000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** Main file for the SQLite library. The routines in this file 000013 ** implement the programmer interface to the library. Routines in 000014 ** other files are for internal use by SQLite and should not be 000015 ** accessed by users of the library. 000016 */ 000017 #include "sqliteInt.h" 000018 000019 #ifdef SQLITE_ENABLE_FTS3 000020 # include "fts3.h" 000021 #endif 000022 #ifdef SQLITE_ENABLE_RTREE 000023 # include "rtree.h" 000024 #endif 000025 #ifdef SQLITE_ENABLE_ICU 000026 # include "sqliteicu.h" 000027 #endif 000028 #ifdef SQLITE_ENABLE_JSON1 000029 int sqlite3Json1Init(sqlite3*); 000030 #endif 000031 #ifdef SQLITE_ENABLE_FTS5 000032 int sqlite3Fts5Init(sqlite3*); 000033 #endif 000034 000035 #ifndef SQLITE_AMALGAMATION 000036 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 000037 ** contains the text of SQLITE_VERSION macro. 000038 */ 000039 const char sqlite3_version[] = SQLITE_VERSION; 000040 #endif 000041 000042 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 000043 ** a pointer to the to the sqlite3_version[] string constant. 000044 */ 000045 const char *sqlite3_libversion(void){ return sqlite3_version; } 000046 000047 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 000048 ** pointer to a string constant whose value is the same as the 000049 ** SQLITE_SOURCE_ID C preprocessor macro. 000050 */ 000051 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 000052 000053 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 000054 ** returns an integer equal to SQLITE_VERSION_NUMBER. 000055 */ 000056 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 000057 000058 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 000059 ** zero if and only if SQLite was compiled with mutexing code omitted due to 000060 ** the SQLITE_THREADSAFE compile-time option being set to 0. 000061 */ 000062 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 000063 000064 /* 000065 ** When compiling the test fixture or with debugging enabled (on Win32), 000066 ** this variable being set to non-zero will cause OSTRACE macros to emit 000067 ** extra diagnostic information. 000068 */ 000069 #ifdef SQLITE_HAVE_OS_TRACE 000070 # ifndef SQLITE_DEBUG_OS_TRACE 000071 # define SQLITE_DEBUG_OS_TRACE 0 000072 # endif 000073 int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; 000074 #endif 000075 000076 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 000077 /* 000078 ** If the following function pointer is not NULL and if 000079 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 000080 ** I/O active are written using this function. These messages 000081 ** are intended for debugging activity only. 000082 */ 000083 SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; 000084 #endif 000085 000086 /* 000087 ** If the following global variable points to a string which is the 000088 ** name of a directory, then that directory will be used to store 000089 ** temporary files. 000090 ** 000091 ** See also the "PRAGMA temp_store_directory" SQL command. 000092 */ 000093 char *sqlite3_temp_directory = 0; 000094 000095 /* 000096 ** If the following global variable points to a string which is the 000097 ** name of a directory, then that directory will be used to store 000098 ** all database files specified with a relative pathname. 000099 ** 000100 ** See also the "PRAGMA data_store_directory" SQL command. 000101 */ 000102 char *sqlite3_data_directory = 0; 000103 000104 /* 000105 ** Initialize SQLite. 000106 ** 000107 ** This routine must be called to initialize the memory allocation, 000108 ** VFS, and mutex subsystems prior to doing any serious work with 000109 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 000110 ** this routine will be called automatically by key routines such as 000111 ** sqlite3_open(). 000112 ** 000113 ** This routine is a no-op except on its very first call for the process, 000114 ** or for the first call after a call to sqlite3_shutdown. 000115 ** 000116 ** The first thread to call this routine runs the initialization to 000117 ** completion. If subsequent threads call this routine before the first 000118 ** thread has finished the initialization process, then the subsequent 000119 ** threads must block until the first thread finishes with the initialization. 000120 ** 000121 ** The first thread might call this routine recursively. Recursive 000122 ** calls to this routine should not block, of course. Otherwise the 000123 ** initialization process would never complete. 000124 ** 000125 ** Let X be the first thread to enter this routine. Let Y be some other 000126 ** thread. Then while the initial invocation of this routine by X is 000127 ** incomplete, it is required that: 000128 ** 000129 ** * Calls to this routine from Y must block until the outer-most 000130 ** call by X completes. 000131 ** 000132 ** * Recursive calls to this routine from thread X return immediately 000133 ** without blocking. 000134 */ 000135 int sqlite3_initialize(void){ 000136 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ 000137 int rc; /* Result code */ 000138 #ifdef SQLITE_EXTRA_INIT 000139 int bRunExtraInit = 0; /* Extra initialization needed */ 000140 #endif 000141 000142 #ifdef SQLITE_OMIT_WSD 000143 rc = sqlite3_wsd_init(4096, 24); 000144 if( rc!