY_IF_REALLOC_STRESS(X) ((X)?(assert(0),1):0) 000444 #else 000445 # define ONLY_IF_REALLOC_STRESS(X) (0) 000446 #endif 000447 000448 /* 000449 ** Declarations used for tracing the operating system interfaces. 000450 */ 000451 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 000452 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 000453 extern int sqlite3OSTrace; 000454 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 000455 # define SQLITE_HAVE_OS_TRACE 000456 #else 000457 # define OSTRACE(X) 000458 # undef SQLITE_HAVE_OS_TRACE 000459 #endif 000460 000461 /* 000462 ** Is the sqlite3ErrName() function needed in the build? Currently, 000463 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 000464 ** OSTRACE is enabled), and by several "test*.c" files (which are 000465 ** compiled using SQLITE_TEST). 000466 */ 000467 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 000468 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 000469 # define SQLITE_NEED_ERR_NAME 000470 #else 000471 # undef SQLITE_NEED_ERR_NAME 000472 #endif 000473 000474 /* 000475 ** SQLITE_ENABLE_EXPLAIN_COMMENTS is incompatible with SQLITE_OMIT_EXPLAIN 000476 */ 000477 #ifdef SQLITE_OMIT_EXPLAIN 000478 # undef SQLITE_ENABLE_EXPLAIN_COMMENTS 000479 #endif 000480 000481 /* 000482 ** Return true (non-zero) if the input is an integer that is too large 000483 ** to fit in 32-bits. This macro is used inside of various testcase() 000484 ** macros to verify that we have tested SQLite for large-file support. 000485 */ 000486 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 000487 000488 /* 000489 ** The macro unlikely() is a hint that surrounds a boolean 000490 ** expression that is usually false. Macro likely() surrounds 000491 ** a boolean expression that is usually true. These hints could, 000492 ** in theory, be used by the compiler to generate better code, but 000493 ** currently they are just comments for human readers. 000494 */ 000495 #define likely(X) (X) 000496 #define unlikely(X) (X) 000497 000498 #include "hash.h" 000499 #include "parse.h" 000500 #include <stdio.h> 000501 #include <stdlib.h> 000502 #include <string.h> 000503 #include <assert.h> 000504 #include <stddef.h> 000505 000506 /* 000507 ** If compiling for a processor that lacks floating point support, 000508 ** substitute integer for floating-point 000509 */ 000510 #ifdef SQLITE_OMIT_FLOATING_POINT 000511 # define double sqlite_int64 000512 # define float sqlite_int64 000513 # define LONGDOUBLE_TYPE sqlite_int64 000514 # ifndef SQLITE_BIG_DBL 000515 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 000516 # endif 000517 # define SQLITE_OMIT_DATETIME_FUNCS 1 000518 # define SQLITE_OMIT_TRACE 1 000519 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 000520 # undef SQLITE_HAVE_ISNAN 000521 #endif 000522 #ifndef SQLITE_BIG_DBL 000523 # define SQLITE_BIG_DBL (1e99) 000524 #endif 000525 000526 /* 000527 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 000528 ** afterward. Having this macro allows us to cause the C compiler 000529 ** to omit code used by TEMP tables without messy #ifndef statements. 000530 */ 000531 #ifdef SQLITE_OMIT_TEMPDB 000532 #define OMIT_TEMPDB 1 000533 #else 000534 #define OMIT_TEMPDB 0 000535 #endif 000536 000537 /* 000538 ** The "file format" number is an integer that is incremented whenever 000539 ** the VDBE-level file format changes. The following macros define the 000540 ** the default file format for new databases and the maximum file format 000541 ** that the library can read. 000542 */ 000543 #define SQLITE_MAX_FILE_FORMAT 4 000544 #ifndef SQLITE_DEFAULT_FILE_FORMAT 000545 # define SQLITE_DEFAULT_FILE_FORMAT 4 000546 #endif 000547 000548 /* 000549 ** Determine whether triggers are recursive by default. This can be 000550 ** changed at run-time using a pragma. 000551 */ 000552 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 000553 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 000554 #endif 000555 000556 /* 000557 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 000558 ** on the command-line 000559 */ 000560 #ifndef SQLITE_TEMP_STORE 000561 # define SQLITE_TEMP_STORE 1 000562 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 000563 #endif 000564 000565 /* 000566 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 000567 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 000568 ** to zero. 000569 */ 000570 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 000571 # undef SQLITE_MAX_WORKER_THREADS 000572 # define SQLITE_MAX_WORKER_THREADS 0 000573 #endif 000574 #ifndef SQLITE_MAX_WORKER_THREADS 000575 # define SQLITE_MAX_WORKER_THREADS 8 000576 #endif 000577 #ifndef SQLITE_DEFAULT_WORKER_THREADS 000578 # define SQLITE_DEFAULT_WORKER_THREADS 0 000579 #endif 000580 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 000581 # undef SQLITE_MAX_WORKER_THREADS 000582 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 000583 #endif 000584 000585 /* 000586 ** The default initial allocation for the pagecache when using separate 000587 ** pagecaches for each database connection. A positive number is the 000588 ** number of pages. A negative number N translations means that a buffer 000589 ** of -1024*N bytes is allocated and used for as many pages as it will hold. 000590 */ 000591 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ 000592 # define SQLITE_DEFAULT_PCACHE_INITSZ 100 000593 #endif 000594 000595 /* 000596 ** GCC does not define the offsetof() macro so we'll have to do it 000597 ** ourselves. 000598 */ 000599 #ifndef offsetof 000600 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 000601 #endif 000602 000603 /* 000604 ** Macros to compute minimum and maximum of two numbers. 000605 */ 000606 #ifndef MIN 000607 # define MIN(A,B) ((A)<(B)?(A):(B)) 000608 #endif 000609 #ifndef MAX 000610 # define MAX(A,B) ((A)>(B)?(A):(B)) 000611 #endif 000612 000613 /* 000614 ** Swap two objects of type TYPE. 000615 */ 000616 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 000617 000618 /* 000619 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 000620 ** not, there are still machines out there that use EBCDIC.) 000621 */ 000622 #if 'A' == '\301' 000623 # define SQLITE_EBCDIC 1 000624 #else 000625 # define SQLITE_ASCII 1 000626 #endif 000627 000628 /* 000629 ** Integers of known sizes. These typedefs might change for architectures 000630 ** where the sizes very. Preprocessor macros are available so that the 000631 ** types can be conveniently redefined at compile-type. Like this: 000632 ** 000633 ** cc '-DUINTPTR_TYPE=long long int' ... 000634 */ 000635 #ifndef UINT32_TYPE 000636 # ifdef HAVE_UINT32_T 000637 # define UINT32_TYPE uint32_t 000638 # else 000639 # define UINT32_TYPE unsigned int 000640 # endif 000641 #endif 000642 #ifndef UINT16_TYPE 000643 # ifdef HAVE_UINT16_T 000644 # define UINT16_TYPE uint16_t 000645 # else 000646 # define UINT16_TYPE unsigned short int 000647 # endif 000648 #endif 000649 #ifndef INT16_TYPE 000650 # ifdef HAVE_INT16_T 000651 # define INT16_TYPE int16_t 000652 # else 000653 # define INT16_TYPE short int 000654 # endif 000655 #endif 000656 #ifndef UINT8_TYPE 000657 # ifdef HAVE_UINT8_T 000658 # define UINT8_TYPE uint8_t 000659 # else 000660 # define UINT8_TYPE unsigned char 000661 # endif 000662 #endif 000663 #ifndef INT8_TYPE 000664 # ifdef HAVE_INT8_T 000665 # define INT8_TYPE int8_t 000666 # else 000667 # define INT8_TYPE signed char 000668 # endif 000669 #endif 000670 #ifndef LONGDOUBLE_TYPE 000671 # define LONGDOUBLE_TYPE long double 000672 #endif 000673 typedef sqlite_int64 i64; /* 8-byte signed integer */ 000674 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 000675 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 000676 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 000677 typedef INT16_TYPE i16; /* 2-byte signed integer */ 000678 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 000679 typedef INT8_TYPE i8; /* 1-byte signed integer */ 000680 000681 /* 000682 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 000683 ** that can be stored in a u32 without loss of data. The value 000684 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 000685 ** have to specify the value in the less intuitive manner shown: 000686 */ 000687 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 000688 000689 /* 000690 ** The datatype used to store estimates of the number of rows in a 000691 ** table or index. This is an unsigned integer type. For 99.9% of 000692 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 000693 ** can be used at compile-time if desired. 000694 */ 000695 #ifdef SQLITE_64BIT_STATS 000696 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 000697 #else 000698 typedef u32 tRowcnt; /* 32-bit is the default */ 000699 #endif 000700 000701 /* 000702 ** Estimated quantities used for query planning are stored as 16-bit 000703 ** logarithms. For quantity X, the value stored is 10*log2(X). This 000704 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 000705 ** But the allowed values are "grainy". Not every value is representable. 000706 ** For example, quantities 16 and 17 are both represented by a LogEst 000707 ** of 40. However, since LogEst quantities are suppose to be estimates, 000708 ** not exact values, this imprecision is not a problem. 000709 ** 000710 ** "LogEst" is short for "Logarithmic Estimate". 000711 ** 000712 ** Examples: 000713 ** 1 -> 0 20 -> 43 10000 -> 132 000714 ** 2 -> 10 25 -> 46 25000 -> 146 000715 ** 3 -> 16 100 -> 66 1000000 -> 199 000716 ** 4 -> 20 1000 -> 99 1048576 -> 200 000717 ** 10 -> 33 1024 -> 100 4294967296 -> 320 000718 ** 000719 ** The LogEst can be negative to indicate fractional values. 000720 ** Examples: 000721 ** 000722 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 000723 */ 000724 typedef INT16_TYPE LogEst; 000725 000726 /* 000727 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 000728 */ 000729 #ifndef SQLITE_PTRSIZE 000730 # if defined(__SIZEOF_POINTER__) 000731 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 000732 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 000733 defined(_M_ARM) || defined(__arm__) || defined(__x86) 000734 # define SQLITE_PTRSIZE 4 000735 # else 000736 # define SQLITE_PTRSIZE 8 000737 # endif 000738 #endif 000739 000740 /* The uptr type is an unsigned integer large enough to hold a pointer 000741 */ 000742 #if defined(HAVE_STDINT_H) 000743 typedef uintptr_t uptr; 000744 #elif SQLITE_PTRSIZE==4 000745 typedef u32 uptr; 000746 #else 000747 typedef u64 uptr; 000748 #endif 000749 000750 /* 000751 ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to 000752 ** something between S (inclusive) and E (exclusive). 000753 ** 000754 ** In other words, S is a buffer and E is a pointer to the first byte after 000755 ** the end of buffer S. This macro returns true if P points to something 000756 ** contained within the buffer S. 000757 */ 000758 #define SQLITE_WITHIN(P,S,E) (((uptr)(P)>=(uptr)(S))&&((uptr)(P)<(uptr)(E))) 000759 000760 000761 /* 000762 ** Macros to determine whether the machine is big or little endian, 000763 ** and whether or not that determination is run-time or compile-time. 000764 ** 000765 ** For best performance, an attempt is made to guess at the byte-order 000766 ** using C-preprocessor macros. If that is unsuccessful, or if 000767 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 000768 ** at run-time. 000769 */ 000770 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 000771 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 000772 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 000773 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 000774 # define SQLITE_BYTEORDER 1234 000775 # define SQLITE_BIGENDIAN 0 000776 # define SQLITE_LITTLEENDIAN 1 000777 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 000778 #endif 000779 #if (defined(sparc) || defined(__ppc__)) \ 000780 && !defined(SQLITE_RUNTIME_BYTEORDER) 000781 # define SQLITE_BYTEORDER 4321 000782 # define SQLITE_BIGENDIAN 1 000783 # define SQLITE_LITTLEENDIAN 0 000784 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 000785 #endif 000786 #if !defined(SQLITE_BYTEORDER) 000787 # ifdef SQLITE_AMALGAMATION 000788 const int sqlite3one = 1; 000789 # else 000790 extern const int sqlite3one; 000791 # endif 000792 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 000793 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 000794 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 000795 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 000796 #endif 000797 000798 /* 000799 ** Constants for the largest and smallest possible 64-bit signed integers. 000800 ** These macros are designed to work correctly on both 32-bit and 64-bit 000801 ** compilers. 000802 */ 000803 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 000804 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 000805 000806 /* 000807 ** Round up a number to the next larger multiple of 8. This is used 000808 ** to force 8-byte alignment on 64-bit architectures. 000809 */ 000810 #define ROUND8(x) (((x)+7)&~7) 000811 000812 /* 000813 ** Round down to the nearest multiple of 8 000814 */ 000815 #define ROUNDDOWN8(x) ((x)&~7) 000816 000817 /* 000818 ** Assert that the pointer X is aligned to an 8-byte boundary. This 000819 ** macro is used only within assert() to verify that the code gets 000820 ** all alignment restrictions correct. 000821 ** 000822 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 000823 ** underlying malloc() implementation might return us 4-byte aligned 000824 ** pointers. In that case, only verify 4-byte alignment. 000825 */ 000826 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 000827 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 000828 #else 000829 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 000830 #endif 000831 000832 /* 000833 ** Disable MMAP on platforms where it is known to not work 000834 */ 000835 #if defined(__OpenBSD__) || defined(__QNXNTO__) 000836 # undef SQLITE_MAX_MMAP_SIZE 000837 # define SQLITE_MAX_MMAP_SIZE 0 000838 #endif 000839 000840 /* 000841 ** Default maximum size of memory used by memory-mapped I/O in the VFS 000842 */ 000843 #ifdef __APPLE__ 000844 # include <TargetConditionals.h> 000845 #endif 000846 #ifndef SQLITE_MAX_MMAP_SIZE 000847 # if defined(__linux__) \ 000848 || defined(_WIN32) \ 000849 || (defined(__APPLE__) && defined(__MACH__)) \ 000850 || defined(__sun) \ 000851 || defined(__FreeBSD__) \ 000852 || defined(__DragonFly__) 000853 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 000854 # else 000855 # define SQLITE_MAX_MMAP_SIZE 0 000856 # endif 000857 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 000858 #endif 000859 000860 /* 000861 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 000862 ** default MMAP_SIZE is specified at compile-time, make sure that it does 000863 ** not exceed the maximum mmap size. 000864 */ 000865 #ifndef SQLITE_DEFAULT_MMAP_SIZE 000866 # define SQLITE_DEFAULT_MMAP_SIZE 0 000867 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 000868 #endif 000869 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 000870 # undef SQLITE_DEFAULT_MMAP_SIZE 000871 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 000872 #endif 000873 000874 /* 000875 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 000876 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 000877 ** define SQLITE_ENABLE_STAT3_OR_STAT4 000878 */ 000879 #ifdef SQLITE_ENABLE_STAT4 000880 # undef SQLITE_ENABLE_STAT3 000881 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 000882 #elif SQLITE_ENABLE_STAT3 000883 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 000884 #elif SQLITE_ENABLE_STAT3_OR_STAT4 000885 # undef SQLITE_ENABLE_STAT3_OR_STAT4 000886 #endif 000887 000888 /* 000889 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 000890 ** the Select query generator tracing logic is turned on. 000891 */ 000892 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 000893 # define SELECTTRACE_ENABLED 1 000894 #else 000895 # define SELECTTRACE_ENABLED 0 000896 #endif 000897 000898 /* 000899 ** An instance of the following structure is used to store the busy-handler 000900 ** callback for a given sqlite handle. 000901 ** 000902 ** The sqlite.busyHandler member of the sqlite struct contains the busy 000903 ** callback for the database handle. Each pager opened via the sqlite 000904 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 000905 ** callback is currently invoked only from within pager.c. 000906 */ 000907 typedef struct BusyHandler BusyHandler; 000908 struct BusyHandler { 000909 int (*xFunc)(void *,int); /* The busy callback */ 000910 void *pArg; /* First arg to busy callback */ 000911 int nBusy; /* Incremented with each busy call */ 000912 }; 000913 000914 /* 000915 ** Name of the master database table. The master database table 000916 ** is a special table that holds the names and attributes of all 000917 ** user tables and indices. 000918 */ 000919 #define MASTER_NAME "sqlite_master" 000920 #define TEMP_MASTER_NAME "sqlite_temp_master" 000921 000922 /* 000923 ** The root-page of the master database table. 000924 */ 000925 #define MASTER_ROOT 1 000926 000927 /* 000928 ** The name of the schema table. 000929 */ 000930 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 000931 000932 /* 000933 ** A convenience macro that returns the number of elements in 000934 ** an array. 000935 */ 000936 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 000937 000938 /* 000939 ** Determine if the argument is a power of two 000940 */ 000941 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 000942 000943 /* 000944 ** The following value as a destructor means to use sqlite3DbFree(). 000945 ** The sqlite3DbFree() routine requires two parameters instead of the 000946 ** one parameter that destructors normally want. So we have to introduce 000947 ** this magic value that the code knows to handle differently. Any 000948 ** pointer will work here as long as it is distinct from SQLITE_STATIC 000949 ** and SQLITE_TRANSIENT. 000950 */ 000951 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 000952 000953 /* 000954 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 000955 ** not support Writable Static Data (WSD) such as global and static variables. 000956 ** All variables must either be on the stack or dynamically allocated from 000957 ** the heap. When WSD is unsupported, the variable declarations scattered 000958 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 000959 ** macro is used for this purpose. And instead of referencing the variable 000960 ** directly, we use its constant as a key to lookup the run-time allocated 000961 ** buffer that holds real variable. The constant is also the initializer 000962 ** for the run-time allocated buffer. 000963 ** 000964 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 000965 ** macros become no-ops and have zero performance impact. 000966 */ 000967 #ifdef SQLITE_OMIT_WSD 000968 #define SQLITE_WSD const 000969 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 000970 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 000971 int sqlite3_wsd_init(int N, int J); 000972 void *sqlite3_wsd_find(void *K, int L); 000973 #else 000974 #define SQLITE_WSD 000975 #define GLOBAL(t,v) v 000976 #define sqlite3GlobalConfig sqlite3Config 000977 #endif 000978 000979 /* 000980 ** The following macros are used to suppress compiler warnings and to 000981 ** make it clear to human readers when a function parameter is deliberately 000982 ** left unused within the body of a function. This usually happens when 000983 ** a function is called via a function pointer. For example the 000984 ** implementation of an SQL aggregate step callback may not use the 000985 ** parameter indicating the number of arguments passed to the aggregate, 000986 ** if it knows that this is enforced elsewhere. 000987 ** 000988 ** When a function parameter is not used at all within the body of a function, 000989 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 000990 ** However, these macros may also be used to suppress warnings related to 000991 ** parameters that may or may not be used depending on compilation options. 000992 ** For example those parameters only used in assert() statements. In these 000993 ** cases the parameters are named as per the usual conventions. 000994 */ 000995 #define UNUSED_PARAMETER(x) (void)(x) 000996 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 000997 000998 /* 000999 ** Forward references to structures 001000 */ 001001 typedef struct AggInfo AggInfo; 001002 typedef struct AuthContext AuthContext; 001003 typedef struct AutoincInfo AutoincInfo; 001004 typedef struct Bitvec Bitvec; 001005 typedef struct CollSeq CollSeq; 001006 typedef struct Column Column; 001007 typedef struct Db Db; 001008 typedef struct Schema Schema; 001009 typedef struct Expr Expr; 001010 typedef struct ExprList ExprList; 001011 typedef struct ExprSpan ExprSpan; 001012 typedef struct FKey FKey; 001013 typedef struct FuncDestructor FuncDestructor; 001014 typedef struct FuncDef FuncDef; 001015 typedef struct FuncDefHash FuncDefHash; 001016 typedef struct IdList IdList; 001017 typedef struct Index Index; 001018 typedef struct IndexSample IndexSample; 001019 typedef struct KeyClass KeyClass; 001020 typedef struct KeyInfo KeyInfo; 001021 typedef struct Lookaside Lookaside; 001022 typedef struct LookasideSlot LookasideSlot; 001023 typedef struct Module Module; 001024 typedef struct NameContext NameContext; 001025 typedef struct Parse Parse; 001026 typedef struct PreUpdate PreUpdate; 001027 typedef struct PrintfArguments PrintfArguments; 001028 typedef struct RowSet RowSet; 001029 typedef struct Savepoint Savepoint; 001030 typedef struct Select Select; 001031 typedef struct SQLiteThread SQLiteThread; 001032 typedef struct SelectDest SelectDest; 001033 typedef struct SrcList SrcList; 001034 typedef struct StrAccum StrAccum; 001035 typedef struct Table Table; 001036 typedef struct TableLock TableLock; 001037 typedef struct Token Token; 001038 typedef struct TreeView TreeView; 001039 typedef struct Trigger Trigger; 001040 typedef struct TriggerPrg TriggerPrg; 001041 typedef struct TriggerStep TriggerStep; 001042 typedef struct UnpackedRecord UnpackedRecord; 001043 typedef struct VTable VTable; 001044 typedef struct VtabCtx VtabCtx; 001045 typedef struct Walker Walker; 001046 typedef struct WhereInfo WhereInfo; 001047 typedef struct With With; 001048 001049 /* A VList object records a mapping between parameters/variables/wildcards 001050 ** in the SQL statement (such as $abc, @pqr, or :xyz) and the integer 001051 ** variable number associated with that parameter. See the format description 001052 ** on the sqlite3VListAdd() routine for more information. A VList is really 001053 ** just an array of integers. 