000001 /* 000002 ** 2008 August 05 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file implements that page cache. 000013 */ 000014 #include "sqliteInt.h" 000015 000016 /* 000017 ** A complete page cache is an instance of this structure. Every 000018 ** entry in the cache holds a single page of the database file. The 000019 ** btree layer only operates on the cached copy of the database pages. 000020 ** 000021 ** A page cache entry is "clean" if it exactly matches what is currently 000022 ** on disk. A page is "dirty" if it has been modified and needs to be 000023 ** persisted to disk. 000024 ** 000025 ** pDirty, pDirtyTail, pSynced: 000026 ** All dirty pages are linked into the doubly linked list using 000027 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order 000028 ** such that p was added to the list more recently than p->pDirtyNext. 000029 ** PCache.pDirty points to the first (newest) element in the list and 000030 ** pDirtyTail to the last (oldest). 000031 ** 000032 ** The PCache.pSynced variable is used to optimize searching for a dirty 000033 ** page to eject from the cache mid-transaction. It is better to eject 000034 ** a page that does not require a journal sync than one that does. 000035 ** Therefore, pSynced is maintained to that it *almost* always points 000036 ** to either the oldest page in the pDirty/pDirtyTail list that has a 000037 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one 000038 ** (so that the right page to eject can be found by following pDirtyPrev 000039 ** pointers). 000040 */ 000041 struct PCache { 000042 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 000043 PgHdr *pSynced; /* Last synced page in dirty page list */ 000044 int nRefSum; /* Sum of ref counts over all pages */ 000045 int szCache; /* Configured cache size */ 000046 int szSpill; /* Size before spilling occurs */ 000047 int szPage; /* Size of every page in this cache */ 000048 int szExtra; /* Size of extra space for each page */ 000049 u8 bPurgeable; /* True if pages are on backing store */ 000050 u8 eCreate; /* eCreate value for for xFetch() */ 000051 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 000052 void *pStress; /* Argument to xStress */ 000053 sqlite3_pcache *pCache; /* Pluggable cache module */ 000054 }; 000055 000056 /********************************** Test and Debug Logic **********************/ 000057 /* 000058 ** Debug tracing macros. Enable by by changing the "0" to "1" and 000059 ** recompiling. 000060 ** 000061 ** When sqlite3PcacheTrace is 1, single line trace messages are issued. 000062 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries 000063 ** is displayed for many operations, resulting in a lot of output. 000064 */ 000065 #if defined(SQLITE_DEBUG) && 0 000066 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ 000067 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ 000068 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} 000069 void pcacheDump(PCache *pCache){ 000070 int N; 000071 int i, j; 000072 sqlite3_pcache_page *pLower; 000073 PgHdr *pPg; 000074 unsigned char *a; 000075 000076 if( sqlite3PcacheTrace<2 ) return; 000077 if( pCache->pCache==0 ) return; 000078 N = sqlite3PcachePagecount(pCache); 000079 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump; 000080 for(i=1; i<=N; i++){ 000081 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); 000082 if( pLower==0 ) continue; 000083 pPg = (PgHdr*)pLower->pExtra; 000084 printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags); 000085 a = (unsigned char *)pLower->pBuf; 000086 for(j=0; j<12; j++) printf("%02x", a[j]); 000087 printf("\n"); 000088 if( pPg->pPage==0 ){ 000089 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); 000090 } 000091 } 000092 } 000093 #else 000094 # define pcacheTrace(X) 000095 # define pcacheDump(X) 000096 #endif 000097 000098 /* 000099 ** Check invariants on a PgHdr entry. Return true if everything is OK. 000100 ** Return false if any invariant is violated. 000101 ** 000102 ** This routine is for use inside of assert() statements only. For 000103 ** example: 000104 ** 000105 ** assert( sqlite3PcachePageSanity(pPg) ); 000106 */ 000107 #if SQLITE_DEBUG 000108 int sqlite3PcachePageSanity(PgHdr *pPg){ 000109 PCache *pCache; 000110 assert( pPg!=0 ); 000111 assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */ 000112 pCache = pPg->pCache; 000113 assert( pCache!=0 ); /* Every page has an associated PCache */ 000114 if( pPg->flags & PGHDR_CLEAN ){ 000115 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */ 000116 assert( pCache->pDirty!=pPg ); /* CLEAN pages not on dirty list */ 000117 assert( pCache->pDirtyTail!