001054 */ 001055 typedef int VList; 001056 001057 /* 001058 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 001059 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 001060 ** pointer types (i.e. FuncDef) defined above. 001061 */ 001062 #include "btree.h" 001063 #include "vdbe.h" 001064 #include "pager.h" 001065 #include "pcache.h" 001066 #include "os.h" 001067 #include "mutex.h" 001068 001069 /* The SQLITE_EXTRA_DURABLE compile-time option used to set the default 001070 ** synchronous setting to EXTRA. It is no longer supported. 001071 */ 001072 #ifdef SQLITE_EXTRA_DURABLE 001073 # warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE 001074 # define SQLITE_DEFAULT_SYNCHRONOUS 3 001075 #endif 001076 001077 /* 001078 ** Default synchronous levels. 001079 ** 001080 ** Note that (for historcal reasons) the PAGER_SYNCHRONOUS_* macros differ 001081 ** from the SQLITE_DEFAULT_SYNCHRONOUS value by 1. 001082 ** 001083 ** PAGER_SYNCHRONOUS DEFAULT_SYNCHRONOUS 001084 ** OFF 1 0 001085 ** NORMAL 2 1 001086 ** FULL 3 2 001087 ** EXTRA 4 3 001088 ** 001089 ** The "PRAGMA synchronous" statement also uses the zero-based numbers. 001090 ** In other words, the zero-based numbers are used for all external interfaces 001091 ** and the one-based values are used internally. 001092 */ 001093 #ifndef SQLITE_DEFAULT_SYNCHRONOUS 001094 # define SQLITE_DEFAULT_SYNCHRONOUS (PAGER_SYNCHRONOUS_FULL-1) 001095 #endif 001096 #ifndef SQLITE_DEFAULT_WAL_SYNCHRONOUS 001097 # define SQLITE_DEFAULT_WAL_SYNCHRONOUS SQLITE_DEFAULT_SYNCHRONOUS 001098 #endif 001099 001100 /* 001101 ** Each database file to be accessed by the system is an instance 001102 ** of the following structure. There are normally two of these structures 001103 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 001104 ** aDb[1] is the database file used to hold temporary tables. Additional 001105 ** databases may be attached. 001106 */ 001107 struct Db { 001108 char *zDbSName; /* Name of this database. (schema name, not filename) */ 001109 Btree *pBt; /* The B*Tree structure for this database file */ 001110 u8 safety_level; /* How aggressive at syncing data to disk */ 001111 u8 bSyncSet; /* True if "PRAGMA synchronous=N" has been run */ 001112 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 001113 }; 001114 001115 /* 001116 ** An instance of the following structure stores a database schema. 001117 ** 001118 ** Most Schema objects are associated with a Btree. The exception is 001119 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 001120 ** In shared cache mode, a single Schema object can be shared by multiple 001121 ** Btrees that refer to the same underlying BtShared object. 001122 ** 001123 ** Schema objects are automatically deallocated when the last Btree that 001124 ** references them is destroyed. The TEMP Schema is manually freed by 001125 ** sqlite3_close(). 001126 * 001127 ** A thread must be holding a mutex on the corresponding Btree in order 001128 ** to access Schema content. This implies that the thread must also be 001129 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 001130 ** For a TEMP Schema, only the connection mutex is required. 001131 */ 001132 struct Schema { 001133 int schema_cookie; /* Database schema version number for this file */ 001134 int iGeneration; /* Generation counter. Incremented with each change */ 001135 Hash tblHash; /* All tables indexed by name */ 001136 Hash idxHash; /* All (named) indices indexed by name */ 001137 Hash trigHash; /* All triggers indexed by name */ 001138 Hash fkeyHash; /* All foreign keys by referenced table name */ 001139 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 001140 u8 file_format; /* Schema format version for this file */ 001141 u8 enc; /* Text encoding used by this database */ 001142 u16 schemaFlags; /* Flags associated with this schema */ 001143 int cache_size; /* Number of pages to use in the cache */ 001144 }; 001145 001146 /* 001147 ** These macros can be used to test, set, or clear bits in the 001148 ** Db.pSchema->flags field. 001149 */ 001150 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 001151 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 001152 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 001153 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 001154 001155 /* 001156 ** Allowed values for the DB.pSchema->flags field. 001157 ** 001158 ** The DB_SchemaLoaded flag is set after the database schema has been 001159 ** read into internal hash tables. 001160 ** 001161 ** DB_UnresetViews means that one or more views have column names that 001162 ** have been filled out. If the schema changes, these column names might 001163 ** changes and so the view will need to be reset. 001164 */ 001165 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 001166 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 001167 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 001168 001169 /* 001170 ** The number of different kinds of things that can be limited 001171 ** using the sqlite3_limit() interface. 001172 */ 001173 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 001174 001175 /* 001176 ** Lookaside malloc is a set of fixed-size buffers that can be used 001177 ** to satisfy small transient memory allocation requests for objects 001178 ** associated with a particular database connection. The use of 001179 ** lookaside malloc provides a significant performance enhancement 001180 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 001181 ** SQL statements. 001182 ** 001183 ** The Lookaside structure holds configuration information about the 001184 ** lookaside malloc subsystem. Each available memory allocation in 001185 ** the lookaside subsystem is stored on a linked list of LookasideSlot 001186 ** objects. 001187 ** 001188 ** Lookaside allocations are only allowed for objects that are associated 001189 ** with a particular database connection. Hence, schema information cannot 001190 ** be stored in lookaside because in shared cache mode the schema information 001191 ** is shared by multiple database connections. Therefore, while parsing 001192 ** schema information, the Lookaside.bEnabled flag is cleared so that 001193 ** lookaside allocations are not used to construct the schema objects. 001194 */ 001195 struct Lookaside { 001196 u32 bDisable; /* Only operate the lookaside when zero */ 001197 u16 sz; /* Size of each buffer in bytes */ 001198 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 001199 int nOut; /* Number of buffers currently checked out */ 001200 int mxOut; /* Highwater mark for nOut */ 001201 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 001202 LookasideSlot *pFree; /* List of available buffers */ 001203 void *pStart; /* First byte of available memory space */ 001204 void *pEnd; /* First byte past end of available space */ 001205 }; 001206 struct LookasideSlot { 001207 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 001208 }; 001209 001210 /* 001211 ** A hash table for built-in function definitions. (Application-defined 001212 ** functions use a regular table table from hash.h.) 001213 ** 001214 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 001215 ** Collisions are on the FuncDef.u.pHash chain. 001216 */ 001217 #define SQLITE_FUNC_HASH_SZ 23 001218 struct FuncDefHash { 001219 FuncDef *a[SQLITE_FUNC_HASH_SZ]; /* Hash table for functions */ 001220 }; 001221 001222 #ifdef SQLITE_USER_AUTHENTICATION 001223 /* 001224 ** Information held in the "sqlite3" database connection object and used 001225 ** to manage user authentication. 001226 */ 001227 typedef struct sqlite3_userauth sqlite3_userauth; 001228 struct sqlite3_userauth { 001229 u8 authLevel; /* Current authentication level */ 001230 int nAuthPW; /* Size of the zAuthPW in bytes */ 001231 char *zAuthPW; /* Password used to authenticate */ 001232 char *zAuthUser; /* User name used to authenticate */ 001233 }; 001234 001235 /* Allowed values for sqlite3_userauth.authLevel */ 001236 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 001237 #define UAUTH_Fail 1 /* User authentication failed */ 001238 #define UAUTH_User 2 /* Authenticated as a normal user */ 001239 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 001240 001241 /* Functions used only by user authorization logic */ 001242 int sqlite3UserAuthTable(const char*); 001243 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 001244 void sqlite3UserAuthInit(sqlite3*); 001245 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 001246 001247 #endif /* SQLITE_USER_AUTHENTICATION */ 001248 001249 /* 001250 ** typedef for the authorization callback function. 001251 */ 001252 #ifdef SQLITE_USER_AUTHENTICATION 001253 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 001254 const char*, const char*); 001255 #else 001256 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 001257 const char*); 001258 #endif 001259 001260 #ifndef SQLITE_OMIT_DEPRECATED 001261 /* This is an extra SQLITE_TRACE macro that indicates "legacy" tracing 001262 ** in the style of sqlite3_trace() 001263 */ 001264 #define SQLITE_TRACE_LEGACY 0x80 001265 #else 001266 #define SQLITE_TRACE_LEGACY 0 001267 #endif /* SQLITE_OMIT_DEPRECATED */ 001268 001269 001270 /* 001271 ** Each database connection is an instance of the following structure. 001272 */ 001273 struct sqlite3 { 001274 sqlite3_vfs *pVfs; /* OS Interface */ 001275 struct Vdbe *pVdbe; /* List of active virtual machines */ 001276 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 001277 sqlite3_mutex *mutex; /* Connection mutex */ 001278 Db *aDb; /* All backends */ 001279 int nDb; /* Number of backends currently in use */ 001280 int flags; /* Miscellaneous flags. See below */ 001281 i64 lastRowid; /* ROWID of most recent insert (see above) */ 001282 i64 szMmap; /* Default mmap_size setting */ 001283 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 001284 int errCode; /* Most recent error code (SQLITE_*) */ 001285 int errMask; /* & result codes with this before returning */ 001286 int iSysErrno; /* Errno value from last system error */ 001287 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 001288 u8 enc; /* Text encoding */ 001289 u8 autoCommit; /* The auto-commit flag. */ 001290 u8 temp_store; /* 1: file 2: memory 0: default */ 001291 u8 mallocFailed; /* True if we have seen a malloc failure */ 001292 u8 bBenignMalloc; /* Do not require OOMs if true */ 001293 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 001294 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 001295 u8 suppressErr; /* Do not issue error messages if true */ 001296 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 001297 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 001298 u8 mTrace; /* zero or more SQLITE_TRACE flags */ 001299 int nextPagesize; /* Pagesize after VACUUM if >0 */ 001300 u32 magic; /* Magic number for detect library misuse */ 001301 int nChange; /* Value returned by sqlite3_changes() */ 001302 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 001303 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 001304 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 001305 struct sqlite3InitInfo { /* Information used during initialization */ 001306 int newTnum; /* Rootpage of table being initialized */ 001307 u8 iDb; /* Which db file is being initialized */ 001308 u8 busy; /* TRUE if currently initializing */ 001309 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 001310 u8 imposterTable; /* Building an imposter table */ 001311 } init; 001312 int nVdbeActive; /* Number of VDBEs currently running */ 001313 int nVdbeRead; /* Number of active VDBEs that read or write */ 001314 int nVdbeWrite; /* Number of active VDBEs that read and write */ 001315 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 001316 int nVDestroy; /* Number of active OP_VDestroy operations */ 001317 int nExtension; /* Number of loaded extensions */ 001318 void **aExtension; /* Array of shared library handles */ 001319 int (*xTrace)(u32,void*,void*,void*); /* Trace function */ 001320 void *pTraceArg; /* Argument to the trace function */ 001321 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 001322 void *pProfileArg; /* Argument to profile function */ 001323 void *pCommitArg; /* Argument to xCommitCallback() */ 001324 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 001325 void *pRollbackArg; /* Argument to xRollbackCallback() */ 001326 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 001327 void *pUpdateArg; 001328 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 001329 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 001330 void *pPreUpdateArg; /* First argument to xPreUpdateCallback */ 001331 void (*xPreUpdateCallback)( /* Registered using sqlite3_preupdate_hook() */ 001332 void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64 001333 ); 001334 PreUpdate *pPreUpdate; /* Context for active pre-update callback */ 001335 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 001336 #ifndef SQLITE_OMIT_WAL 001337 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 001338 void *pWalArg; 001339 #endif 001340 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 001341 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 001342 void *pCollNeededArg; 001343 sqlite3_value *pErr; /* Most recent error message */ 001344 union { 001345 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 001346 double notUsed1; /* Spacer */ 001347 } u1; 001348 Lookaside lookaside; /* Lookaside malloc configuration */ 001349 #ifndef SQLITE_OMIT_AUTHORIZATION 001350 sqlite3_xauth xAuth; /* Access authorization function */ 001351 void *pAuthArg; /* 1st argument to the access auth function */ 001352 #endif 001353 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 001354 int (*xProgress)(void *); /* The progress callback */ 001355 void *pProgressArg; /* Argument to the progress callback */ 001356 unsigned nProgressOps; /* Number of opcodes for progress callback */ 001357 #endif 001358 #ifndef SQLITE_OMIT_VIRTUALTABLE 001359 int nVTrans; /* Allocated size of aVTrans */ 001360 Hash aModule; /* populated by sqlite3_create_module() */ 001361 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 001362 VTable **aVTrans; /* Virtual tables with open transactions */ 001363 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 001364 #endif 001365 Hash aFunc; /* Hash table of connection functions */ 001366 Hash aCollSeq; /* All collating sequences */ 001367 BusyHandler busyHandler; /* Busy callback */ 001368 Db aDbStatic[2]; /* Static space for the 2 default backends */ 001369 Savepoint *pSavepoint; /* List of active savepoints */ 001370 int busyTimeout; /* Busy handler timeout, in msec */ 001371 int nSavepoint; /* Number of non-transaction savepoints */ 001372 int nStatement; /* Number of nested statement-transactions */ 001373 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 001374 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 001375 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 001376 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 001377 /* The following variables are all protected by the STATIC_MASTER 001378 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 001379 ** 001380 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 001381 ** unlock so that it can proceed. 001382 ** 001383 ** When X.pBlockingConnection==Y, that means that something that X tried 001384 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 001385 ** held by Y. 001386 */ 001387 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 001388 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 001389 void *pUnlockArg; /* Argument to xUnlockNotify */ 001390 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 001391 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 001392 #endif 001393 #ifdef SQLITE_USER_AUTHENTICATION 001394 sqlite3_userauth auth; /* User authentication information */ 001395 #endif 001396 }; 001397 001398 /* 001399 ** A macro to discover the encoding of a database. 001400 */ 001401 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 001402 #define ENC(db) ((db)->enc) 001403 001404 /* 001405 ** Possible values for the sqlite3.flags. 001406 ** 001407 ** Value constraints (enforced via assert()): 001408 ** SQLITE_FullFSync == PAGER_FULLFSYNC 001409 ** SQLITE_CkptFullFSync == PAGER_CKPT_FULLFSYNC 001410 ** SQLITE_CacheSpill == PAGER_CACHE_SPILL 001411 */ 001412 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 001413 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 001414 #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ 001415 #define SQLITE_FullFSync 0x00000008 /* Use full fsync on the backend */ 001416 #define SQLITE_CkptFullFSync 0x00000010 /* Use full fsync for checkpoint */ 001417 #define SQLITE_CacheSpill 0x00000020 /* OK to spill pager cache */ 001418 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 001419 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 001420 /* DELETE, or UPDATE and return */ 001421 /* the count using a callback. */ 001422 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 001423 /* result set is empty */ 001424 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 001425 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 001426 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 001427 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 001428 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 001429 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 001430 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 001431 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 001432 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 001433 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 001434 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 001435 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 001436 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 001437 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 001438 #define SQLITE_LoadExtFunc 0x00800000 /* Enable load_extension() SQL func */ 001439 #define SQLITE_EnableTrigger 0x01000000 /* True to enable triggers */ 001440 #define SQLITE_DeferFKs 0x02000000 /* Defer all FK constraints */ 001441 #define SQLITE_QueryOnly 0x04000000 /* Disable database changes */ 001442 #define SQLITE_VdbeEQP 0x08000000 /* Debug EXPLAIN QUERY PLAN */ 001443 #define SQLITE_Vacuum 0x10000000 /* Currently in a VACUUM */ 001444 #define SQLITE_CellSizeCk 0x20000000 /* Check btree cell sizes on load */ 001445 #define SQLITE_Fts3Tokenizer 0x40000000 /* Enable fts3_tokenizer(2) */ 001446 #define SQLITE_NoCkptOnClose 0x80000000 /* No checkpoint on close()/DETACH */ 001447 001448 001449 /* 001450 ** Bits of the sqlite3.dbOptFlags field that are used by the 001451 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 001452 ** selectively disable various optimizations. 001453 */ 001454 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 001455 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 001456 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 001457 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 001458 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 001459 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 001460 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 001461 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 001462 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 001463 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 001464 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 001465 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 001466 #define SQLITE_CursorHints 0x2000 /* Add OP_CursorHint opcodes */ 001467 #define SQLITE_AllOpts 0xffff /* All optimizations */ 001468 001469 /* 001470 ** Macros for testing whether or not optimizations are enabled or disabled. 001471 */ 001472 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 001473 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 001474 001475 /* 001476 ** Return true if it OK to factor constant expressions into the initialization 001477 ** code. The argument is a Parse object for the code generator. 001478 */ 001479 #define ConstFactorOk(P) ((P)->okConstFactor) 001480 001481 /* 001482 ** Possible values for the sqlite.magic field. 001483 ** The numbers are obtained at random and have no special meaning, other 001484 ** than being distinct from one another. 001485 */ 001486 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 001487 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 001488 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 001489 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 001490 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 001491 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 001492 001493 /* 001494 ** Each SQL function is defined by an instance of the following 001495 ** structure. For global built-in functions (ex: substr(), max(), count()) 001496 ** a pointer to this structure is held in the sqlite3BuiltinFunctions object. 001497 ** For per-connection application-defined functions, a pointer to this 001498 ** structure is held in the db->aHash hash table. 