=pPg ); 000118 } 000119 /* WRITEABLE pages must also be DIRTY */ 000120 if( pPg->flags & PGHDR_WRITEABLE ){ 000121 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */ 000122 } 000123 /* NEED_SYNC can be set independently of WRITEABLE. This can happen, 000124 ** for example, when using the sqlite3PagerDontWrite() optimization: 000125 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. 000126 ** (2) Page X moved to freelist, WRITEABLE is cleared 000127 ** (3) Page X reused, WRITEABLE is set again 000128 ** If NEED_SYNC had been cleared in step 2, then it would not be reset 000129 ** in step 3, and page might be written into the database without first 000130 ** syncing the rollback journal, which might cause corruption on a power 000131 ** loss. 000132 ** 000133 ** Another example is when the database page size is smaller than the 000134 ** disk sector size. When any page of a sector is journalled, all pages 000135 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just 000136 ** in case they are later modified, since all pages in the same sector 000137 ** must be journalled and synced before any of those pages can be safely 000138 ** written. 000139 */ 000140 return 1; 000141 } 000142 #endif /* SQLITE_DEBUG */ 000143 000144 000145 /********************************** Linked List Management ********************/ 000146 000147 /* Allowed values for second argument to pcacheManageDirtyList() */ 000148 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 000149 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 000150 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 000151 000152 /* 000153 ** Manage pPage's participation on the dirty list. Bits of the addRemove 000154 ** argument determines what operation to do. The 0x01 bit means first 000155 ** remove pPage from the dirty list. The 0x02 means add pPage back to 000156 ** the dirty list. Doing both moves pPage to the front of the dirty list. 000157 */ 000158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 000159 PCache *p = pPage->pCache; 000160 000161 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, 000162 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", 000163 pPage->pgno)); 000164 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 000165 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 000166 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 000167 000168 /* Update the PCache1.pSynced variable if necessary. */ 000169 if( p->pSynced==pPage ){ 000170 p->pSynced = pPage->pDirtyPrev; 000171 } 000172 000173 if( pPage->pDirtyNext ){ 000174 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 000175 }else{ 000176 assert( pPage==p->pDirtyTail ); 000177 p->pDirtyTail = pPage->pDirtyPrev; 000178 } 000179 if( pPage->pDirtyPrev ){ 000180 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 000181 }else{ 000182 /* If there are now no dirty pages in the cache, set eCreate to 2. 000183 ** This is an optimization that allows sqlite3PcacheFetch() to skip 000184 ** searching for a dirty page to eject from the cache when it might 000185 ** otherwise have to. */ 000186 assert( pPage==p->pDirty ); 000187 p->pDirty = pPage->pDirtyNext; 000188 assert( p->bPurgeable || p->eCreate==2 ); 000189 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ 000190 assert( p->bPurgeable==0 || p->eCreate==1 ); 000191 p->eCreate = 2; 000192 } 000193 } 000194 pPage->pDirtyNext = 0; 000195 pPage->pDirtyPrev = 0; 000196 } 000197 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 000198 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); 000199 000200 pPage->pDirtyNext = p->pDirty; 000201 if( pPage->pDirtyNext ){ 000202 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 000203 pPage->pDirtyNext->pDirtyPrev = pPage; 000204 }else{ 000205 p->pDirtyTail = pPage; 000206 if( p->bPurgeable ){ 000207 assert( p->eCreate==2 ); 000208 p->eCreate = 1; 000209 } 000210 } 000211 p->pDirty = pPage; 000212 000213 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set 000214 ** pSynced to point to it. Checking the NEED_SYNC flag is an 000215 ** optimization, as if pSynced points to a page with the NEED_SYNC 000216 ** flag set sqlite3PcacheFetchStress() searches through all newer 000217 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ 000218 if( !p->pSynced 000219 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ 000220 ){ 000221 p->pSynced = pPage; 000222 } 000223 } 000224 pcacheDump(p); 000225 } 000226 000227 /* 000228 ** Wrapper around the pluggable caches xUnpin method. If the cache is 000229 ** being used for an in-memory database, this function is a no-op. 000230 */ 000231 static void pcacheUnpin(PgHdr *p){ 000232 if( p->pCache->bPurgeable ){ 000233 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); 000234 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 000235 pcacheDump(p->pCache); 000236 } 000237 } 000238 000239 /* 000240 ** Compute the number of pages of cache requested. p->szCache is the 000241 ** cache size requested by the "PRAGMA cache_size" statement. 000242 */ 000243 static int numberOfCachePages(PCache *p){ 000244 if( p->szCache>=0 ){ 000245 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 000246 ** suggested cache size is set to N. */ 000247 return p->szCache; 000248 }else{ 000249 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then 000250 ** the number of cache pages is adjusted to use approximately abs(N*1024) 000251 ** bytes of memory. */ 000252 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 000253 } 000254 } 000255 000256 /*************************************************** General Interfaces ****** 000257 ** 000258 ** Initialize and shutdown the page cache subsystem. Neither of these 000259 ** functions are threadsafe. 000260 */ 000261 int sqlite3PcacheInitialize(void){ 000262 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 000263 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 000264 ** built-in default page cache is used instead of the application defined 000265 ** page cache. */ 000266 sqlite3PCacheSetDefault(); 000267 } 000268 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 000269 } 000270 void sqlite3PcacheShutdown(void){ 000271 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 000272 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 000273 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 000274 } 000275 } 000276 000277 /* 000278 ** Return the size in bytes of a PCache object. 000279 */ 000280 int sqlite3PcacheSize(void){ return sizeof(PCache); } 000281 000282 /* 000283 ** Create a new PCache object. Storage space to hold the object 000284 ** has already been allocated and is passed in as the p pointer. 000285 ** The caller discovers how much space needs to be allocated by 000286 ** calling sqlite3PcacheSize(). 000287 ** 000288 ** szExtra is some extra space allocated for each page. The first 000289 ** 8 bytes of the extra space will be zeroed as the page is allocated, 000290 ** but remaining content will be uninitialized. Though it is opaque 000291 ** to this module, the extra space really ends up being the MemPage 000292 ** structure in the pager. 000293 */ 000294 int sqlite3PcacheOpen( 000295 int szPage, /* Size of every page */ 000296 int szExtra, /* Extra space associated with each page */ 000297 int bPurgeable, /* True if pages are on backing store */ 000298 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 000299 void *pStress, /* Argument to xStress */ 000300 PCache *p /* Preallocated space for the PCache */ 000301 ){ 000302 memset(p, 0, sizeof(PCache)); 000303 p->szPage = 1; 000304 p->szExtra = szExtra; 000305 assert( szExtra>=8 ); /* First 8 bytes will be zeroed */ 000306 p->bPurgeable = bPurgeable; 000307 p->eCreate = 2; 000308 p->xStress = xStress; 000309 p->pStress = pStress; 000310 p->szCache = 100; 000311 p->szSpill = 1; 000312 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); 000313 return sqlite3PcacheSetPageSize(p, szPage); 000314 } 000315 000316 /* 000317 ** Change the page size for PCache object. The caller must ensure that there 000318 ** are no outstanding page references when this function is called. 000319 */ 000320 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 000321 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); 000322 if( pCache->szPage ){ 000323 sqlite3_pcache *pNew; 000324 pNew = sqlite3GlobalConfig.pcache2.xCreate( 000325 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 000326 pCache->bPurgeable 000327 ); 000328 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 000329 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 000330 if( pCache->pCache ){ 000331 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 000332 } 000333 pCache->pCache = pNew; 000334 pCache->szPage = szPage; 000335 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); 000336 } 000337 return SQLITE_OK; 000338 } 000339 000340 /* 000341 ** Try to obtain a page from the cache. 000342 ** 000343 ** This routine returns a pointer to an sqlite3_pcache_page object if 000344 ** such an object is already in cache, or if a new one is created. 000345 ** This routine returns a NULL pointer if the object was not in cache 000346 ** and could not be created. 