001499 ** 001500 ** The u.pHash field is used by the global built-ins. The u.pDestructor 001501 ** field is used by per-connection app-def functions. 001502 */ 001503 struct FuncDef { 001504 i8 nArg; /* Number of arguments. -1 means unlimited */ 001505 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 001506 void *pUserData; /* User data parameter */ 001507 FuncDef *pNext; /* Next function with same name */ 001508 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */ 001509 void (*xFinalize)(sqlite3_context*); /* Agg finalizer */ 001510 const char *zName; /* SQL name of the function. */ 001511 union { 001512 FuncDef *pHash; /* Next with a different name but the same hash */ 001513 FuncDestructor *pDestructor; /* Reference counted destructor function */ 001514 } u; 001515 }; 001516 001517 /* 001518 ** This structure encapsulates a user-function destructor callback (as 001519 ** configured using create_function_v2()) and a reference counter. When 001520 ** create_function_v2() is called to create a function with a destructor, 001521 ** a single object of this type is allocated. FuncDestructor.nRef is set to 001522 ** the number of FuncDef objects created (either 1 or 3, depending on whether 001523 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 001524 ** member of each of the new FuncDef objects is set to point to the allocated 001525 ** FuncDestructor. 001526 ** 001527 ** Thereafter, when one of the FuncDef objects is deleted, the reference 001528 ** count on this object is decremented. When it reaches 0, the destructor 001529 ** is invoked and the FuncDestructor structure freed. 001530 */ 001531 struct FuncDestructor { 001532 int nRef; 001533 void (*xDestroy)(void *); 001534 void *pUserData; 001535 }; 001536 001537 /* 001538 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 001539 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And 001540 ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There 001541 ** are assert() statements in the code to verify this. 001542 ** 001543 ** Value constraints (enforced via assert()): 001544 ** SQLITE_FUNC_MINMAX == NC_MinMaxAgg == SF_MinMaxAgg 001545 ** SQLITE_FUNC_LENGTH == OPFLAG_LENGTHARG 001546 ** SQLITE_FUNC_TYPEOF == OPFLAG_TYPEOFARG 001547 ** SQLITE_FUNC_CONSTANT == SQLITE_DETERMINISTIC from the API 001548 ** SQLITE_FUNC_ENCMASK depends on SQLITE_UTF* macros in the API 001549 */ 001550 #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 001551 #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ 001552 #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ 001553 #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ 001554 #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ 001555 #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ 001556 #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ 001557 #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ 001558 #define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */ 001559 #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ 001560 #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ 001561 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 001562 #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a 001563 ** single query - might change over time */ 001564 001565 /* 001566 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 001567 ** used to create the initializers for the FuncDef structures. 001568 ** 001569 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 001570 ** Used to create a scalar function definition of a function zName 001571 ** implemented by C function xFunc that accepts nArg arguments. The 001572 ** value passed as iArg is cast to a (void*) and made available 001573 ** as the user-data (sqlite3_user_data()) for the function. If 001574 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 001575 ** 001576 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 001577 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 001578 ** 001579 ** DFUNCTION(zName, nArg, iArg, bNC, xFunc) 001580 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and 001581 ** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions 001582 ** and functions like sqlite_version() that can change, but not during 001583 ** a single query. 001584 ** 001585 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 001586 ** Used to create an aggregate function definition implemented by 001587 ** the C functions xStep and xFinal. The first four parameters 001588 ** are interpreted in the same way as the first 4 parameters to 001589 ** FUNCTION(). 001590 ** 001591 ** LIKEFUNC(zName, nArg, pArg, flags) 001592 ** Used to create a scalar function definition of a function zName 001593 ** that accepts nArg arguments and is implemented by a call to C 001594 ** function likeFunc. Argument pArg is cast to a (void *) and made 001595 ** available as the function user-data (sqlite3_user_data()). The 001596 ** FuncDef.flags variable is set to the value passed as the flags 001597 ** parameter. 001598 */ 001599 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 001600 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 001601 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 001602 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 001603 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 001604 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 001605 #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 001606 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 001607 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 001608 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 001609 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 001610 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 001611 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 001612 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 001613 pArg, 0, xFunc, 0, #zName, } 001614 #define LIKEFUNC(zName, nArg, arg, flags) \ 001615 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 001616 (void *)arg, 0, likeFunc, 0, #zName, {0} } 001617 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 001618 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 001619 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}} 001620 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 001621 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 001622 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}} 001623 001624 /* 001625 ** All current savepoints are stored in a linked list starting at 001626 ** sqlite3.pSavepoint. The first element in the list is the most recently 001627 ** opened savepoint. Savepoints are added to the list by the vdbe 001628 ** OP_Savepoint instruction. 001629 */ 001630 struct Savepoint { 001631 char *zName; /* Savepoint name (nul-terminated) */ 001632 i64 nDeferredCons; /* Number of deferred fk violations */ 001633 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 001634 Savepoint *pNext; /* Parent savepoint (if any) */ 001635 }; 001636 001637 /* 001638 ** The following are used as the second parameter to sqlite3Savepoint(), 001639 ** and as the P1 argument to the OP_Savepoint instruction. 001640 */ 001641 #define SAVEPOINT_BEGIN 0 001642 #define SAVEPOINT_RELEASE 1 001643 #define SAVEPOINT_ROLLBACK 2 001644 001645 001646 /* 001647 ** Each SQLite module (virtual table definition) is defined by an 001648 ** instance of the following structure, stored in the sqlite3.aModule 001649 ** hash table. 001650 */ 001651 struct Module { 001652 const sqlite3_module *pModule; /* Callback pointers */ 001653 const char *zName; /* Name passed to create_module() */ 001654 void *pAux; /* pAux passed to create_module() */ 001655 void (*xDestroy)(void *); /* Module destructor function */ 001656 Table *pEpoTab; /* Eponymous table for this module */ 001657 }; 001658 001659 /* 001660 ** information about each column of an SQL table is held in an instance 001661 ** of this structure. 001662 */ 001663 struct Column { 001664 char *zName; /* Name of this column, \000, then the type */ 001665 Expr *pDflt; /* Default value of this column */ 001666 char *zColl; /* Collating sequence. If NULL, use the default */ 001667 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 001668 char affinity; /* One of the SQLITE_AFF_... values */ 001669 u8 szEst; /* Estimated size of value in this column. sizeof(INT)==1 */ 001670 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 001671 }; 001672 001673 /* Allowed values for Column.colFlags: 001674 */ 001675 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 001676 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 001677 #define COLFLAG_HASTYPE 0x0004 /* Type name follows column name */ 001678 001679 /* 001680 ** A "Collating Sequence" is defined by an instance of the following 001681 ** structure. Conceptually, a collating sequence consists of a name and 001682 ** a comparison routine that defines the order of that sequence. 001683 ** 001684 ** If CollSeq.xCmp is NULL, it means that the 001685 ** collating sequence is undefined. Indices built on an undefined 001686 ** collating sequence may not be read or written. 001687 */ 001688 struct CollSeq { 001689 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 001690 u8 enc; /* Text encoding handled by xCmp() */ 001691 void *pUser; /* First argument to xCmp() */ 001692 int (*xCmp)(void*,int, const void*, int, const void*); 001693 void (*xDel)(void*); /* Destructor for pUser */ 001694 }; 001695 001696 /* 001697 ** A sort order can be either ASC or DESC. 001698 */ 001699 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 001700 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 001701 #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */ 001702 001703 /* 001704 ** Column affinity types. 001705 ** 001706 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 001707 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 001708 ** the speed a little by numbering the values consecutively. 001709 ** 001710 ** But rather than start with 0 or 1, we begin with 'A'. That way, 001711 ** when multiple affinity types are concatenated into a string and 001712 ** used as the P4 operand, they will be more readable. 001713 ** 001714 ** Note also that the numeric types are grouped together so that testing 001715 ** for a numeric type is a single comparison. And the BLOB type is first. 001716 */ 001717 #define SQLITE_AFF_BLOB 'A' 001718 #define SQLITE_AFF_TEXT 'B' 001719 #define SQLITE_AFF_NUMERIC 'C' 001720 #define SQLITE_AFF_INTEGER 'D' 001721 #define SQLITE_AFF_REAL 'E' 001722 001723 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 001724 001725 /* 001726 ** The SQLITE_AFF_MASK values masks off the significant bits of an 001727 ** affinity value. 001728 */ 001729 #define SQLITE_AFF_MASK 0x47 001730 001731 /* 001732 ** Additional bit values that can be ORed with an affinity without 001733 ** changing the affinity. 001734 ** 001735 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 001736 ** It causes an assert() to fire if either operand to a comparison 001737 ** operator is NULL. It is added to certain comparison operators to 001738 ** prove that the operands are always NOT NULL. 001739 */ 001740 #define SQLITE_KEEPNULL 0x08 /* Used by vector == or <> */ 001741 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 001742 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 001743 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 001744 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 001745 001746 /* 001747 ** An object of this type is created for each virtual table present in 001748 ** the database schema. 001749 ** 001750 ** If the database schema is shared, then there is one instance of this 001751 ** structure for each database connection (sqlite3*) that uses the shared 001752 ** schema. This is because each database connection requires its own unique 001753 ** instance of the sqlite3_vtab* handle used to access the virtual table 001754 ** implementation. sqlite3_vtab* handles can not be shared between 001755 ** database connections, even when the rest of the in-memory database 001756 ** schema is shared, as the implementation often stores the database 001757 ** connection handle passed to it via the xConnect() or xCreate() method 001758 ** during initialization internally. This database connection handle may 001759 ** then be used by the virtual table implementation to access real tables 001760 ** within the database. So that they appear as part of the callers 001761 ** transaction, these accesses need to be made via the same database 001762 ** connection as that used to execute SQL operations on the virtual table. 001763 ** 001764 ** All VTable objects that correspond to a single table in a shared 001765 ** database schema are initially stored in a linked-list pointed to by 001766 ** the Table.pVTable member variable of the corresponding Table object. 001767 ** When an sqlite3_prepare() operation is required to access the virtual 001768 ** table, it searches the list for the VTable that corresponds to the 001769 ** database connection doing the preparing so as to use the correct 001770 ** sqlite3_vtab* handle in the compiled query. 001771 ** 001772 ** When an in-memory Table object is deleted (for example when the 001773 ** schema is being reloaded for some reason), the VTable objects are not 001774 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 001775 ** immediately. Instead, they are moved from the Table.pVTable list to 001776 ** another linked list headed by the sqlite3.pDisconnect member of the 001777 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 001778 ** next time a statement is prepared using said sqlite3*. This is done 001779 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 001780 ** Refer to comments above function sqlite3VtabUnlockList() for an 001781 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 001782 ** list without holding the corresponding sqlite3.mutex mutex. 001783 ** 001784 ** The memory for objects of this type is always allocated by 001785 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 001786 ** the first argument. 001787 */ 001788 struct VTable { 001789 sqlite3 *db; /* Database connection associated with this table */ 001790 Module *pMod; /* Pointer to module implementation */ 001791 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 001792 int nRef; /* Number of pointers to this structure */ 001793 u8 bConstraint; /* True if constraints are supported */ 001794 int iSavepoint; /* Depth of the SAVEPOINT stack */ 001795 VTable *pNext; /* Next in linked list (see above) */ 001796 }; 001797 001798 /* 001799 ** The schema for each SQL table and view is represented in memory 001800 ** by an instance of the following structure. 001801 */ 001802 struct Table { 001803 char *zName; /* Name of the table or view */ 001804 Column *aCol; /* Information about each column */ 001805 Index *pIndex; /* List of SQL indexes on this table. */ 001806 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 001807 FKey *pFKey; /* Linked list of all foreign keys in this table */ 001808 char *zColAff; /* String defining the affinity of each column */ 001809 ExprList *pCheck; /* All CHECK constraints */ 001810 /* ... also used as column name list in a VIEW */ 001811 int tnum; /* Root BTree page for this table */ 001812 u32 nTabRef; /* Number of pointers to this Table */ 001813 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 001814 i16 nCol; /* Number of columns in this table */ 001815 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 001816 LogEst szTabRow; /* Estimated size of each table row in bytes */ 001817 #ifdef SQLITE_ENABLE_COSTMULT 001818 LogEst costMult; /* Cost multiplier for using this table */ 001819 #endif 001820 u8 tabFlags; /* Mask of TF_* values */ 001821 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 001822 #ifndef SQLITE_OMIT_ALTERTABLE 001823 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 001824 #endif 001825 #ifndef SQLITE_OMIT_VIRTUALTABLE 001826 int nModuleArg; /* Number of arguments to the module */ 001827 char **azModuleArg; /* 0: module 1: schema 2: vtab name 3...: args */ 001828 VTable *pVTable; /* List of VTable objects. */ 001829 #endif 001830 Trigger *pTrigger; /* List of triggers stored in pSchema */ 001831 Schema *pSchema; /* Schema that contains this table */ 001832 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 001833 }; 001834 001835 /* 001836 ** Allowed values for Table.tabFlags. 001837 ** 001838 ** TF_OOOHidden applies to tables or view that have hidden columns that are 001839 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 001840 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 001841 ** the TF_OOOHidden attribute would apply in this case. Such tables require 001842 ** special handling during INSERT processing. 001843 */ 001844 #define TF_Readonly 0x01 /* Read-only system table */ 001845 #define TF_Ephemeral 0x02 /* An ephemeral table */ 001846 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 001847 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 001848 #define TF_Virtual 0x10 /* Is a virtual table */ 001849 #define TF_WithoutRowid 0x20 /* No rowid. PRIMARY KEY is the key */ 001850 #define TF_NoVisibleRowid 0x40 /* No user-visible "rowid" column */ 001851 #define TF_OOOHidden 0x80 /* Out-of-Order hidden columns */ 001852 001853 001854 /* 001855 ** Test to see whether or not a table is a virtual table. This is 001856 ** done as a macro so that it will be optimized out when virtual 001857 ** table support is omitted from the build. 001858 */ 001859 #ifndef SQLITE_OMIT_VIRTUALTABLE 001860 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 001861 #else 001862 # define IsVirtual(X) 0 001863 #endif 001864 001865 /* 001866 ** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn() 001867 ** only works for non-virtual tables (ordinary tables and views) and is 001868 ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The 001869 ** IsHiddenColumn() macro is general purpose. 001870 */ 001871 #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS) 001872 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 001873 # define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 001874 #elif !defined(SQLITE_OMIT_VIRTUALTABLE) 001875 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 001876 # define IsOrdinaryHiddenColumn(X) 0 001877 #else 001878 # define IsHiddenColumn(X) 0 001879 # define IsOrdinaryHiddenColumn(X) 0 001880 #endif 001881 001882 001883 /* Does the table have a rowid */ 001884 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 001885 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 001886 001887 /* 001888 ** Each foreign key constraint is an instance of the following structure. 001889 ** 001890 ** A foreign key is associated with two tables. The "from" table is 001891 ** the table that contains the REFERENCES clause that creates the foreign 001892 ** key. The "to" table is the table that is named in the REFERENCES clause. 001893 ** Consider this example: 001894 ** 001895 ** CREATE TABLE ex1( 001896 ** a INTEGER PRIMARY KEY, 001897 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 001898 ** ); 001899 ** 001900 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 001901 ** Equivalent names: 001902 ** 001903 ** from-table == child-table 001904 ** to-table == parent-table 001905 ** 001906 ** Each REFERENCES clause generates an instance of the following structure 001907 ** which is attached to the from-table. The to-table need not exist when 001908 ** the from-table is created. The existence of the to-table is not checked. 001909 ** 001910 ** The list of all parents for child Table X is held at X.pFKey. 001911 ** 001912 ** A list of all children for a table named Z (which might not even exist) 001913 ** is held in Schema.fkeyHash with a hash key of Z. 001914 */ 001915 struct FKey { 001916 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 001917 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 001918 char *zTo; /* Name of table that the key points to (aka: Parent) */ 001919 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 001920 FKey *pPrevTo; /* Previous with the same zTo */ 001921 int nCol; /* Number of columns in this key */ 001922 /* EV: R-30323-21917 */ 001923 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 001924 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 001925 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 001926 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 001927 int iFrom; /* Index of column in pFrom */ 001928 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 001929 } aCol[1]; /* One entry for each of nCol columns */ 001930 }; 001931 001932 /* 001933 ** SQLite supports many different ways to resolve a constraint 001934 ** error. ROLLBACK processing means that a constraint violation 001935 ** causes the operation in process to fail and for the current transaction 001936 ** to be rolled back. ABORT processing means the operation in process 001937 ** fails and any prior changes from that one operation are backed out, 001938 ** but the transaction is not rolled back. FAIL processing means that 001939 ** the operation in progress stops and returns an error code. But prior 001940 ** changes due to the same operation are not backed out and no rollback 001941 ** occurs. IGNORE means that the particular row that caused the constraint 001942 ** error is not inserted or updated. Processing continues and no error 001943 ** is returned. REPLACE means that preexisting database rows that caused 001944 ** a UNIQUE constraint violation are removed so that the new insert or 001945 ** update can proceed. Processing continues and no error is reported. 