000347 ** 000348 ** The createFlags should be 0 to check for existing pages and should 000349 ** be 3 (not 1, but 3) to try to create a new page. 000350 ** 000351 ** If the createFlag is 0, then NULL is always returned if the page 000352 ** is not already in the cache. If createFlag is 1, then a new page 000353 ** is created only if that can be done without spilling dirty pages 000354 ** and without exceeding the cache size limit. 000355 ** 000356 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 000357 ** initialize the sqlite3_pcache_page object and convert it into a 000358 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 000359 ** routines are split this way for performance reasons. When separated 000360 ** they can both (usually) operate without having to push values to 000361 ** the stack on entry and pop them back off on exit, which saves a 000362 ** lot of pushing and popping. 000363 */ 000364 sqlite3_pcache_page *sqlite3PcacheFetch( 000365 PCache *pCache, /* Obtain the page from this cache */ 000366 Pgno pgno, /* Page number to obtain */ 000367 int createFlag /* If true, create page if it does not exist already */ 000368 ){ 000369 int eCreate; 000370 sqlite3_pcache_page *pRes; 000371 000372 assert( pCache!=0 ); 000373 assert( pCache->pCache!=0 ); 000374 assert( createFlag==3 || createFlag==0 ); 000375 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); 000376 000377 /* eCreate defines what to do if the page does not exist. 000378 ** 0 Do not allocate a new page. (createFlag==0) 000379 ** 1 Allocate a new page if doing so is inexpensive. 000380 ** (createFlag==1 AND bPurgeable AND pDirty) 000381 ** 2 Allocate a new page even it doing so is difficult. 000382 ** (createFlag==1 AND !(bPurgeable AND pDirty) 000383 */ 000384 eCreate = createFlag & pCache->eCreate; 000385 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 000386 assert( createFlag==0 || pCache->eCreate==eCreate ); 000387 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 000388 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 000389 pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno, 000390 createFlag?" create":"",pRes)); 000391 return pRes; 000392 } 000393 000394 /* 000395 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 000396 ** page because no clean pages are available for reuse and the cache 000397 ** size limit has been reached, then this routine can be invoked to 000398 ** try harder to allocate a page. This routine might invoke the stress 000399 ** callback to spill dirty pages to the journal. It will then try to 000400 ** allocate the new page and will only fail to allocate a new page on 000401 ** an OOM error. 000402 ** 000403 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 000404 */ 000405 int sqlite3PcacheFetchStress( 000406 PCache *pCache, /* Obtain the page from this cache */ 000407 Pgno pgno, /* Page number to obtain */ 000408 sqlite3_pcache_page **ppPage /* Write result here */ 000409 ){ 000410 PgHdr *pPg; 000411 if( pCache->eCreate==2 ) return 0; 000412 000413 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ 000414 /* Find a dirty page to write-out and recycle. First try to find a 000415 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 000416 ** cleared), but if that is not possible settle for any other 000417 ** unreferenced dirty page. 000418 ** 000419 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC 000420 ** flag is currently referenced, then the following may leave pSynced 000421 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC 000422 ** cleared). This is Ok, as pSynced is just an optimization. */ 000423 for(pPg=pCache->pSynced; 000424 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 000425 pPg=pPg->pDirtyPrev 000426 ); 000427 pCache->pSynced = pPg; 000428 if( !pPg ){ 000429 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 000430 } 000431 if( pPg ){ 000432 int rc; 000433 #ifdef SQLITE_LOG_CACHE_SPILL 000434 sqlite3_log(SQLITE_FULL, 000435 "spill page %d making room for %d - cache used: %d/%d", 000436 pPg->pgno, pgno, 000437 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), 000438 numberOfCachePages(pCache)); 000439 #endif 000440 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); 000441 rc = pCache->xStress(pCache->pStress, pPg); 000442 pcacheDump(pCache); 000443 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 000444 return rc; 000445 } 000446 } 000447 } 000448 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 000449 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 000450 } 000451 000452 /* 000453 ** This is a helper routine for sqlite3PcacheFetchFinish() 000454 ** 000455 ** In the uncommon case where the page being fetched has not been 000456 ** initialized, this routine is invoked to do the initialization. 