001946 ** 001947 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 001948 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 001949 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 001950 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 001951 ** referenced table row is propagated into the row that holds the 001952 ** foreign key. 001953 ** 001954 ** The following symbolic values are used to record which type 001955 ** of action to take. 001956 */ 001957 #define OE_None 0 /* There is no constraint to check */ 001958 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 001959 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 001960 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 001961 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 001962 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 001963 001964 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 001965 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 001966 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 001967 #define OE_Cascade 9 /* Cascade the changes */ 001968 001969 #define OE_Default 10 /* Do whatever the default action is */ 001970 001971 001972 /* 001973 ** An instance of the following structure is passed as the first 001974 ** argument to sqlite3VdbeKeyCompare and is used to control the 001975 ** comparison of the two index keys. 001976 ** 001977 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 001978 ** are nField slots for the columns of an index then one extra slot 001979 ** for the rowid at the end. 001980 */ 001981 struct KeyInfo { 001982 u32 nRef; /* Number of references to this KeyInfo object */ 001983 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 001984 u16 nField; /* Number of key columns in the index */ 001985 u16 nXField; /* Number of columns beyond the key columns */ 001986 sqlite3 *db; /* The database connection */ 001987 u8 *aSortOrder; /* Sort order for each column. */ 001988 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 001989 }; 001990 001991 /* 001992 ** This object holds a record which has been parsed out into individual 001993 ** fields, for the purposes of doing a comparison. 001994 ** 001995 ** A record is an object that contains one or more fields of data. 001996 ** Records are used to store the content of a table row and to store 001997 ** the key of an index. A blob encoding of a record is created by 001998 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 001999 ** OP_Column opcode. 002000 ** 002001 ** An instance of this object serves as a "key" for doing a search on 002002 ** an index b+tree. The goal of the search is to find the entry that 002003 ** is closed to the key described by this object. This object might hold 002004 ** just a prefix of the key. The number of fields is given by 002005 ** pKeyInfo->nField. 002006 ** 002007 ** The r1 and r2 fields are the values to return if this key is less than 002008 ** or greater than a key in the btree, respectively. These are normally 002009 ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree 002010 ** is in DESC order. 002011 ** 002012 ** The key comparison functions actually return default_rc when they find 002013 ** an equals comparison. default_rc can be -1, 0, or +1. If there are 002014 ** multiple entries in the b-tree with the same key (when only looking 002015 ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to 002016 ** cause the search to find the last match, or +1 to cause the search to 002017 ** find the first match. 002018 ** 002019 ** The key comparison functions will set eqSeen to true if they ever 002020 ** get and equal results when comparing this structure to a b-tree record. 002021 ** When default_rc!=0, the search might end up on the record immediately 002022 ** before the first match or immediately after the last match. The 002023 ** eqSeen field will indicate whether or not an exact match exists in the 002024 ** b-tree. 002025 */ 002026 struct UnpackedRecord { 002027 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 002028 Mem *aMem; /* Values */ 002029 u16 nField; /* Number of entries in apMem[] */ 002030 i8 default_rc; /* Comparison result if keys are equal */ 002031 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 002032 i8 r1; /* Value to return if (lhs > rhs) */ 002033 i8 r2; /* Value to return if (rhs < lhs) */ 002034 u8 eqSeen; /* True if an equality comparison has been seen */ 002035 }; 002036 002037 002038 /* 002039 ** Each SQL index is represented in memory by an 002040 ** instance of the following structure. 002041 ** 002042 ** The columns of the table that are to be indexed are described 002043 ** by the aiColumn[] field of this structure. For example, suppose 002044 ** we have the following table and index: 002045 ** 002046 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 002047 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 002048 ** 002049 ** In the Table structure describing Ex1, nCol==3 because there are 002050 ** three columns in the table. In the Index structure describing 002051 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 002052 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 002053 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 002054 ** The second column to be indexed (c1) has an index of 0 in 002055 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 002056 ** 002057 ** The Index.onError field determines whether or not the indexed columns 002058 ** must be unique and what to do if they are not. When Index.onError=OE_None, 002059 ** it means this is not a unique index. Otherwise it is a unique index 002060 ** and the value of Index.onError indicate the which conflict resolution 002061 ** algorithm to employ whenever an attempt is made to insert a non-unique 002062 ** element. 002063 ** 002064 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 002065 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 002066 ** table as part of parsing an existing database schema), transient instances 002067 ** of this structure may be created. In this case the Index.tnum variable is 002068 ** used to store the address of a VDBE instruction, not a database page 002069 ** number (it cannot - the database page is not allocated until the VDBE 002070 ** program is executed). See convertToWithoutRowidTable() for details. 002071 */ 002072 struct Index { 002073 char *zName; /* Name of this index */ 002074 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 002075 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 002076 Table *pTable; /* The SQL table being indexed */ 002077 char *zColAff; /* String defining the affinity of each column */ 002078 Index *pNext; /* The next index associated with the same table */ 002079 Schema *pSchema; /* Schema containing this index */ 002080 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 002081 const char **azColl; /* Array of collation sequence names for index */ 002082 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 002083 ExprList *aColExpr; /* Column expressions */ 002084 int tnum; /* DB Page containing root of this index */ 002085 LogEst szIdxRow; /* Estimated average row size in bytes */ 002086 u16 nKeyCol; /* Number of columns forming the key */ 002087 u16 nColumn; /* Number of columns stored in the index */ 002088 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 002089 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 002090 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 002091 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 002092 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 002093 unsigned isCovering:1; /* True if this is a covering index */ 002094 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 002095 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 002096 int nSample; /* Number of elements in aSample[] */ 002097 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 002098 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 002099 IndexSample *aSample; /* Samples of the left-most key */ 002100 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 002101 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 002102 #endif 002103 }; 002104 002105 /* 002106 ** Allowed values for Index.idxType 002107 */ 002108 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 002109 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 002110 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 002111 002112 /* Return true if index X is a PRIMARY KEY index */ 002113 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 002114 002115 /* Return true if index X is a UNIQUE index */ 002116 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 002117 002118 /* The Index.aiColumn[] values are normally positive integer. But 002119 ** there are some negative values that have special meaning: 002120 */ 002121 #define XN_ROWID (-1) /* Indexed column is the rowid */ 002122 #define XN_EXPR (-2) /* Indexed column is an expression */ 002123 002124 /* 002125 ** Each sample stored in the sqlite_stat3 table is represented in memory 002126 ** using a structure of this type. See documentation at the top of the 002127 ** analyze.c source file for additional information. 002128 */ 002129 struct IndexSample { 002130 void *p; /* Pointer to sampled record */ 002131 int n; /* Size of record in bytes */ 002132 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 002133 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 002134 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 002135 }; 002136 002137 /* 002138 ** Each token coming out of the lexer is an instance of 002139 ** this structure. Tokens are also used as part of an expression. 002140 ** 002141 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 002142 ** may contain random values. Do not make any assumptions about Token.dyn 002143 ** and Token.n when Token.z==0. 002144 */ 002145 struct Token { 002146 const char *z; /* Text of the token. Not NULL-terminated! */ 002147 unsigned int n; /* Number of characters in this token */ 002148 }; 002149 002150 /* 002151 ** An instance of this structure contains information needed to generate 002152 ** code for a SELECT that contains aggregate functions. 002153 ** 002154 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 002155 ** pointer to this structure. The Expr.iColumn field is the index in 002156 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 002157 ** code for that node. 002158 ** 002159 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 002160 ** original Select structure that describes the SELECT statement. These 002161 ** fields do not need to be freed when deallocating the AggInfo structure. 002162 */ 002163 struct AggInfo { 002164 u8 directMode; /* Direct rendering mode means take data directly 002165 ** from source tables rather than from accumulators */ 002166 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 002167 ** than the source table */ 002168 int sortingIdx; /* Cursor number of the sorting index */ 002169 int sortingIdxPTab; /* Cursor number of pseudo-table */ 002170 int nSortingColumn; /* Number of columns in the sorting index */ 002171 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 002172 ExprList *pGroupBy; /* The group by clause */ 002173 struct AggInfo_col { /* For each column used in source tables */ 002174 Table *pTab; /* Source table */ 002175 int iTable; /* Cursor number of the source table */ 002176 int iColumn; /* Column number within the source table */ 002177 int iSorterColumn; /* Column number in the sorting index */ 002178 int iMem; /* Memory location that acts as accumulator */ 002179 Expr *pExpr; /* The original expression */ 002180 } *aCol; 002181 int nColumn; /* Number of used entries in aCol[] */ 002182 int nAccumulator; /* Number of columns that show through to the output. 002183 ** Additional columns are used only as parameters to 002184 ** aggregate functions */ 002185 struct AggInfo_func { /* For each aggregate function */ 002186 Expr *pExpr; /* Expression encoding the function */ 002187 FuncDef *pFunc; /* The aggregate function implementation */ 002188 int iMem; /* Memory location that acts as accumulator */ 002189 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 002190 } *aFunc; 002191 int nFunc; /* Number of entries in aFunc[] */ 002192 }; 002193 002194 /* 002195 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 002196 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 002197 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 002198 ** it uses less memory in the Expr object, which is a big memory user 002199 ** in systems with lots of prepared statements. And few applications 002200 ** need more than about 10 or 20 variables. But some extreme users want 002201 ** to have prepared statements with over 32767 variables, and for them 002202 ** the option is available (at compile-time). 002203 */ 002204 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 002205 typedef i16 ynVar; 002206 #else 002207 typedef int ynVar; 002208 #endif 002209 002210 /* 002211 ** Each node of an expression in the parse tree is an instance 002212 ** of this structure. 002213 ** 002214 ** Expr.op is the opcode. The integer parser token codes are reused 002215 ** as opcodes here. For example, the parser defines TK_GE to be an integer 002216 ** code representing the ">=" operator. This same integer code is reused 002217 ** to represent the greater-than-or-equal-to operator in the expression 002218 ** tree. 002219 ** 002220 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 002221 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 002222 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 002223 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 002224 ** then Expr.token contains the name of the function. 002225 ** 002226 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 002227 ** binary operator. Either or both may be NULL. 002228 ** 002229 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 002230 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 002231 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 002232 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 002233 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 002234 ** valid. 002235 ** 002236 ** An expression of the form ID or ID.ID refers to a column in a table. 002237 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 002238 ** the integer cursor number of a VDBE cursor pointing to that table and 002239 ** Expr.iColumn is the column number for the specific column. If the 002240 ** expression is used as a result in an aggregate SELECT, then the 002241 ** value is also stored in the Expr.iAgg column in the aggregate so that 002242 ** it can be accessed after all aggregates are computed. 002243 ** 002244 ** If the expression is an unbound variable marker (a question mark 002245 ** character '?' in the original SQL) then the Expr.iTable holds the index 002246 ** number for that variable. 002247 ** 002248 ** If the expression is a subquery then Expr.iColumn holds an integer 002249 ** register number containing the result of the subquery. If the 002250 ** subquery gives a constant result, then iTable is -1. If the subquery 002251 ** gives a different answer at different times during statement processing 002252 ** then iTable is the address of a subroutine that computes the subquery. 002253 ** 002254 ** If the Expr is of type OP_Column, and the table it is selecting from 002255 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 002256 ** corresponding table definition. 002257 ** 002258 ** ALLOCATION NOTES: 002259 ** 002260 ** Expr objects can use a lot of memory space in database schema. To 002261 ** help reduce memory requirements, sometimes an Expr object will be 002262 ** truncated. And to reduce the number of memory allocations, sometimes 002263 ** two or more Expr objects will be stored in a single memory allocation, 002264 ** together with Expr.zToken strings. 002265 ** 002266 ** If the EP_Reduced and EP_TokenOnly flags are set when 002267 ** an Expr object is truncated. When EP_Reduced is set, then all 002268 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 002269 ** are contained within the same memory allocation. Note, however, that 002270 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 002271 ** allocated, regardless of whether or not EP_Reduced is set. 002272 */ 002273 struct Expr { 002274 u8 op; /* Operation performed by this node */ 002275 char affinity; /* The affinity of the column or 0 if not a column */ 002276 u32 flags; /* Various flags. EP_* See below */ 002277 union { 002278 char *zToken; /* Token value. Zero terminated and dequoted */ 002279 int iValue; /* Non-negative integer value if EP_IntValue */ 002280 } u; 002281 002282 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 002283 ** space is allocated for the fields below this point. An attempt to 002284 ** access them will result in a segfault or malfunction. 002285 *********************************************************************/ 002286 002287 Expr *pLeft; /* Left subnode */ 002288 Expr *pRight; /* Right subnode */ 002289 union { 002290 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 002291 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 002292 } x; 002293 002294 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 002295 ** space is allocated for the fields below this point. An attempt to 002296 ** access them will result in a segfault or malfunction. 002297 *********************************************************************/ 002298 002299 #if SQLITE_MAX_EXPR_DEPTH>0 002300 int nHeight; /* Height of the tree headed by this node */ 002301 #endif 002302 int iTable; /* TK_COLUMN: cursor number of table holding column 002303 ** TK_REGISTER: register number 002304 ** TK_TRIGGER: 1 -> new, 0 -> old 002305 ** EP_Unlikely: 134217728 times likelihood 002306 ** TK_SELECT: 1st register of result vector */ 002307 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 002308 ** TK_VARIABLE: variable number (always >= 1). 002309 ** TK_SELECT_COLUMN: column of the result vector */ 002310 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 002311 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 002312 u8 op2; /* TK_REGISTER: original value of Expr.op 002313 ** TK_COLUMN: the value of p5 for OP_Column 002314 ** TK_AGG_FUNCTION: nesting depth */ 002315 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 002316 Table *pTab; /* Table for TK_COLUMN expressions. */ 002317 }; 002318 002319 /* 002320 ** The following are the meanings of bits in the Expr.flags field. 002321 */ 002322 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 002323 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 002324 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 002325 #define EP_Error 0x000008 /* Expression contains one or more errors */ 002326 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 002327 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 002328 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 002329 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 002330 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 002331 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 002332 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 002333 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 002334 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 002335 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 002336 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 002337 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 002338 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 002339 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 002340 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 002341 #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ 002342 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 002343 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 002344 #define EP_Alias 0x400000 /* Is an alias for a result set column */ 002345 #define EP_Leaf 0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */ 002346 002347 /* 002348 ** Combinations of two or more EP_* flags 002349 */ 002350 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 002351 002352 /* 002353 ** These macros can be used to test, set, or clear bits in the 002354 ** Expr.flags field. 002355 */ 002356 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 002357 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 002358 #define ExprSetProperty(E,P) (E)->flags|=(P) 002359 #define ExprClearProperty(E,P) (E)->flags&=~(P) 002360 002361 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 002362 ** and Accreditation only. It works like ExprSetProperty() during VVA 002363 ** processes but is a no-op for delivery. 002364 */ 002365 #ifdef SQLITE_DEBUG 002366 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 002367 #else 002368 # define ExprSetVVAProperty(E,P) 002369 #endif 002370 002371 /* 002372 ** Macros to determine the number of bytes required by a normal Expr 002373 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 002374 ** and an Expr struct with the EP_TokenOnly flag set. 002375 */ 002376 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 002377 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 002378 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 002379 002380 /* 002381 ** Flags passed to the sqlite3ExprDup() function. See the header comment 002382 ** above sqlite3ExprDup() for details. 002383 */ 002384 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 002385 002386 /* 002387 ** A list of expressions. Each expression may optionally have a 002388 ** name. An expr/name combination can be used in several ways, such 002389 ** as the list of "expr AS ID" fields following a "SELECT" or in the 002390 ** list of "ID = expr" items in an UPDATE. A list of expressions can 002391 ** also be used as the argument to a function, in which case the a.zName 002392 ** field is not used. 002393 ** 002394 ** By default the Expr.zSpan field holds a human-readable description of 002395 ** the expression that is used in the generation of error messages and 002396 ** column labels. In this case, Expr.zSpan is typically the text of a 002397 ** column expression as it exists in a SELECT statement. However, if 002398 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 002399 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 002400 ** form is used for name resolution with nested FROM clauses. 002401 */ 002402 struct ExprList { 002403 int nExpr; /* Number of expressions on the list */ 002404 struct ExprList_item { /* For each expression in the list */ 002405 Expr *pExpr; /* The list of expressions */ 002406 char *zName; /* Token associated with this expression */ 002407 char *zSpan; /* Original text of the expression */ 002408 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 002409 unsigned done :1; /* A flag to indicate when processing is finished */ 002410 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 002411 unsigned reusable :1; /* Constant expression is reusable */ 002412 union { 002413 struct { 002414 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 002415 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 002416 } x; 002417 int iConstExprReg; /* Register in which Expr value is cached */ 002418 } u; 002419 } *a; /* Alloc a power of two greater or equal to nExpr */ 002420 }; 002421 002422 /* 002423 ** An instance of this structure is used by the parser to record both 002424 ** the parse tree for an expression and the span of input text for an 002425 ** expression. 002426 */ 002427 struct ExprSpan { 002428 Expr *pExpr; /* The expression parse tree */ 002429 const char *zStart; /* First character of input text */ 002430 const char *zEnd; /* One character past the end of input text */ 002431 }; 002432 002433 /* 002434 ** An instance of this structure can hold a simple list of identifiers, 002435 ** such as the list "a,b,c" in the following statements: 002436 ** 002437 ** INSERT INTO t(a,b,c) VALUES ...; 002438 ** CREATE INDEX idx ON t(a,b,c); 002439 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 002440 ** 002441 ** The IdList.a.idx field is used when the IdList represents the list of 002442 ** column names after a table name in an INSERT statement. In the statement 002443 ** 002444 ** INSERT INTO t(a,b,c) ... 002445 ** 002446 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 002447 */ 002448 struct IdList { 002449 struct IdList_item { 002450 char *zName; /* Name of the identifier */ 002451 int idx; /* Index in some Table.aCol[] of a column named zName */ 002452 } *a; 002453 int nId; /* Number of identifiers on the list */ 002454 }; 002455 002456 /* 002457 ** The bitmask datatype defined below is used for various optimizations. 002458 ** 002459 ** Changing this from a 64-bit to a 32-bit type limits the number of 002460 ** tables in a join to 32 instead of 64. But it also reduces the size 002461 ** of the library by 738 bytes on ix86. 002462 */ 002463 #ifdef SQLITE_BITMASK_TYPE 002464 typedef SQLITE_BITMASK_TYPE Bitmask; 002465 #else 002466 typedef u64 Bitmask; 002467 #endif 002468 002469 /* 002470 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 002471 */ 002472 #define BMS ((int)(sizeof(Bitmask)*8)) 002473 002474 /* 002475 ** A bit in a Bitmask 002476 */ 002477 #define MASKBIT(n) (((Bitmask)1)<<(n)) 002478 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 002479 #define ALLBITS ((Bitmask)-1) 002480 002481 /* 002482 ** The following structure describes the FROM clause of a SELECT statement. 002483 ** Each table or subquery in the FROM clause is a separate element of 002484 ** the SrcList.a[] array. 002485 ** 002486 ** With the addition of multiple database support, the following structure 002487 ** can also be used to describe a particular table such as the table that 002488 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 002489 ** such a table must be a simple name: ID. But in SQLite, the table can 002490 ** now be identified by a database name, a dot, then the table name: ID.ID. 002491 ** 002492 ** The jointype starts out showing the join type between the current table 002493 ** and the next table on the list. The parser builds the list this way. 002494 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 002495 ** jointype expresses the join between the table and the previous table. 002496 ** 002497 ** In the colUsed field, the high-order bit (bit 63) is set if the table 002498 ** contains more than 63 columns and the 64-th or later column is used. 002499 */ 002500 struct SrcList { 002501 int nSrc; /* Number of tables or subqueries in the FROM clause */ 002502 u32 nAlloc; /* Number of entries allocated in a[] below */ 002503 struct SrcList_item { 002504 Schema *pSchema; /* Schema to which this item is fixed */ 002505 char *zDatabase; /* Name of database holding this table */ 002506 char *zName; /* Name of the table */ 002507 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 002508 Table *pTab; /* An SQL table corresponding to zName */ 002509 Select *pSelect; /* A SELECT statement used in place of a table name */ 002510 int addrFillSub; /* Address of subroutine to manifest a subquery */ 002511 int regReturn; /* Register holding return address of addrFillSub */ 002512 int regResult; /* Registers holding results of a co-routine */ 002513 struct { 002514 u8 jointype; /* Type of join between this table and the previous */ 002515 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 002516 unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ 002517 unsigned isTabFunc :1; /* True if table-valued-function syntax */ 002518 unsigned isCorrelated :1; /* True if sub-query is correlated */ 002519 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 002520 unsigned isRecursive :1; /* True for recursive reference in WITH */ 002521 } fg; 002522 #ifndef SQLITE_OMIT_EXPLAIN 002523 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 002524 #endif 002525 int iCursor; /* The VDBE cursor number used to access this table */ 002526 Expr *pOn; /* The ON clause of a join */ 002527 IdList *pUsing; /* The USING clause of a join */ 002528 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 002529 union { 002530 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 002531 ExprList *pFuncArg; /* Arguments to table-valued-function */ 002532 } u1; 002533 Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */ 002534 } a[1]; /* One entry for each identifier on the list */ 002535 }; 002536 002537 /* 002538 ** Permitted values of the SrcList.a.jointype field 002539 */ 002540 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 002541 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 002542 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 002543 #define JT_LEFT 0x0008 /* Left outer join */ 002544 #define JT_RIGHT 0x0010 /* Right outer join */ 002545 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 002546 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 002547 002548 002549 /* 002550 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 002551 ** and the WhereInfo.wctrlFlags member. 002552 ** 002553 ** Value constraints (enforced via assert()): 002554 ** WHERE_USE_LIMIT == SF_FixedLimit 002555 */ 002556 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 002557 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 002558 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 002559 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 002560 #define WHERE_ONEPASS_MULTIROW 0x0008 /* ONEPASS is ok with multiple rows */ 002561 #define WHERE_DUPLICATES_OK 0x0010 /* Ok to return a row more than once */ 002562 #define WHERE_OR_SUBCLAUSE 0x0020 /* Processing a sub-WHERE as part of 002563 ** the OR optimization */ 002564 #define WHERE_GROUPBY 0x0040 /* pOrderBy is really a GROUP BY */ 002565 #define WHERE_DISTINCTBY 0x0080 /* pOrderby is really a DISTINCT clause */ 002566 #define WHERE_WANT_DISTINCT 0x0100 /* All output needs to be distinct */ 002567 #define WHERE_SORTBYGROUP 0x0200 /* Support sqlite3WhereIsSorted() */ 002568 #define WHERE_SEEK_TABLE 0x0400 /* Do not defer seeks on main table */ 002569 #define WHERE_ORDERBY_LIMIT 0x0800 /* ORDERBY+LIMIT on the inner loop */ 002570 /* 0x1000 not currently used */ 002571 /* 0x2000 not currently used */ 002572 #define WHERE_USE_LIMIT 0x4000 /* Use the LIMIT in cost estimates */ 002573 /* 0x8000 not currently used */ 002574 002575 /* Allowed return values from sqlite3WhereIsDistinct() 002576 */ 002577 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 002578 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 002579 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 002580 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 002581 002582 /* 002583 ** A NameContext defines a context in which to resolve table and column 002584 ** names. The context consists of a list of tables (the pSrcList) field and 002585 ** a list of named expression (pEList). The named expression list may 002586 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 002587 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 002588 ** pEList corresponds to the result set of a SELECT and is NULL for 002589 ** other statements. 002590 ** 002591 ** NameContexts can be nested. When resolving names, the inner-most 002592 ** context is searched first. If no match is found, the next outer 002593 ** context is checked. If there is still no match, the next context 002594 ** is checked. This process continues until either a match is found 002595 ** or all contexts are check. When a match is found, the nRef member of 002596 ** the context containing the match is incremented. 002597 ** 002598 ** Each subquery gets a new NameContext. The pNext field points to the 002599 ** NameContext in the parent query. Thus the process of scanning the 002600 ** NameContext list corresponds to searching through successively outer 002601 ** subqueries looking for a match. 002602 */ 002603 struct NameContext { 002604 Parse *pParse; /* The parser */ 002605 SrcList *pSrcList; /* One or more tables used to resolve names */ 002606 ExprList *pEList; /* Optional list of result-set columns */ 002607 AggInfo *pAggInfo; /* Information about aggregates at this level */ 002608 NameContext *pNext; /* Next outer name context. NULL for outermost */ 002609 int nRef; /* Number of names resolved by this context */ 002610 int nErr; /* Number of errors encountered while resolving names */ 002611 u16 ncFlags; /* Zero or more NC_* flags defined below */ 002612 }; 002613 002614 /* 002615 ** Allowed values for the NameContext, ncFlags field. 002616 ** 002617 ** Value constraints (all checked via assert()): 002618 ** NC_HasAgg == SF_HasAgg 002619 ** NC_MinMaxAgg == SF_MinMaxAgg == SQLITE_FUNC_MINMAX 002620 ** 002621 */ 002622 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 002623 #define NC_PartIdx 0x0002 /* True if resolving a partial index WHERE */ 002624 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 002625 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 002626 #define NC_HasAgg 0x0010 /* One or more aggregate functions seen */ 002627 #define NC_IdxExpr 0x0020 /* True if resolving columns of CREATE INDEX */ 002628 #define NC_VarSelect 0x0040 /* A correlated subquery has been seen */ 002629 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 002630 002631 /* 002632 ** An instance of the following structure contains all information 002633 ** needed to generate code for a single SELECT statement. 002634 ** 002635 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 002636 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 002637 ** limit and nOffset to the value of the offset (or 0 if there is not 002638 ** offset). But later on, nLimit and nOffset become the memory locations 002639 ** in the VDBE that record the limit and offset counters. 002640 ** 002641 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 002642 ** These addresses must be stored so that we can go back and fill in 002643 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 002644 ** the number of columns in P2 can be computed at the same time 002645 ** as the OP_OpenEphm instruction is coded because not 002646 ** enough information about the compound query is known at that point. 002647 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 002648 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 002649 ** sequences for the ORDER BY clause. 002650 */ 002651 struct Select { 002652 ExprList *pEList; /* The fields of the result */ 002653 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 002654 LogEst nSelectRow; /* Estimated number of result rows */ 002655 u32 selFlags; /* Various SF_* values */ 002656 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 002657 #if SELECTTRACE_ENABLED 002658 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 002659 #endif 002660 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 002661 SrcList *pSrc; /* The FROM clause */ 002662 Expr *pWhere; /* The WHERE clause */ 002663 ExprList *pGroupBy; /* The GROUP BY clause */ 002664 Expr *pHaving; /* The HAVING clause */ 002665 ExprList *pOrderBy; /* The ORDER BY clause */ 002666 Select *pPrior; /* Prior select in a compound select statement */ 002667 Select *pNext; /* Next select to the left in a compound */ 002668 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 002669 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 002670 With *pWith; /* WITH clause attached to this select. Or NULL. */ 002671 }; 002672 002673 /* 002674 ** Allowed values for Select.selFlags. The "SF" prefix stands for 002675 ** "Select Flag". 002676 ** 002677 ** Value constraints (all checked via assert()) 002678 ** SF_HasAgg == NC_HasAgg 002679 ** SF_MinMaxAgg == NC_MinMaxAgg == SQLITE_FUNC_MINMAX 002680 ** SF_FixedLimit == WHERE_USE_LIMIT 002681 */ 002682 #define SF_Distinct 0x00001 /* Output should be DISTINCT */ 002683 #define SF_All 0x00002 /* Includes the ALL keyword */ 002684 #define SF_Resolved 0x00004 /* Identifiers have been resolved */ 002685 #define SF_Aggregate 0x00008 /* Contains agg functions or a GROUP BY */ 002686 #define SF_HasAgg 0x00010 /* Contains aggregate functions */ 002687 #define SF_UsesEphemeral 0x00020 /* Uses the OpenEphemeral opcode */ 002688 #define SF_Expanded 0x00040 /* sqlite3SelectExpand() called on this */ 002689 #define SF_HasTypeInfo 0x00080 /* FROM subqueries have Table metadata */ 002690 #define SF_Compound 0x00100 /* Part of a compound query */ 002691 #define SF_Values 0x00200 /* Synthesized from VALUES clause */ 002692 #define SF_MultiValue 0x00400 /* Single VALUES term with multiple rows */ 002693 #define SF_NestedFrom 0x00800 /* Part of a parenthesized FROM clause */ 002694 #define SF_MinMaxAgg 0x01000 /* Aggregate containing min() or max() */ 002695 #define SF_Recursive 0x02000 /* The recursive part of a recursive CTE */ 002696 #define SF_FixedLimit 0x04000 /* nSelectRow set by a constant LIMIT */ 002697 #define SF_MaybeConvert 0x08000 /* Need convertCompoundSelectToSubquery() */ 002698 #define SF_Converted 0x10000 /* By convertCompoundSelectToSubquery() */ 002699 #define SF_IncludeHidden 0x20000 /* Include hidden columns in output */ 002700 002701 002702 /* 002703 ** The results of a SELECT can be distributed in several ways, as defined 002704 ** by one of the following macros. The "SRT" prefix means "SELECT Result 002705 ** Type". 002706 ** 002707 ** SRT_Union Store results as a key in a temporary index 002708 ** identified by pDest->iSDParm. 002709 ** 002710 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 002711 ** 002712 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 002713 ** set is not empty. 002714 ** 002715 ** SRT_Discard Throw the results away. This is used by SELECT 002716 ** statements within triggers whose only purpose is 002717 ** the side-effects of functions. 002718 ** 002719 ** All of the above are free to ignore their ORDER BY clause. Those that 002720 ** follow must honor the ORDER BY clause. 002721 ** 002722 ** SRT_Output Generate a row of output (using the OP_ResultRow 002723 ** opcode) for each row in the result set. 002724 ** 002725 ** SRT_Mem Only valid if the result is a single column. 002726 ** Store the first column of the first result row 002727 ** in register pDest->iSDParm then abandon the rest 002728 ** of the query. This destination implies "LIMIT 1". 002729 ** 002730 ** SRT_Set The result must be a single column. Store each 002731 ** row of result as the key in table pDest->iSDParm. 002732 ** Apply the affinity pDest->affSdst before storing 002733 ** results. Used to implement "IN (SELECT ...)". 002734 ** 002735 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 002736 ** the result there. The cursor is left open after 002737 ** returning. This is like SRT_Table except that 002738 ** this destination uses OP_OpenEphemeral to create 002739 ** the table first. 002740 ** 002741 ** SRT_Coroutine Generate a co-routine that returns a new row of 002742 ** results each time it is invoked. The entry point 002743 ** of the co-routine is stored in register pDest->iSDParm 002744 ** and the result row is stored in pDest->nDest registers 002745 ** starting with pDest->iSdst. 002746 ** 002747 ** SRT_Table Store results in temporary table pDest->iSDParm. 002748 ** SRT_Fifo This is like SRT_EphemTab except that the table 002749 ** is assumed to already be open. SRT_Fifo has 002750 ** the additional property of being able to ignore 002751 ** the ORDER BY clause. 002752 ** 002753 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 002754 ** But also use temporary table pDest->iSDParm+1 as 002755 ** a record of all prior results and ignore any duplicate 002756 ** rows. Name means: "Distinct Fifo". 002757 ** 002758 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 002759 ** an index). Append a sequence number so that all entries 002760 ** are distinct. 002761 ** 002762 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 002763 ** the same record has never been stored before. The 002764 ** index at pDest->iSDParm+1 hold all prior stores. 002765 */ 002766 #define SRT_Union 1 /* Store result as keys in an index */ 002767 #define SRT_Except 2 /* Remove result from a UNION index */ 002768 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 002769 #define SRT_Discard 4 /* Do not save the results anywhere */ 002770 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 002771 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 002772 #define SRT_Queue 7 /* Store result in an queue */ 002773 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 002774 002775 /* The ORDER BY clause is ignored for all of the above */ 002776 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 002777 002778 #define SRT_Output 9 /* Output each row of result */ 002779 #define SRT_Mem 10 /* Store result in a memory cell */ 002780 #define SRT_Set 11 /* Store results as keys in an index */ 002781 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 002782 #define SRT_Coroutine 13 /* Generate a single row of result */ 002783 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 002784 002785 /* 002786 ** An instance of this object describes where to put of the results of 002787 ** a SELECT statement. 002788 */ 002789 struct SelectDest { 002790 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 002791 char *zAffSdst; /* Affinity used when eDest==SRT_Set */ 002792 int iSDParm; /* A parameter used by the eDest disposal method */ 002793 int iSdst; /* Base register where results are written */ 002794 int nSdst; /* Number of registers allocated */ 002795 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 002796 }; 002797 002798 /* 002799 ** During code generation of statements that do inserts into AUTOINCREMENT 002800 ** tables, the following information is attached to the Table.u.autoInc.p 002801 ** pointer of each autoincrement table to record some side information that 002802 ** the code generator needs. We have to keep per-table autoincrement 002803 ** information in case inserts are done within triggers. Triggers do not 002804 ** normally coordinate their activities, but we do need to coordinate the 002805 ** loading and saving of autoincrement information. 002806 */ 002807 struct AutoincInfo { 002808 AutoincInfo *pNext; /* Next info block in a list of them all */ 002809 Table *pTab; /* Table this info block refers to */ 002810 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 002811 int regCtr; /* Memory register holding the rowid counter */ 002812 }; 002813 002814 /* 002815 ** Size of the column cache 002816 */ 002817 #ifndef SQLITE_N_COLCACHE 002818 # define SQLITE_N_COLCACHE 10 002819 #endif 002820 002821 /* 002822 ** At least one instance of the following structure is created for each 002823 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 002824 ** statement. All such objects are stored in the linked list headed at 002825 ** Parse.pTriggerPrg and deleted once statement compilation has been 002826 ** completed. 002827 ** 002828 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 002829 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 002830 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 002831 ** The Parse.pTriggerPrg list never contains two entries with the same 002832 ** values for both pTrigger and orconf. 002833 ** 002834 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 002835 ** accessed (or set to 0 for triggers fired as a result of INSERT 002836 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 002837 ** a mask of new.* columns used by the program. 002838 */ 002839 struct TriggerPrg { 002840 Trigger *pTrigger; /* Trigger this program was coded from */ 002841 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 002842 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 002843 int orconf; /* Default ON CONFLICT policy */ 002844 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 002845 }; 002846 002847 /* 002848 ** The yDbMask datatype for the bitmask of all attached databases. 