000457 ** This routine is broken out into a separate function since it 000458 ** requires extra stack manipulation that can be avoided in the common 000459 ** case. 000460 */ 000461 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 000462 PCache *pCache, /* Obtain the page from this cache */ 000463 Pgno pgno, /* Page number obtained */ 000464 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 000465 ){ 000466 PgHdr *pPgHdr; 000467 assert( pPage!=0 ); 000468 pPgHdr = (PgHdr*)pPage->pExtra; 000469 assert( pPgHdr->pPage==0 ); 000470 memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty)); 000471 pPgHdr->pPage = pPage; 000472 pPgHdr->pData = pPage->pBuf; 000473 pPgHdr->pExtra = (void *)&pPgHdr[1]; 000474 memset(pPgHdr->pExtra, 0, 8); 000475 pPgHdr->pCache = pCache; 000476 pPgHdr->pgno = pgno; 000477 pPgHdr->flags = PGHDR_CLEAN; 000478 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 000479 } 000480 000481 /* 000482 ** This routine converts the sqlite3_pcache_page object returned by 000483 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 000484 ** must be called after sqlite3PcacheFetch() in order to get a usable 000485 ** result. 000486 */ 000487 PgHdr *sqlite3PcacheFetchFinish( 000488 PCache *pCache, /* Obtain the page from this cache */ 000489 Pgno pgno, /* Page number obtained */ 000490 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 000491 ){ 000492 PgHdr *pPgHdr; 000493 000494 assert( pPage!=0 ); 000495 pPgHdr = (PgHdr *)pPage->pExtra; 000496 000497 if( !pPgHdr->pPage ){ 000498 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 000499 } 000500 pCache->nRefSum++; 000501 pPgHdr->nRef++; 000502 assert( sqlite3PcachePageSanity(pPgHdr) ); 000503 return pPgHdr; 000504 } 000505 000506 /* 000507 ** Decrement the reference count on a page. If the page is clean and the 000508 ** reference count drops to 0, then it is made eligible for recycling. 000509 */ 000510 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 000511 assert( p->nRef>0 ); 000512 p->pCache->nRefSum--; 000513 if( (--p->nRef)==0 ){ 000514 if( p->flags&PGHDR_CLEAN ){ 000515 pcacheUnpin(p); 000516 }else if( p->pDirtyPrev!=0 ){ /*OPTIMIZATION-IF-FALSE*/ 000517 /* Move the page to the head of the dirty list. If p->pDirtyPrev==0, 000518 ** then page p is already at the head of the dirty list and the 000519 ** following call would be a no-op. Hence the OPTIMIZATION-IF-FALSE 000520 ** tag above. */ 000521 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 000522 } 000523 } 000524 } 000525 000526 /* 000527 ** Increase the reference count of a supplied page by 1. 000528 */ 000529 void sqlite3PcacheRef(PgHdr *p){ 000530 assert(p->nRef>0); 000531 assert( sqlite3PcachePageSanity(p) ); 000532 p->nRef++; 000533 p->pCache->nRefSum++; 000534 } 000535 000536 /* 000537 ** Drop a page from the cache. There must be exactly one reference to the 000538 ** page. This function deletes that reference, so after it returns the 000539 ** page pointed to by p is invalid. 000540 */ 000541 void sqlite3PcacheDrop(PgHdr *p){ 000542 assert( p->nRef==1 ); 000543 assert( sqlite3PcachePageSanity(p) ); 000544 if( p->flags&PGHDR_DIRTY ){ 000545 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 000546 } 000547 p->pCache->nRefSum--; 000548 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 000549 } 000550 000551 /* 000552 ** Make sure the page is marked as dirty. If it isn't dirty already, 000553 ** make it so. 000554 */ 000555 void sqlite3PcacheMakeDirty(PgHdr *p){ 000556 assert( p->nRef>0 ); 000557 assert( sqlite3PcachePageSanity(p) ); 000558 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ 000559 p->flags &= ~PGHDR_DONT_WRITE; 000560 if( p->flags & PGHDR_CLEAN ){ 000561 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 000562 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); 000563 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 000564 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 000565 } 000566 assert( sqlite3PcachePageSanity(p) ); 000567 } 000568 } 000569 000570 /* 000571 ** Make sure the page is marked as clean. If it isn't clean already, 000572 ** make it so. 000573 */ 000574 void sqlite3PcacheMakeClean(PgHdr *p){ 000575 assert( sqlite3PcachePageSanity(p) ); 000576 if( ALWAYS((p->flags & PGHDR_DIRTY)!