002849 */ 002850 #if SQLITE_MAX_ATTACHED>30 002851 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 002852 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 002853 # define DbMaskZero(M) memset((M),0,sizeof(M)) 002854 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 002855 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 002856 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 002857 #else 002858 typedef unsigned int yDbMask; 002859 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 002860 # define DbMaskZero(M) (M)=0 002861 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 002862 # define DbMaskAllZero(M) (M)==0 002863 # define DbMaskNonZero(M) (M)!=0 002864 #endif 002865 002866 /* 002867 ** An SQL parser context. A copy of this structure is passed through 002868 ** the parser and down into all the parser action routine in order to 002869 ** carry around information that is global to the entire parse. 002870 ** 002871 ** The structure is divided into two parts. When the parser and code 002872 ** generate call themselves recursively, the first part of the structure 002873 ** is constant but the second part is reset at the beginning and end of 002874 ** each recursion. 002875 ** 002876 ** The nTableLock and aTableLock variables are only used if the shared-cache 002877 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 002878 ** used to store the set of table-locks required by the statement being 002879 ** compiled. Function sqlite3TableLock() is used to add entries to the 002880 ** list. 002881 */ 002882 struct Parse { 002883 sqlite3 *db; /* The main database structure */ 002884 char *zErrMsg; /* An error message */ 002885 Vdbe *pVdbe; /* An engine for executing database bytecode */ 002886 int rc; /* Return code from execution */ 002887 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 002888 u8 checkSchema; /* Causes schema cookie check after an error */ 002889 u8 nested; /* Number of nested calls to the parser/code generator */ 002890 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 002891 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 002892 u8 mayAbort; /* True if statement may throw an ABORT exception */ 002893 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 002894 u8 okConstFactor; /* OK to factor out constants */ 002895 u8 disableLookaside; /* Number of times lookaside has been disabled */ 002896 u8 nColCache; /* Number of entries in aColCache[] */ 002897 int nRangeReg; /* Size of the temporary register block */ 002898 int iRangeReg; /* First register in temporary register block */ 002899 int nErr; /* Number of errors seen */ 002900 int nTab; /* Number of previously allocated VDBE cursors */ 002901 int nMem; /* Number of memory cells used so far */ 002902 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 002903 int szOpAlloc; /* Bytes of memory space allocated for Vdbe.aOp[] */ 002904 int ckBase; /* Base register of data during check constraints */ 002905 int iSelfTab; /* Table of an index whose exprs are being coded */ 002906 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 002907 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 002908 int nLabel; /* Number of labels used */ 002909 int *aLabel; /* Space to hold the labels */ 002910 ExprList *pConstExpr;/* Constant expressions */ 002911 Token constraintName;/* Name of the constraint currently being parsed */ 002912 yDbMask writeMask; /* Start a write transaction on these databases */ 002913 yDbMask cookieMask; /* Bitmask of schema verified databases */ 002914 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 002915 int regRoot; /* Register holding root page number for new objects */ 002916 int nMaxArg; /* Max args passed to user function by sub-program */ 002917 #if SELECTTRACE_ENABLED 002918 int nSelect; /* Number of SELECT statements seen */ 002919 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 002920 #endif 002921 #ifndef SQLITE_OMIT_SHARED_CACHE 002922 int nTableLock; /* Number of locks in aTableLock */ 002923 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 002924 #endif 002925 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 002926 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 002927 Table *pTriggerTab; /* Table triggers are being coded for */ 002928 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 002929 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 002930 u32 oldmask; /* Mask of old.* columns referenced */ 002931 u32 newmask; /* Mask of new.* columns referenced */ 002932 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 002933 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 002934 u8 disableTriggers; /* True to disable triggers */ 002935 002936 /************************************************************************** 002937 ** Fields above must be initialized to zero. The fields that follow, 002938 ** down to the beginning of the recursive section, do not need to be 002939 ** initialized as they will be set before being used. The boundary is 002940 ** determined by offsetof(Parse,aColCache). 002941 **************************************************************************/ 002942 002943 struct yColCache { 002944 int iTable; /* Table cursor number */ 002945 i16 iColumn; /* Table column number */ 002946 u8 tempReg; /* iReg is a temp register that needs to be freed */ 002947 int iLevel; /* Nesting level */ 002948 int iReg; /* Reg with value of this column. 0 means none. */ 002949 int lru; /* Least recently used entry has the smallest value */ 002950 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 002951 int aTempReg[8]; /* Holding area for temporary registers */ 002952 Token sNameToken; /* Token with unqualified schema object name */ 002953 002954 /************************************************************************ 002955 ** Above is constant between recursions. Below is reset before and after 002956 ** each recursion. The boundary between these two regions is determined 002957 ** using offsetof(Parse,sLastToken) so the sLastToken field must be the 002958 ** first field in the recursive region. 002959 ************************************************************************/ 002960 002961 Token sLastToken; /* The last token parsed */ 002962 ynVar nVar; /* Number of '?' variables seen in the SQL so far */ 002963 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 002964 u8 explain; /* True if the EXPLAIN flag is found on the query */ 002965 #ifndef SQLITE_OMIT_VIRTUALTABLE 002966 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 002967 int nVtabLock; /* Number of virtual tables to lock */ 002968 #endif 002969 int nHeight; /* Expression tree height of current sub-select */ 002970 #ifndef SQLITE_OMIT_EXPLAIN 002971 int iSelectId; /* ID of current select for EXPLAIN output */ 002972 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 002973 #endif 002974 VList *pVList; /* Mapping between variable names and numbers */ 002975 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 002976 const char *zTail; /* All SQL text past the last semicolon parsed */ 002977 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 002978 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 002979 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 002980 #ifndef SQLITE_OMIT_VIRTUALTABLE 002981 Token sArg; /* Complete text of a module argument */ 002982 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 002983 #endif 002984 Table *pZombieTab; /* List of Table objects to delete after code gen */ 002985 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 002986 With *pWith; /* Current WITH clause, or NULL */ 002987 With *pWithToFree; /* Free this WITH object at the end of the parse */ 002988 }; 002989 002990 /* 002991 ** Sizes and pointers of various parts of the Parse object. 002992 */ 002993 #define PARSE_HDR_SZ offsetof(Parse,aColCache) /* Recursive part w/o aColCache*/ 002994 #define PARSE_RECURSE_SZ offsetof(Parse,sLastToken) /* Recursive part */ 002995 #define PARSE_TAIL_SZ (sizeof(Parse)-PARSE_RECURSE_SZ) /* Non-recursive part */ 002996 #define PARSE_TAIL(X) (((char*)(X))+PARSE_RECURSE_SZ) /* Pointer to tail */ 002997 002998 /* 002999 ** Return true if currently inside an sqlite3_declare_vtab() call. 003000 */ 003001 #ifdef SQLITE_OMIT_VIRTUALTABLE 003002 #define IN_DECLARE_VTAB 0 003003 #else 003004 #define IN_DECLARE_VTAB (pParse->declareVtab) 003005 #endif 003006 003007 /* 003008 ** An instance of the following structure can be declared on a stack and used 003009 ** to save the Parse.zAuthContext value so that it can be restored later. 003010 */ 003011 struct AuthContext { 003012 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 003013 Parse *pParse; /* The Parse structure */ 003014 }; 003015 003016 /* 003017 ** Bitfield flags for P5 value in various opcodes. 003018 ** 003019 ** Value constraints (enforced via assert()): 003020 ** OPFLAG_LENGTHARG == SQLITE_FUNC_LENGTH 003021 ** OPFLAG_TYPEOFARG == SQLITE_FUNC_TYPEOF 003022 ** OPFLAG_BULKCSR == BTREE_BULKLOAD 003023 ** OPFLAG_SEEKEQ == BTREE_SEEK_EQ 003024 ** OPFLAG_FORDELETE == BTREE_FORDELETE 003025 ** OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION 003026 ** OPFLAG_AUXDELETE == BTREE_AUXDELETE 003027 */ 003028 #define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */ 003029 /* Also used in P2 (not P5) of OP_Delete */ 003030 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 003031 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 003032 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 003033 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 003034 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 003035 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 003036 #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ 003037 #endif 003038 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 003039 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 003040 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 003041 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 003042 #define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */ 003043 #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ 003044 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 003045 #define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete: keep cursor position */ 003046 #define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */ 003047 003048 /* 003049 * Each trigger present in the database schema is stored as an instance of 003050 * struct Trigger. 003051 * 003052 * Pointers to instances of struct Trigger are stored in two ways. 003053 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 003054 * database). This allows Trigger structures to be retrieved by name. 003055 * 2. All triggers associated with a single table form a linked list, using the 003056 * pNext member of struct Trigger. A pointer to the first element of the 003057 * linked list is stored as the "pTrigger" member of the associated 003058 * struct Table. 003059 * 003060 * The "step_list" member points to the first element of a linked list 003061 * containing the SQL statements specified as the trigger program. 003062 */ 003063 struct Trigger { 003064 char *zName; /* The name of the trigger */ 003065 char *table; /* The table or view to which the trigger applies */ 003066 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 003067 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 003068 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 003069 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 003070 the <column-list> is stored here */ 003071 Schema *pSchema; /* Schema containing the trigger */ 003072 Schema *pTabSchema; /* Schema containing the table */ 003073 TriggerStep *step_list; /* Link list of trigger program steps */ 003074 Trigger *pNext; /* Next trigger associated with the table */ 003075 }; 003076 003077 /* 003078 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 003079 ** determine which. 003080 ** 003081 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 003082 ** In that cases, the constants below can be ORed together. 003083 */ 003084 #define TRIGGER_BEFORE 1 003085 #define TRIGGER_AFTER 2 003086 003087 /* 003088 * An instance of struct TriggerStep is used to store a single SQL statement 003089 * that is a part of a trigger-program. 003090 * 003091 * Instances of struct TriggerStep are stored in a singly linked list (linked 003092 * using the "pNext" member) referenced by the "step_list" member of the 003093 * associated struct Trigger instance. The first element of the linked list is 003094 * the first step of the trigger-program. 003095 * 003096 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 003097 * "SELECT" statement. The meanings of the other members is determined by the 003098 * value of "op" as follows: 003099 * 003100 * (op == TK_INSERT) 003101 * orconf -> stores the ON CONFLICT algorithm 003102 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 003103 * this stores a pointer to the SELECT statement. Otherwise NULL. 003104 * zTarget -> Dequoted name of the table to insert into. 003105 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 003106 * this stores values to be inserted. Otherwise NULL. 003107 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 003108 * statement, then this stores the column-names to be 003109 * inserted into. 003110 * 003111 * (op == TK_DELETE) 003112 * zTarget -> Dequoted name of the table to delete from. 003113 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 003114 * Otherwise NULL. 003115 * 003116 * (op == TK_UPDATE) 003117 * zTarget -> Dequoted name of the table to update. 003118 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 003119 * Otherwise NULL. 003120 * pExprList -> A list of the columns to update and the expressions to update 003121 * them to. See sqlite3Update() documentation of "pChanges" 003122 * argument. 003123 * 003124 */ 003125 struct TriggerStep { 003126 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 003127 u8 orconf; /* OE_Rollback etc. */ 003128 Trigger *pTrig; /* The trigger that this step is a part of */ 003129 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 003130 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 003131 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 003132 ExprList *pExprList; /* SET clause for UPDATE. */ 003133 IdList *pIdList; /* Column names for INSERT */ 003134 TriggerStep *pNext; /* Next in the link-list */ 003135 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 003136 }; 003137 003138 /* 003139 ** The following structure contains information used by the sqliteFix... 003140 ** routines as they walk the parse tree to make database references 003141 ** explicit. 003142 */ 003143 typedef struct DbFixer DbFixer; 003144 struct DbFixer { 003145 Parse *pParse; /* The parsing context. Error messages written here */ 003146 Schema *pSchema; /* Fix items to this schema */ 003147 int bVarOnly; /* Check for variable references only */ 003148 const char *zDb; /* Make sure all objects are contained in this database */ 003149 const char *zType; /* Type of the container - used for error messages */ 003150 const Token *pName; /* Name of the container - used for error messages */ 003151 }; 003152 003153 /* 003154 ** An objected used to accumulate the text of a string where we 003155 ** do not necessarily know how big the string will be in the end. 003156 */ 003157 struct StrAccum { 003158 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 003159 char *zBase; /* A base allocation. Not from malloc. */ 003160 char *zText; /* The string collected so far */ 003161 u32 nChar; /* Length of the string so far */ 003162 u32 nAlloc; /* Amount of space allocated in zText */ 003163 u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 003164 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 003165 u8 printfFlags; /* SQLITE_PRINTF flags below */ 003166 }; 003167 #define STRACCUM_NOMEM 1 003168 #define STRACCUM_TOOBIG 2 003169 #define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */ 003170 #define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */ 003171 #define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */ 003172 003173 #define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0) 003174 003175 003176 /* 003177 ** A pointer to this structure is used to communicate information 003178 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 003179 */ 003180 typedef struct { 003181 sqlite3 *db; /* The database being initialized */ 003182 char **pzErrMsg; /* Error message stored here */ 003183 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 003184 int rc; /* Result code stored here */ 003185 } InitData; 003186 003187 /* 003188 ** Structure containing global configuration data for the SQLite library. 003189 ** 003190 ** This structure also contains some state information. 003191 */ 003192 struct Sqlite3Config { 003193 int bMemstat; /* True to enable memory status */ 003194 int bCoreMutex; /* True to enable core mutexing */ 003195 int bFullMutex; /* True to enable full mutexing */ 003196 int bOpenUri; /* True to interpret filenames as URIs */ 003197 int bUseCis; /* Use covering indices for full-scans */ 003198 int mxStrlen; /* Maximum string length */ 003199 int neverCorrupt; /* Database is always well-formed */ 003200 int szLookaside; /* Default lookaside buffer size */ 003201 int nLookaside; /* Default lookaside buffer count */ 003202 int nStmtSpill; /* Stmt-journal spill-to-disk threshold */ 003203 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 003204 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 003205 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 003206 void *pHeap; /* Heap storage space */ 003207 int nHeap; /* Size of pHeap[] */ 003208 int mnReq, mxReq; /* Min and max heap requests sizes */ 003209 sqlite3_int64 szMmap; /* mmap() space per open file */ 003210 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 003211 void *pScratch; /* Scratch memory */ 003212 int szScratch; /* Size of each scratch buffer */ 003213 int nScratch; /* Number of scratch buffers */ 003214 void *pPage; /* Page cache memory */ 003215 int szPage; /* Size of each page in pPage[] */ 003216 int nPage; /* Number of pages in pPage[] */ 003217 int mxParserStack; /* maximum depth of the parser stack */ 003218 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 003219 u32 szPma; /* Maximum Sorter PMA size */ 003220 /* The above might be initialized to non-zero. The following need to always 003221 ** initially be zero, however. */ 003222 int isInit; /* True after initialization has finished */ 003223 int inProgress; /* True while initialization in progress */ 003224 int isMutexInit; /* True after mutexes are initialized */ 003225 int isMallocInit; /* True after malloc is initialized */ 003226 int isPCacheInit; /* True after malloc is initialized */ 003227 int nRefInitMutex; /* Number of users of pInitMutex */ 003228 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 003229 void (*xLog)(void*,int,const char*); /* Function for logging */ 003230 void *pLogArg; /* First argument to xLog() */ 003231 #ifdef SQLITE_ENABLE_SQLLOG 003232 void(*xSqllog)(void*,sqlite3*,const char*, int); 003233 void *pSqllogArg; 003234 #endif 003235 #ifdef SQLITE_VDBE_COVERAGE 003236 /* The following callback (if not NULL) is invoked on every VDBE branch 003237 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 003238 */ 003239 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 003240 void *pVdbeBranchArg; /* 1st argument */ 003241 #endif 003242 #ifndef SQLITE_UNTESTABLE 003243 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 003244 #endif 003245 int bLocaltimeFault; /* True to fail localtime() calls */ 003246 int iOnceResetThreshold; /* When to reset OP_Once counters */ 003247 }; 003248 003249 /* 003250 ** This macro is used inside of assert() statements to indicate that 003251 ** the assert is only valid on a well-formed database. Instead of: 003252 ** 003253 ** assert( X ); 003254 ** 003255 ** One writes: 003256 ** 003257 ** assert( X || CORRUPT_DB ); 003258 ** 003259 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 003260 ** that the database is definitely corrupt, only that it might be corrupt. 003261 ** For most test cases, CORRUPT_DB is set to false using a special 003262 ** sqlite3_test_control(). This enables assert() statements to prove 003263 ** things that are always true for well-formed databases. 003264 */ 003265 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 003266 003267 /* 003268 ** Context pointer passed down through the tree-walk. 003269 */ 003270 struct Walker { 003271 Parse *pParse; /* Parser context. */ 003272 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 003273 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 003274 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 003275 int walkerDepth; /* Number of subqueries */ 003276 u8 eCode; /* A small processing code */ 003277 union { /* Extra data for callback */ 003278 NameContext *pNC; /* Naming context */ 003279 int n; /* A counter */ 003280 int iCur; /* A cursor number */ 003281 SrcList *pSrcList; /* FROM clause */ 003282 struct SrcCount *pSrcCount; /* Counting column references */ 003283 struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ 003284 int *aiCol; /* array of column indexes */ 003285 struct IdxCover *pIdxCover; /* Check for index coverage */ 003286 } u; 003287 }; 003288 003289 /* Forward declarations */ 003290 int sqlite3WalkExpr(Walker*, Expr*); 003291 int sqlite3WalkExprList(Walker*, ExprList*); 003292 int sqlite3WalkSelect(Walker*, Select*); 003293 int sqlite3WalkSelectExpr(Walker*, Select*); 003294 int sqlite3WalkSelectFrom(Walker*, Select*); 003295 int sqlite3ExprWalkNoop(Walker*, Expr*); 003296 003297 /* 003298 ** Return code from the parse-tree walking primitives and their 003299 ** callbacks. 003300 */ 003301 #define WRC_Continue 0 /* Continue down into children */ 003302 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 003303 #define WRC_Abort 2 /* Abandon the tree walk */ 003304 003305 /* 003306 ** An instance of this structure represents a set of one or more CTEs 003307 ** (common table expressions) created by a single WITH clause. 