=0) ){ 000577 assert( (p->flags & PGHDR_CLEAN)==0 ); 000578 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 000579 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 000580 p->flags |= PGHDR_CLEAN; 000581 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); 000582 assert( sqlite3PcachePageSanity(p) ); 000583 if( p->nRef==0 ){ 000584 pcacheUnpin(p); 000585 } 000586 } 000587 } 000588 000589 /* 000590 ** Make every page in the cache clean. 000591 */ 000592 void sqlite3PcacheCleanAll(PCache *pCache){ 000593 PgHdr *p; 000594 pcacheTrace(("%p.CLEAN-ALL\n",pCache)); 000595 while( (p = pCache->pDirty)!=0 ){ 000596 sqlite3PcacheMakeClean(p); 000597 } 000598 } 000599 000600 /* 000601 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. 000602 */ 000603 void sqlite3PcacheClearWritable(PCache *pCache){ 000604 PgHdr *p; 000605 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); 000606 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 000607 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 000608 } 000609 pCache->pSynced = pCache->pDirtyTail; 000610 } 000611 000612 /* 000613 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 000614 */ 000615 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 000616 PgHdr *p; 000617 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 000618 p->flags &= ~PGHDR_NEED_SYNC; 000619 } 000620 pCache->pSynced = pCache->pDirtyTail; 000621 } 000622 000623 /* 000624 ** Change the page number of page p to newPgno. 000625 */ 000626 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 000627 PCache *pCache = p->pCache; 000628 assert( p->nRef>0 ); 000629 assert( newPgno>0 ); 000630 assert( sqlite3PcachePageSanity(p) ); 000631 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); 000632 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 000633 p->pgno = newPgno; 000634 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 000635 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 000636 } 000637 } 000638 000639 /* 000640 ** Drop every cache entry whose page number is greater than "pgno". The 000641 ** caller must ensure that there are no outstanding references to any pages 000642 ** other than page 1 with a page number greater than pgno. 000643 ** 000644 ** If there is a reference to page 1 and the pgno parameter passed to this 000645 ** function is 0, then the data area associated with page 1 is zeroed, but 000646 ** the page object is not dropped. 000647 */ 000648 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 000649 if( pCache->pCache ){ 000650 PgHdr *p; 000651 PgHdr *pNext; 000652 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); 000653 for(p=pCache->pDirty; p; p=pNext){ 000654 pNext = p->pDirtyNext; 000655 /* This routine never gets call with a positive pgno except right 000656 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 000657 ** it must be that pgno==0. 000658 */ 000659 assert( p->pgno>0 ); 000660 if( p->pgno>pgno ){ 000661 assert( p->flags&PGHDR_DIRTY ); 000662 sqlite3PcacheMakeClean(p); 000663 } 000664 } 000665 if( pgno==0 && pCache->nRefSum ){ 000666 sqlite3_pcache_page *pPage1; 000667 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 000668 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 000669 ** pCache->nRefSum>0 */ 000670 memset(pPage1->pBuf, 0, pCache->szPage); 000671 pgno = 1; 000672 } 000673 } 000674 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 000675 } 000676 } 000677 000678 /* 000679 ** Close a cache. 000680 */ 000681 void sqlite3PcacheClose(PCache *pCache){ 000682 assert( pCache->pCache!=0 ); 000683 pcacheTrace(("%p.CLOSE\n",pCache)); 000684 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 000685 } 000686 000687 /* 000688 ** Discard the contents of the cache. 000689 */ 000690 void sqlite3PcacheClear(PCache *pCache){ 000691 sqlite3PcacheTruncate(pCache, 0); 000692 } 000693 000694 /* 000695 ** Merge two lists of pages connected by pDirty and in pgno order. 000696 ** Do not bother fixing the pDirtyPrev pointers. 000697 */ 000698 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 000699 PgHdr result, *pTail; 000700 pTail = &result; 000701 assert( pA!=0 && pB!=0 ); 000702 for(;;){ 000703 if( pA->pgno<pB->pgno ){ 000704 pTail->pDirty = pA; 000705 pTail = pA; 000706 pA = pA->pDirty; 000707 if( pA==0 ){ 000708 pTail->pDirty = pB; 000709 break; 000710 } 000711 }else{ 000712 pTail->pDirty = pB; 000713 pTail = pB; 000714 pB = pB->pDirty; 000715 if( pB==0 ){ 000716 pTail->pDirty = pA; 000717 break; 000718 } 000719 } 000720 } 000721 return result.pDirty; 000722 } 000723 000724 /* 000725 ** Sort the list of pages in accending order by pgno. Pages are 000726 ** connected by pDirty pointers. The pDirtyPrev pointers are 000727 ** corrupted by this sort. 000728 ** 000729 ** Since there cannot be more than 2^31 distinct pages in a database, 000730 ** there cannot be more than 31 buckets required by the merge sorter. 