003308 */ 003309 struct With { 003310 int nCte; /* Number of CTEs in the WITH clause */ 003311 With *pOuter; /* Containing WITH clause, or NULL */ 003312 struct Cte { /* For each CTE in the WITH clause.... */ 003313 char *zName; /* Name of this CTE */ 003314 ExprList *pCols; /* List of explicit column names, or NULL */ 003315 Select *pSelect; /* The definition of this CTE */ 003316 const char *zCteErr; /* Error message for circular references */ 003317 } a[1]; 003318 }; 003319 003320 #ifdef SQLITE_DEBUG 003321 /* 003322 ** An instance of the TreeView object is used for printing the content of 003323 ** data structures on sqlite3DebugPrintf() using a tree-like view. 003324 */ 003325 struct TreeView { 003326 int iLevel; /* Which level of the tree we are on */ 003327 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 003328 }; 003329 #endif /* SQLITE_DEBUG */ 003330 003331 /* 003332 ** Assuming zIn points to the first byte of a UTF-8 character, 003333 ** advance zIn to point to the first byte of the next UTF-8 character. 003334 */ 003335 #define SQLITE_SKIP_UTF8(zIn) { \ 003336 if( (*(zIn++))>=0xc0 ){ \ 003337 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 003338 } \ 003339 } 003340 003341 /* 003342 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 003343 ** the same name but without the _BKPT suffix. These macros invoke 003344 ** routines that report the line-number on which the error originated 003345 ** using sqlite3_log(). The routines also provide a convenient place 003346 ** to set a debugger breakpoint. 003347 */ 003348 int sqlite3CorruptError(int); 003349 int sqlite3MisuseError(int); 003350 int sqlite3CantopenError(int); 003351 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 003352 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 003353 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 003354 #ifdef SQLITE_DEBUG 003355 int sqlite3NomemError(int); 003356 int sqlite3IoerrnomemError(int); 003357 # define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__) 003358 # define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__) 003359 #else 003360 # define SQLITE_NOMEM_BKPT SQLITE_NOMEM 003361 # define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM 003362 #endif 003363 003364 /* 003365 ** FTS3 and FTS4 both require virtual table support 003366 */ 003367 #if defined(SQLITE_OMIT_VIRTUALTABLE) 003368 # undef SQLITE_ENABLE_FTS3 003369 # undef SQLITE_ENABLE_FTS4 003370 #endif 003371 003372 /* 003373 ** FTS4 is really an extension for FTS3. It is enabled using the 003374 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 003375 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 003376 */ 003377 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 003378 # define SQLITE_ENABLE_FTS3 1 003379 #endif 003380 003381 /* 003382 ** The ctype.h header is needed for non-ASCII systems. It is also 003383 ** needed by FTS3 when FTS3 is included in the amalgamation. 003384 */ 003385 #if !defined(SQLITE_ASCII) || \ 003386 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 003387 # include <ctype.h> 003388 #endif 003389 003390 /* 003391 ** The following macros mimic the standard library functions toupper(), 003392 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 003393 ** sqlite versions only work for ASCII characters, regardless of locale. 003394 */ 003395 #ifdef SQLITE_ASCII 003396 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 003397 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 003398 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 003399 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 003400 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 003401 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 003402 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 003403 # define sqlite3Isquote(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x80) 003404 #else 003405 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 003406 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 003407 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 003408 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 003409 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 003410 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 003411 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 003412 # define sqlite3Isquote(x) ((x)=='"'||(x)=='\''||(x)=='['||(x)=='`') 003413 #endif 003414 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 003415 int sqlite3IsIdChar(u8); 003416 #endif 003417 003418 /* 003419 ** Internal function prototypes 003420 */ 003421 int sqlite3StrICmp(const char*,const char*); 003422 int sqlite3Strlen30(const char*); 003423 char *sqlite3ColumnType(Column*,char*); 003424 #define sqlite3StrNICmp sqlite3_strnicmp 003425 003426 int sqlite3MallocInit(void); 003427 void sqlite3MallocEnd(void); 003428 void *sqlite3Malloc(u64); 003429 void *sqlite3MallocZero(u64); 003430 void *sqlite3DbMallocZero(sqlite3*, u64); 003431 void *sqlite3DbMallocRaw(sqlite3*, u64); 003432 void *sqlite3DbMallocRawNN(sqlite3*, u64); 003433 char *sqlite3DbStrDup(sqlite3*,const char*); 003434 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 003435 void *sqlite3Realloc(void*, u64); 003436 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 003437 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 003438 void sqlite3DbFree(sqlite3*, void*); 003439 int sqlite3MallocSize(void*); 003440 int sqlite3DbMallocSize(sqlite3*, void*); 003441 void *sqlite3ScratchMalloc(int); 003442 void sqlite3ScratchFree(void*); 003443 void *sqlite3PageMalloc(int); 003444 void sqlite3PageFree(void*); 003445 void sqlite3MemSetDefault(void); 003446 #ifndef SQLITE_UNTESTABLE 003447 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 003448 #endif 003449 int sqlite3HeapNearlyFull(void); 003450 003451 /* 003452 ** On systems with ample stack space and that support alloca(), make 003453 ** use of alloca() to obtain space for large automatic objects. By default, 003454 ** obtain space from malloc(). 003455 ** 003456 ** The alloca() routine never returns NULL. This will cause code paths 003457 ** that deal with sqlite3StackAlloc() failures to be unreachable. 003458 */ 003459 #ifdef SQLITE_USE_ALLOCA 003460 # define sqlite3StackAllocRaw(D,N) alloca(N) 003461 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 003462 # define sqlite3StackFree(D,P) 003463 #else 003464 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 003465 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 003466 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 003467 #endif 003468 003469 /* Do not allow both MEMSYS5 and MEMSYS3 to be defined together. If they 003470 ** are, disable MEMSYS3 003471 */ 003472 #ifdef SQLITE_ENABLE_MEMSYS5 003473 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 003474 #undef SQLITE_ENABLE_MEMSYS3 003475 #endif 003476 #ifdef SQLITE_ENABLE_MEMSYS3 003477 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 003478 #endif 003479 003480 003481 #ifndef SQLITE_MUTEX_OMIT 003482 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 003483 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 003484 sqlite3_mutex *sqlite3MutexAlloc(int); 003485 int sqlite3MutexInit(void); 003486 int sqlite3MutexEnd(void); 003487 #endif 003488 #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP) 003489 void sqlite3MemoryBarrier(void); 003490 #else 003491 # define sqlite3MemoryBarrier() 003492 #endif 003493 003494 sqlite3_int64 sqlite3StatusValue(int); 003495 void sqlite3StatusUp(int, int); 003496 void sqlite3StatusDown(int, int); 003497 void sqlite3StatusHighwater(int, int); 003498 003499 /* Access to mutexes used by sqlite3_status() */ 003500 sqlite3_mutex *sqlite3Pcache1Mutex(void); 003501 sqlite3_mutex *sqlite3MallocMutex(void); 003502 003503 #ifndef SQLITE_OMIT_FLOATING_POINT 003504 int sqlite3IsNaN(double); 003505 #else 003506 # define sqlite3IsNaN(X) 0 003507 #endif 003508 003509 /* 003510 ** An instance of the following structure holds information about SQL 003511 ** functions arguments that are the parameters to the printf() function. 003512 */ 003513 struct PrintfArguments { 003514 int nArg; /* Total number of arguments */ 003515 int nUsed; /* Number of arguments used so far */ 003516 sqlite3_value **apArg; /* The argument values */ 003517 }; 003518 003519 void sqlite3VXPrintf(StrAccum*, const char*, va_list); 003520 void sqlite3XPrintf(StrAccum*, const char*, ...); 003521 char *sqlite3MPrintf(sqlite3*,const char*, ...); 003522 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 003523 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 003524 void sqlite3DebugPrintf(const char*, ...); 003525 #endif 003526 #if defined(SQLITE_TEST) 003527 void *sqlite3TestTextToPtr(const char*); 003528 #endif 003529 003530 #if defined(SQLITE_DEBUG) 003531 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 003532 void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*); 003533 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 003534 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 003535 void sqlite3TreeViewWith(TreeView*, const With*, u8); 003536 #endif 003537 003538 003539 void sqlite3SetString(char **, sqlite3*, const char*); 003540 void sqlite3ErrorMsg(Parse*, const char*, ...); 003541 void sqlite3Dequote(char*); 003542 void sqlite3TokenInit(Token*,char*); 003543 int sqlite3KeywordCode(const unsigned char*, int); 003544 int sqlite3RunParser(Parse*, const char*, char **); 003545 void sqlite3FinishCoding(Parse*); 003546 int sqlite3GetTempReg(Parse*); 003547 void sqlite3ReleaseTempReg(Parse*,int); 003548 int sqlite3GetTempRange(Parse*,int); 003549 void sqlite3ReleaseTempRange(Parse*,int,int); 003550 void sqlite3ClearTempRegCache(Parse*); 003551 #ifdef SQLITE_DEBUG 003552 int sqlite3NoTempsInRange(Parse*,int,int); 003553 #endif 003554 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 003555 Expr *sqlite3Expr(sqlite3*,int,const char*); 003556 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 003557 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*); 003558 void sqlite3PExprAddSelect(Parse*, Expr*, Select*); 003559 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 003560 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 003561 void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32); 003562 void sqlite3ExprDelete(sqlite3*, Expr*); 003563 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 003564 ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*); 003565 void sqlite3ExprListSetSortOrder(ExprList*,int); 003566 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 003567 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 003568 void sqlite3ExprListDelete(sqlite3*, ExprList*); 003569 u32 sqlite3ExprListFlags(const ExprList*); 003570 int sqlite3Init(sqlite3*, char**); 003571 int sqlite3InitCallback(void*, int, char**, char**); 003572 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 003573 #ifndef SQLITE_OMIT_VIRTUALTABLE 003574 Module *sqlite3PragmaVtabRegister(sqlite3*,const char *zName); 003575 #endif 003576 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 003577 void sqlite3ResetOneSchema(sqlite3*,int); 003578 void sqlite3CollapseDatabaseArray(sqlite3*); 003579 void sqlite3CommitInternalChanges(sqlite3*); 003580 void sqlite3DeleteColumnNames(sqlite3*,Table*); 003581 int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**); 003582 void sqlite3SelectAddColumnTypeAndCollation(Parse*,Table*,Select*); 003583 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 003584 void sqlite3OpenMasterTable(Parse *, int); 003585 Index *sqlite3PrimaryKeyIndex(Table*); 003586 i16 sqlite3ColumnOfIndex(Index*, i16); 003587 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 003588 #if SQLITE_ENABLE_HIDDEN_COLUMNS 003589 void sqlite3ColumnPropertiesFromName(Table*, Column*); 003590 #else 003591 # define sqlite3ColumnPropertiesFromName(T,C) /* no-op */ 003592 #endif 003593 void sqlite3AddColumn(Parse*,Token*,Token*); 003594 void sqlite3AddNotNull(Parse*, int); 003595 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 003596 void sqlite3AddCheckConstraint(Parse*, Expr*); 003597 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 003598 void sqlite3AddCollateType(Parse*, Token*); 003599 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 003600 int sqlite3ParseUri(const char*,const char*,unsigned int*, 003601 sqlite3_vfs**,char**,char **); 003602 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 003603 003604 #ifdef SQLITE_UNTESTABLE 003605 # define sqlite3FaultSim(X) SQLITE_OK 003606 #else 003607 int sqlite3FaultSim(int); 003608 #endif 003609 003610 Bitvec *sqlite3BitvecCreate(u32); 003611 int sqlite3BitvecTest(Bitvec*, u32); 003612 int sqlite3BitvecTestNotNull(Bitvec*, u32); 003613 int sqlite3BitvecSet(Bitvec*, u32); 003614 void sqlite3BitvecClear(Bitvec*, u32, void*); 003615 void sqlite3BitvecDestroy(Bitvec*); 003616 u32 sqlite3BitvecSize(Bitvec*); 003617 #ifndef SQLITE_UNTESTABLE 003618 int sqlite3BitvecBuiltinTest(int,int*); 003619 #endif 003620 003621 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 003622 void sqlite3RowSetClear(RowSet*); 003623 void sqlite3RowSetInsert(RowSet*, i64); 003624 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 003625 int sqlite3RowSetNext(RowSet*, i64*); 003626 003627 void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int); 003628 003629 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 003630 int sqlite3ViewGetColumnNames(Parse*,Table*); 003631 #else 003632 # define sqlite3ViewGetColumnNames(A,B) 0 003633 #endif 003634 003635 #if SQLITE_MAX_ATTACHED>30 003636 int sqlite3DbMaskAllZero(yDbMask); 003637 #endif 003638 void sqlite3DropTable(Parse*, SrcList*, int, int); 003639 void sqlite3CodeDropTable(Parse*, Table*, int, int); 003640 void sqlite3DeleteTable(sqlite3*, Table*); 003641 #ifndef SQLITE_OMIT_AUTOINCREMENT 003642 void sqlite3AutoincrementBegin(Parse *pParse); 003643 void sqlite3AutoincrementEnd(Parse *pParse); 003644 #else 003645 # define sqlite3AutoincrementBegin(X) 003646 # define sqlite3AutoincrementEnd(X) 003647 #endif 003648 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 003649 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 003650 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 003651 int sqlite3IdListIndex(IdList*,const char*); 003652 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 003653 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 003654 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 003655 Token*, Select*, Expr*, IdList*); 003656 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 003657 void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*); 003658 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 003659 void sqlite3SrcListShiftJoinType(SrcList*); 003660 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 003661 void sqlite3IdListDelete(sqlite3*, IdList*); 003662 void sqlite3SrcListDelete(sqlite3*, SrcList*); 003663 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 003664 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 003665 Expr*, int, int, u8); 003666 void sqlite3DropIndex(Parse*, SrcList*, int); 003667 int sqlite3Select(Parse*, Select*, SelectDest*); 003668 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 003669 Expr*,ExprList*,u32,Expr*,Expr*); 003670 void sqlite3SelectDelete(sqlite3*, Select*); 003671 Table *sqlite3SrcListLookup(Parse*, SrcList*); 003672 int sqlite3IsReadOnly(Parse*, Table*, int); 003673 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 003674 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 003675 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 003676 #endif 003677 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 003678 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 003679 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 003680 void sqlite3WhereEnd(WhereInfo*); 003681 LogEst sqlite3WhereOutputRowCount(WhereInfo*); 003682 int sqlite3WhereIsDistinct(WhereInfo*); 003683 int sqlite3WhereIsOrdered(WhereInfo*); 003684 int sqlite3WhereOrderedInnerLoop(WhereInfo*); 003685 int sqlite3WhereIsSorted(WhereInfo*); 003686 int sqlite3WhereContinueLabel(WhereInfo*); 003687 int sqlite3WhereBreakLabel(WhereInfo*); 003688 int sqlite3WhereOkOnePass(WhereInfo*, int*); 003689 #define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */ 003690 #define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */ 003691 #define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */ 003692 void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int); 003693 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 003694 void sqlite3ExprCodeGetColumnToReg(Parse*, Table*, int, int, int); 003695 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 003696 void sqlite3ExprCodeMove(Parse*, int, int, int); 003697 void sqlite3ExprCacheStore(Parse*, int, int, int); 003698 void sqlite3ExprCachePush(Parse*); 003699 void sqlite3ExprCachePop(Parse*); 003700 void sqlite3ExprCacheRemove(Parse*, int, int); 003701 void sqlite3ExprCacheClear(Parse*); 003702 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 003703 void sqlite3ExprCode(Parse*, Expr*, int); 003704 void sqlite3ExprCodeCopy(Parse*, Expr*, int); 003705 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 003706 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 003707 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 003708 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 003709 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 003710 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8); 003711 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 003712 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 003713 #define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */ 003714 #define SQLITE_ECEL_OMITREF 0x08 /* Omit if ExprList.u.x.iOrderByCol */ 003715 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 003716 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 003717 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 003718 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 003719 #define LOCATE_VIEW 0x01 003720 #define LOCATE_NOERR 0x02 003721 Table *sqlite3LocateTable(Parse*,u32 flags,const char*, const char*); 003722 Table *sqlite3LocateTableItem(Parse*,u32 flags,struct SrcList_item *); 003723 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 003724 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 003725 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 003726 void sqlite3Vacuum(Parse*,Token*); 003727 int sqlite3RunVacuum(char**, sqlite3*, int); 003728 char *sqlite3NameFromToken(sqlite3*, Token*); 003729 int sqlite3ExprCompare(Expr*, Expr*, int); 003730 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 003731 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 003732 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 003733 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 003734 int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx); 003735 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 003736 Vdbe *sqlite3GetVdbe(Parse*); 003737 #ifndef SQLITE_UNTESTABLE 003738 void sqlite3PrngSaveState(void); 003739 void sqlite3PrngRestoreState(void); 003740 #endif 003741 void sqlite3RollbackAll(sqlite3*,int); 003742 void sqlite3CodeVerifySchema(Parse*, int); 003743 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 003744 void sqlite3BeginTransaction(Parse*, int); 003745 void sqlite3CommitTransaction(Parse*); 003746 void sqlite3RollbackTransaction(Parse*); 003747 void sqlite3Savepoint(Parse*, int, Token*); 003748 void sqlite3CloseSavepoints(sqlite3 *); 003749 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 003750 int sqlite3ExprIsConstant(Expr*); 003751 int sqlite3ExprIsConstantNotJoin(Expr*); 003752 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 003753 int sqlite3ExprIsTableConstant(Expr*,int); 003754 #ifdef SQLITE_ENABLE_CURSOR_HINTS 003755 int sqlite3ExprContainsSubquery(Expr*); 003756 #endif 003757 int sqlite3ExprIsInteger(Expr*, int*); 003758 int sqlite3ExprCanBeNull(const Expr*); 003759 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 003760 int sqlite3IsRowid(const char*); 003761 void sqlite3GenerateRowDelete( 003762 Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); 003763 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); 003764 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 003765 void sqlite3ResolvePartIdxLabel(Parse*,int); 003766 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 003767 u8,u8,int,int*,int*); 003768 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 003769 int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); 003770 void sqlite3BeginWriteOperation(Parse*, int, int); 003771 void sqlite3MultiWrite(Parse*); 003772 void sqlite3MayAbort(Parse*); 003773 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 003774 void sqlite3UniqueConstraint(Parse*, int, Index*); 003775 void sqlite3RowidConstraint(Parse*, int, Table*); 003776 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 003777 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 003778 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 003779 IdList *sqlite3IdListDup(sqlite3*,IdList*); 003780 Select *sqlite3SelectDup(sqlite3*,Select*,int); 003781 #if SELECTTRACE_ENABLED 003782 void sqlite3SelectSetName(Select*,const char*); 003783 #else 003784 # define sqlite3SelectSetName(A,B) 003785 #endif 003786 void sqlite3InsertBuiltinFuncs(FuncDef*,int); 003787 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8); 003788 void sqlite3RegisterBuiltinFunctions(void); 003789 void sqlite3RegisterDateTimeFunctions(void); 003790 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*); 003791 int sqlite3SafetyCheckOk(sqlite3*); 003792 int sqlite3SafetyCheckSickOrOk(sqlite3*); 003793 void sqlite3ChangeCookie(Parse*, int); 003794 003795 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 003796 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 003797 #endif 003798 003799 #ifndef SQLITE_OMIT_TRIGGER 003800 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 003801 Expr*,int, int); 003802 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 003803 void sqlite3DropTrigger(Parse*, SrcList*, int); 003804 void sqlite3DropTriggerPtr(Parse*, Trigger*); 003805 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 003806 Trigger *sqlite3TriggerList(Parse *, Table *); 003807 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 003808 int, int, int); 003809 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 003810 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 003811 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 003812 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 003813 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 003814 Select*,u8); 003815 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 003816 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 003817 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 003818 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 003819 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 003820 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 003821 # define sqlite3IsToplevel(p) ((p)->pToplevel==0) 003822 #else 003823 # define sqlite3TriggersExist(B,C,D,E,F) 0 003824 # define sqlite3DeleteTrigger(A,B) 003825 # define sqlite3DropTriggerPtr(A,B) 003826 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 003827 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 003828 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 003829 # define sqlite3TriggerList(X, Y) 0 003830 # define sqlite3ParseToplevel(p) p 003831 # define sqlite3IsToplevel(p) 1 003832 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 003833 #endif 003834 003835 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 003836 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 003837 void sqlite3DeferForeignKey(Parse*, int); 003838 #ifndef SQLITE_OMIT_AUTHORIZATION 003839 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 003840 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 003841 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 003842 void sqlite3AuthContextPop(AuthContext*); 003843 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 003844 #else 003845 # define sqlite3AuthRead(a,b,c,d) 003846 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 003847 # define sqlite3AuthContextPush(a,b,c) 003848 # define sqlite3AuthContextPop(a) ((void)(a)) 003849 #endif 003850 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 003851 void sqlite3Detach(Parse*, Expr*); 003852 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 003853 int sqlite3FixSrcList(DbFixer*, SrcList*); 003854 int sqlite3FixSelect(DbFixer*, Select*); 003855 int sqlite3FixExpr(DbFixer*, Expr*); 003856 int sqlite3FixExprList(DbFixer*, ExprList*); 003857 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 003858 int sqlite3AtoF(const char *z, double*, int, u8); 003859 int sqlite3GetInt32(const char *, int*); 003860 int sqlite3Atoi(const char*); 003861 int sqlite3Utf16ByteLen(const void *pData, int nChar); 003862 int sqlite3Utf8CharLen(const char *pData, int nByte); 003863 u32 sqlite3Utf8Read(const u8**); 003864 LogEst sqlite3LogEst(u64); 003865 LogEst sqlite3LogEstAdd(LogEst,LogEst); 003866 #ifndef SQLITE_OMIT_VIRTUALTABLE 003867 LogEst sqlite3LogEstFromDouble(double); 003868 #endif 003869 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 003870 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 003871 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 003872 u64 sqlite3LogEstToInt(LogEst); 003873 #endif 003874 VList *sqlite3VListAdd(sqlite3*,VList*,const char*,int,int); 003875 const char *sqlite3VListNumToName(VList*,int); 003876 int sqlite3VListNameToNum(VList*,const char*,int); 003877 003878 /* 003879 ** Routines to read and write variable-length integers. These used to 003880 ** be defined locally, but now we use the varint routines in the util.c 003881 ** file. 003882 */ 003883 int sqlite3PutVarint(unsigned char*, u64); 003884 u8 sqlite3GetVarint(const unsigned char *, u64 *); 003885 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 003886 int sqlite3VarintLen(u64 v); 003887 003888 /* 003889 ** The common case is for a varint to be a single byte. They following 003890 ** macros handle the common case without a procedure call, but then call 003891 ** the procedure for larger varints. 003892 */ 003893 #define getVarint32(A,B) \ 003894 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 003895 #define putVarint32(A,B) \ 003896 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 003897 sqlite3PutVarint((A),(B))) 003898 #define getVarint sqlite3GetVarint 003899 #define putVarint sqlite3PutVarint 003900 003901 003902 const char *sqlite3IndexAffinityStr(sqlite3*, Index*); 003903 void sqlite3TableAffinity(Vdbe*, Table*, int); 003904 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 003905 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 003906 char sqlite3TableColumnAffinity(Table*,int); 003907 char sqlite3ExprAffinity(Expr *pExpr); 003908 int sqlite3Atoi64(const char*, i64*, int, u8); 003909 int sqlite3DecOrHexToI64(const char*, i64*); 003910 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 003911 void sqlite3Error(sqlite3*,int); 003912 void sqlite3SystemError(sqlite3*,int); 003913 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 003914 u8 sqlite3HexToInt(int h); 003915 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 003916 003917 #if defined(SQLITE_NEED_ERR_NAME) 003918 const char *sqlite3ErrName(int); 003919 #endif 003920 003921 const char *sqlite3ErrStr(int); 003922 int sqlite3ReadSchema(Parse *pParse); 003923 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 003924 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 003925 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 003926 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 003927 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 003928 Expr *sqlite3ExprSkipCollate(Expr*); 003929 int sqlite3CheckCollSeq(Parse *, CollSeq *); 003930 int sqlite3CheckObjectName(Parse *, const char *); 003931 void sqlite3VdbeSetChanges(sqlite3 *, int); 003932 int sqlite3AddInt64(i64*,i64); 003933 int sqlite3SubInt64(i64*,i64); 003934 int sqlite3MulInt64(i64*,i64); 003935 int sqlite3AbsInt32(int); 003936 #ifdef SQLITE_ENABLE_8_3_NAMES 003937 void sqlite3FileSuffix3(const char*, char*); 003938 #else 003939 # define sqlite3FileSuffix3(X,Y) 003940 #endif 003941 u8 sqlite3GetBoolean(const char *z,u8); 003942 003943 const void *sqlite3ValueText(sqlite3_value*, u8); 003944 int sqlite3ValueBytes(sqlite3_value*, u8); 003945 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 003946 void(*)(void*)); 003947 void sqlite3ValueSetNull(sqlite3_value*); 003948 void sqlite3ValueFree(sqlite3_value*); 003949 sqlite3_value *sqlite3ValueNew(sqlite3 *); 003950 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 003951 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 003952 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 003953 #ifndef SQLITE_AMALGAMATION 003954 extern const unsigned char sqlite3OpcodeProperty[]; 003955 extern const char sqlite3StrBINARY[]; 003956 extern const unsigned char sqlite3UpperToLower[]; 003957 extern const unsigned char sqlite3CtypeMap[]; 003958 extern const Token sqlite3IntTokens[]; 003959 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 003960 extern FuncDefHash sqlite3BuiltinFunctions; 003961 #ifndef SQLITE_OMIT_WSD 003962 extern int sqlite3PendingByte; 003963 #endif 003964 #endif 003965 void sqlite3RootPageMoved(sqlite3*, int, int, int); 003966 void sqlite3Reindex(Parse*, Token*, Token*); 003967 void sqlite3AlterFunctions(void); 003968 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 003969 int sqlite3GetToken(const unsigned char *, int *); 003970 void sqlite3NestedParse(Parse*, const char*, ...); 003971 void sqlite3ExpirePreparedStatements(sqlite3*); 003972 int sqlite3CodeSubselect(Parse*, Expr *, int, int); 003973 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 003974 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 003975 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 003976 int sqlite3ResolveExprNames(NameContext*, Expr*); 003977 int sqlite3ResolveExprListNames(NameContext*, ExprList*); 003978 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 003979 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 003980 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 003981 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 003982 void sqlite3AlterFinishAddColumn(Parse *, Token *); 003983 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 003984 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 003985 char sqlite3AffinityType(const char*, u8*); 003986 void sqlite3Analyze(Parse*, Token*, Token*); 003987 int sqlite3InvokeBusyHandler(BusyHandler*); 003988 int sqlite3FindDb(sqlite3*, Token*); 003989 int sqlite3FindDbName(sqlite3 *, const char *); 003990 int sqlite3AnalysisLoad(sqlite3*,int iDB); 003991 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 003992 void sqlite3DefaultRowEst(Index*); 003993 void sqlite3RegisterLikeFunctions(sqlite3*, int); 003994 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 003995 void sqlite3SchemaClear(void *); 003996 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 003997 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 003998 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 003999 void sqlite3KeyInfoUnref(KeyInfo*); 004000 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 004001 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 004002 #ifdef SQLITE_DEBUG 004003 int sqlite3KeyInfoIsWriteable(KeyInfo*); 004004 #endif 004005 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 004006 void (*)(sqlite3_context*,int,sqlite3_value **), 004007 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 004008 FuncDestructor *pDestructor 004009 ); 004010 void sqlite3OomFault(sqlite3*); 004011 void sqlite3OomClear(sqlite3*); 004012 int sqlite3ApiExit(sqlite3 *db, int); 004013 int sqlite3OpenTempDatabase(Parse *); 004014 004015 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 004016 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 004017 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 004018 void sqlite3AppendChar(StrAccum*,int,char); 004019 char *sqlite3StrAccumFinish(StrAccum*); 004020 void sqlite3StrAccumReset(StrAccum*); 004021 void sqlite3SelectDestInit(SelectDest*,int,int); 004022 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 004023 004024 void sqlite3BackupRestart(sqlite3_backup *); 004025 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 004026 004027 #ifndef SQLITE_OMIT_SUBQUERY 004028 int sqlite3ExprCheckIN(Parse*, Expr*); 004029 #else 004030 # define sqlite3ExprCheckIN(x,y) SQLITE_OK 004031 #endif 004032 004033 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 004034 void sqlite3AnalyzeFunctions(void); 004035 int sqlite3Stat4ProbeSetValue( 004036 Parse*,Index*,UnpackedRecord**,Expr*,int,int,int*); 004037 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 004038 void sqlite3Stat4ProbeFree(UnpackedRecord*); 004039 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 004040 char sqlite3IndexColumnAffinity(sqlite3*, Index*, int); 004041 #endif 004042 004043 /* 004044 ** The interface to the LEMON-generated parser 004045 */ 004046 void *sqlite3ParserAlloc(void*(*)(u64)); 004047 void sqlite3ParserFree(void*, void(*)(void*)); 004048 void sqlite3Parser(void*, int, Token, Parse*); 004049 #ifdef YYTRACKMAXSTACKDEPTH 004050 int sqlite3ParserStackPeak(void*); 004051 #endif 004052 004053 void sqlite3AutoLoadExtensions(sqlite3*); 004054 #ifndef SQLITE_OMIT_LOAD_EXTENSION 004055 void sqlite3CloseExtensions(sqlite3*); 004056 #else 004057 # define sqlite3CloseExtensions(X) 004058 #endif 004059 004060 #ifndef SQLITE_OMIT_SHARED_CACHE 004061 void sqlite3TableLock(Parse *, int, int, u8, const char *); 004062 #else 004063 #define sqlite3TableLock(v,w,x,y,z) 004064 #endif 004065 004066 #ifdef SQLITE_TEST 004067 int sqlite3Utf8To8(unsigned char*); 004068 #endif 004069 004070 #ifdef SQLITE_OMIT_VIRTUALTABLE 004071 # define sqlite3VtabClear(Y) 004072 # define sqlite3VtabSync(X,Y) SQLITE_OK 004073 # define sqlite3VtabRollback(X) 004074 # define sqlite3VtabCommit(X) 004075 # define sqlite3VtabInSync(db) 0 004076 # define sqlite3VtabLock(X) 004077 # define sqlite3VtabUnlock(X) 004078 # define sqlite3VtabUnlockList(X) 004079 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 004080 # define sqlite3GetVTable(X,Y) ((VTable*)0) 004081 #else 004082 void sqlite3VtabClear(sqlite3 *db, Table*); 004083 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 004084 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 004085 int sqlite3VtabRollback(sqlite3 *db); 004086 int sqlite3VtabCommit(sqlite3 *db); 004087 void sqlite3VtabLock(VTable *); 004088 void sqlite3VtabUnlock(VTable *); 004089 void sqlite3VtabUnlockList(sqlite3*); 004090 int sqlite3VtabSavepoint(sqlite3 *, int, int); 004091 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 004092 VTable *sqlite3GetVTable(sqlite3*, Table*); 004093 Module *sqlite3VtabCreateModule( 004094 sqlite3*, 004095 const char*, 004096 const sqlite3_module*, 004097 void*, 004098 void(*)(void*) 004099 ); 004100 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 004101 #endif 004102 int sqlite3VtabEponymousTableInit(Parse*,Module*); 004103 void sqlite3VtabEponymousTableClear(sqlite3*,Module*); 004104 void sqlite3VtabMakeWritable(Parse*,Table*); 004105 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 004106 void sqlite3VtabFinishParse(Parse*, Token*); 004107 void sqlite3VtabArgInit(Parse*); 004108 void sqlite3VtabArgExtend(Parse*, Token*); 004109 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 004110 int sqlite3VtabCallConnect(Parse*, Table*); 004111 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 004112 int sqlite3VtabBegin(sqlite3 *, VTable *); 004113 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 004114 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 004115 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 004116 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 004117 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 004118 void sqlite3ParserReset(Parse*); 004119 int sqlite3Reprepare(Vdbe*); 004120 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 004121 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 004122 int sqlite3TempInMemory(const sqlite3*); 004123 const char *sqlite3JournalModename(int); 004124 #ifndef SQLITE_OMIT_WAL 004125 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 004126 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 004127 #endif 004128 #ifndef SQLITE_OMIT_CTE 004129 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 004130 void sqlite3WithDelete(sqlite3*,With*); 004131 void sqlite3WithPush(Parse*, With*, u8); 004132 #else 004133 #define sqlite3WithPush(x,y,z) 004134 #define sqlite3WithDelete(x,y) 004135 #endif 004136 004137 /* Declarations for functions in fkey.c. All of these are replaced by 004138 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 004139 ** key functionality is available. If OMIT_TRIGGER is defined but 004140 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 004141 ** this case foreign keys are parsed, but no other functionality is 004142 ** provided (enforcement of FK constraints requires the triggers sub-system). 004143 */ 004144 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 004145 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 004146 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 004147 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 004148 int sqlite3FkRequired(Parse*, Table*, int*, int); 004149 u32 sqlite3FkOldmask(Parse*, Table*); 004150 FKey *sqlite3FkReferences(Table *); 004151 #else 004152 #define sqlite3FkActions(a,b,c,d,e,f) 004153 #define sqlite3FkCheck(a,b,c,d,e,f) 004154 #define sqlite3FkDropTable(a,b,c) 004155 #define sqlite3FkOldmask(a,b) 0 004156 #define sqlite3FkRequired(a,b,c,d) 0 004157 #endif 004158 #ifndef SQLITE_OMIT_FOREIGN_KEY 004159 void sqlite3FkDelete(sqlite3 *, Table*); 004160 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 004161 #else 004162 #define sqlite3FkDelete(a,b) 004163 #define sqlite3FkLocateIndex(a,b,c,d,e) 004164 #endif 004165 004166 004167 /* 004168 ** Available fault injectors. Should be numbered beginning with 0. 004169 */ 004170 #define SQLITE_FAULTINJECTOR_MALLOC 0 004171 #define SQLITE_FAULTINJECTOR_COUNT 1 004172 004173 /* 004174 ** The interface to the code in fault.c used for identifying "benign" 004175 ** malloc failures. This is only present if SQLITE_UNTESTABLE 004176 ** is not defined. 004177 */ 004178 #ifndef SQLITE_UNTESTABLE 004179 void sqlite3BeginBenignMalloc(void); 004180 void sqlite3EndBenignMalloc(void); 004181 #else 004182 #define sqlite3BeginBenignMalloc() 004183 #define sqlite3EndBenignMalloc() 004184 #endif 004185 004186 /* 004187 ** Allowed return values from sqlite3FindInIndex() 004188 */ 004189 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 004190 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 004191 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 004192 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 004193 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 004194 /* 004195 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 004196 */ 004197 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 004198 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 004199 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 004200 int sqlite3FindInIndex(Parse *, Expr *, u32, int*, int*); 004201 004202 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 004203 int sqlite3JournalSize(sqlite3_vfs *); 004204 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 004205 int sqlite3JournalCreate(sqlite3_file *); 004206 #endif 004207 004208 int sqlite3JournalIsInMemory(sqlite3_file *p); 004209 void sqlite3MemJournalOpen(sqlite3_file *); 004210 004211 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 004212 #if SQLITE_MAX_EXPR_DEPTH>0 004213 int sqlite3SelectExprHeight(Select *); 004214 int sqlite3ExprCheckHeight(Parse*, int); 004215 #else 004216 #define sqlite3SelectExprHeight(x) 0 004217 #define sqlite3ExprCheckHeight(x,y) 004218 #endif 004219 004220 u32 sqlite3Get4byte(const u8*); 004221 void sqlite3Put4byte(u8*, u32); 004222 004223 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 004224 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 004225 void sqlite3ConnectionUnlocked(sqlite3 *db); 004226 void sqlite3ConnectionClosed(sqlite3 *db); 004227 #else 004228 #define sqlite3ConnectionBlocked(x,y) 004229 #define sqlite3ConnectionUnlocked(x) 004230 #define sqlite3ConnectionClosed(x) 004231 #endif 004232 004233 #ifdef SQLITE_DEBUG 004234 void sqlite3ParserTrace(FILE*, char *); 004235 #endif 004236 004237 /* 004238 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 004239 ** sqlite3IoTrace is a pointer to a printf-like routine used to 004240 ** print I/O tracing messages. 004241 */ 004242 #ifdef SQLITE_ENABLE_IOTRACE 004243 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 004244 void sqlite3VdbeIOTraceSql(Vdbe*); 004245 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 004246 #else 004247 # define IOTRACE(A) 004248 # define sqlite3VdbeIOTraceSql(X) 004249 #endif 004250 004251 /* 004252 ** These routines are available for the mem2.c debugging memory allocator 004253 ** only. They are used to verify that different "types" of memory 004254 ** allocations are properly tracked by the system. 004255 ** 004256 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 004257 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 004258 ** a single bit set. 004259 ** 004260 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 004261 ** argument match the type set by the previous sqlite3MemdebugSetType(). 004262 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 004263 ** 004264 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 004265 ** argument match the type set by the previous sqlite3MemdebugSetType(). 004266 ** 004267 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 004268 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 004269 ** it might have been allocated by lookaside, except the allocation was 004270 ** too large or lookaside was already full. It is important to verify 004271 ** that allocations that might have been satisfied by lookaside are not 004272 ** passed back to non-lookaside free() routines. Asserts such as the 004273 ** example above are placed on the non-lookaside free() routines to verify 004274 ** this constraint. 004275 ** 004276 ** All of this is no-op for a production build. It only comes into 004277 ** play when the SQLITE_MEMDEBUG compile-time option is used. 004278 */ 004279 #ifdef SQLITE_MEMDEBUG 004280 void sqlite3MemdebugSetType(void*,u8); 004281 int sqlite3MemdebugHasType(void*,u8); 004282 int sqlite3MemdebugNoType(void*,u8); 004283 #else 004284 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 004285 # define sqlite3MemdebugHasType(X,Y) 1 004286 # define sqlite3MemdebugNoType(X,Y) 1 004287 #endif 004288 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 004289 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 004290 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 004291 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 004292 004293 /* 004294 ** Threading interface 004295 */ 004296 #if SQLITE_MAX_WORKER_THREADS>0 004297 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 004298 int sqlite3ThreadJoin(SQLiteThread*, void**); 004299 #endif 004300 004301 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 004302 int sqlite3DbstatRegister(sqlite3*); 004303 #endif 004304 004305 int sqlite3ExprVectorSize(Expr *pExpr); 004306 int sqlite3ExprIsVector(Expr *pExpr); 004307 Expr *sqlite3VectorFieldSubexpr(Expr*, int); 004308 Expr *sqlite3ExprForVectorField(Parse*,Expr*,int); 004309 void sqlite3VectorErrorMsg(Parse*, Expr*); 004310 004311 #endif /* SQLITEINT_H */