000731 ** One extra bucket is added to catch overflow in case something 000732 ** ever changes to make the previous sentence incorrect. 000733 */ 000734 #define N_SORT_BUCKET 32 000735 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 000736 PgHdr *a[N_SORT_BUCKET], *p; 000737 int i; 000738 memset(a, 0, sizeof(a)); 000739 while( pIn ){ 000740 p = pIn; 000741 pIn = p->pDirty; 000742 p->pDirty = 0; 000743 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 000744 if( a[i]==0 ){ 000745 a[i] = p; 000746 break; 000747 }else{ 000748 p = pcacheMergeDirtyList(a[i], p); 000749 a[i] = 0; 000750 } 000751 } 000752 if( NEVER(i==N_SORT_BUCKET-1) ){ 000753 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 000754 ** the input list. But that is impossible. 000755 */ 000756 a[i] = pcacheMergeDirtyList(a[i], p); 000757 } 000758 } 000759 p = a[0]; 000760 for(i=1; i<N_SORT_BUCKET; i++){ 000761 if( a[i]==0 ) continue; 000762 p = p ? pcacheMergeDirtyList(p, a[i]) : a[i]; 000763 } 000764 return p; 000765 } 000766 000767 /* 000768 ** Return a list of all dirty pages in the cache, sorted by page number. 000769 */ 000770 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 000771 PgHdr *p; 000772 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 000773 p->pDirty = p->pDirtyNext; 000774 } 000775 return pcacheSortDirtyList(pCache->pDirty); 000776 } 000777 000778 /* 000779 ** Return the total number of references to all pages held by the cache. 000780 ** 000781 ** This is not the total number of pages referenced, but the sum of the 000782 ** reference count for all pages. 000783 */ 000784 int sqlite3PcacheRefCount(PCache *pCache){ 000785 return pCache->nRefSum; 000786 } 000787 000788 /* 000789 ** Return the number of references to the page supplied as an argument. 000790 */ 000791 int sqlite3PcachePageRefcount(PgHdr *p){ 000792 return p->nRef; 000793 } 000794 000795 /* 000796 ** Return the total number of pages in the cache. 000797 */ 000798 int sqlite3PcachePagecount(PCache *pCache){ 000799 assert( pCache->pCache!=0 ); 000800 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 000801 } 000802 000803 #ifdef SQLITE_TEST 000804 /* 000805 ** Get the suggested cache-size value. 000806 */ 000807 int sqlite3PcacheGetCachesize(PCache *pCache){ 000808 return numberOfCachePages(pCache); 000809 } 000810 #endif 000811 000812 /* 000813 ** Set the suggested cache-size value. 000814 */ 000815 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 000816 assert( pCache->pCache!=0 ); 000817 pCache->szCache = mxPage; 000818 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 000819 numberOfCachePages(pCache)); 000820 } 000821 000822 /* 000823 ** Set the suggested cache-spill value. Make no changes if if the 000824 ** argument is zero. Return the effective cache-spill size, which will 000825 ** be the larger of the szSpill and szCache. 000826 */ 000827 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ 000828 int res; 000829 assert( p->pCache!=0 ); 000830 if( mxPage ){ 000831 if( mxPage<0 ){ 000832 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); 000833 } 000834 p->szSpill = mxPage; 000835 } 000836 res = numberOfCachePages(p); 000837 if( res<p->szSpill ) res = p->szSpill; 000838 return res; 000839 } 000840 000841 /* 000842 ** Free up as much memory as possible from the page cache. 000843 */ 000844 void sqlite3PcacheShrink(PCache *pCache){ 000845 assert( pCache->pCache!=0 ); 000846 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 000847 } 000848 000849 /* 000850 ** Return the size of the header added by this middleware layer 000851 ** in the page-cache hierarchy. 000852 */ 000853 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 000854 000855 /* 000856 ** Return the number of dirty pages currently in the cache, as a percentage 000857 ** of the configured cache size. 000858 */ 000859 int sqlite3PCachePercentDirty(PCache *pCache){ 000860 PgHdr *pDirty; 000861 int nDirty = 0; 000862 int nCache = numberOfCachePages(pCache); 000863 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; 000864 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; 000865 } 000866 000867 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 000868 /* 000869 ** For all dirty pages currently in the cache, invoke the specified 000870 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 000871 ** defined. 000872 */ 000873 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 000874 PgHdr *pDirty; 000875 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 000876 xIter(pDirty); 000877 } 000878 } 000879 #endif