=SQLITE_OK ){ 000145 return rc; 000146 } 000147 #endif 000148 000149 /* If the following assert() fails on some obscure processor/compiler 000150 ** combination, the work-around is to set the correct pointer 000151 ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ 000152 assert( SQLITE_PTRSIZE==sizeof(char*) ); 000153 000154 /* If SQLite is already completely initialized, then this call 000155 ** to sqlite3_initialize() should be a no-op. But the initialization 000156 ** must be complete. So isInit must not be set until the very end 000157 ** of this routine. 000158 */ 000159 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 000160 000161 /* Make sure the mutex subsystem is initialized. If unable to 000162 ** initialize the mutex subsystem, return early with the error. 000163 ** If the system is so sick that we are unable to allocate a mutex, 000164 ** there is not much SQLite is going to be able to do. 000165 ** 000166 ** The mutex subsystem must take care of serializing its own 000167 ** initialization. 000168 */ 000169 rc = sqlite3MutexInit(); 000170 if( rc ) return rc; 000171 000172 /* Initialize the malloc() system and the recursive pInitMutex mutex. 000173 ** This operation is protected by the STATIC_MASTER mutex. Note that 000174 ** MutexAlloc() is called for a static mutex prior to initializing the 000175 ** malloc subsystem - this implies that the allocation of a static 000176 ** mutex must not require support from the malloc subsystem. 000177 */ 000178 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 000179 sqlite3_mutex_enter(pMaster); 000180 sqlite3GlobalConfig.isMutexInit = 1; 000181 if( !sqlite3GlobalConfig.isMallocInit ){ 000182 rc = sqlite3MallocInit(); 000183 } 000184 if( rc==SQLITE_OK ){ 000185 sqlite3GlobalConfig.isMallocInit = 1; 000186 if( !sqlite3GlobalConfig.pInitMutex ){ 000187 sqlite3GlobalConfig.pInitMutex = 000188 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 000189 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 000190 rc = SQLITE_NOMEM_BKPT; 000191 } 000192 } 000193 } 000194 if( rc==SQLITE_OK ){ 000195 sqlite3GlobalConfig.nRefInitMutex++; 000196 } 000197 sqlite3_mutex_leave(pMaster); 000198 000199 /* If rc is not SQLITE_OK at this point, then either the malloc 000200 ** subsystem could not be initialized or the system failed to allocate 000201 ** the pInitMutex mutex. Return an error in either case. */ 000202 if( rc!=SQLITE_OK ){ 000203 return rc; 000204 } 000205 000206 /* Do the rest of the initialization under the recursive mutex so 000207 ** that we will be able to handle recursive calls into 000208 ** sqlite3_initialize(). The recursive calls normally come through 000209 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 000210 ** recursive calls might also be possible. 000211 ** 000212 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 000213 ** to the xInit method, so the xInit method need not be threadsafe. 000214 ** 000215 ** The following mutex is what serializes access to the appdef pcache xInit 000216 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 000217 ** call to sqlite3PcacheInitialize(). 000218 */ 000219 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 000220 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 000221 sqlite3GlobalConfig.inProgress = 1; 000222 #ifdef SQLITE_ENABLE_SQLLOG 000223 { 000224 extern void sqlite3_init_sqllog(void); 000225 sqlite3_init_sqllog(); 000226 } 000227 #endif 000228 memset(&sqlite3BuiltinFunctions, 0, sizeof(sqlite3BuiltinFunctions)); 000229 sqlite3RegisterBuiltinFunctions(); 000230 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 000231 rc = sqlite3PcacheInitialize(); 000232 } 000233 if( rc==SQLITE_OK ){ 000234 sqlite3GlobalConfig.isPCacheInit = 1; 000235 rc = sqlite3OsInit(); 000236 } 000237 if( rc==SQLITE_OK ){ 000238 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 000239 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 000240 sqlite3GlobalConfig.isInit = 1; 000241 #ifdef SQLITE_EXTRA_INIT 000242 bRunExtraInit = 1; 000243 #endif 000244 } 000245 sqlite3GlobalConfig.inProgress = 0; 000246 } 000247 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 000248 000249 /* Go back under the static mutex and clean up the recursive 000250 ** mutex to prevent a resource leak. 000251 */ 000252 sqlite3_mutex_enter(pMaster); 000253 sqlite3GlobalConfig.nRefInitMutex--; 000254 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 000255 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 000256 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 000257 sqlite3GlobalConfig.pInitMutex = 0; 000258 } 000259 sqlite3_mutex_leave(pMaster); 000260 000261 /* The following is just a sanity check to make sure SQLite has 000262 ** been compiled correctly. It is important to run this code, but 000263 ** we don't want to run it too often and soak up CPU cycles for no 000264 ** reason. So we run it once during initialization. 000265 */ 000266 #ifndef NDEBUG 000267 #ifndef SQLITE_OMIT_FLOATING_POINT 000268 /* This section of code's only "output" is via assert() statements. */ 000269 if ( rc==SQLITE_OK ){ 000270 u64 x = (((u64)1)<<63)-1; 000271 double y; 000272 assert(sizeof(x)==8); 000273 assert(sizeof(x)==sizeof(y)); 000274 memcpy(&y, &x, 8); 000275 assert( sqlite3IsNaN(y) ); 000276 } 000277 #endif 000278 #endif 000279 000280 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 000281 ** compile-time option. 000282 */ 000283 #ifdef SQLITE_EXTRA_INIT 000284 if( bRunExtraInit ){ 000285 int SQLITE_EXTRA_INIT(const char*); 000286 rc = SQLITE_EXTRA_INIT(0); 000287 } 000288 #endif 000289 000290 return rc; 000291 } 000292 000293 /* 000294 ** Undo the effects of sqlite3_initialize(). Must not be called while 000295 ** there are outstanding database connections or memory allocations or 000296 ** while any part of SQLite is otherwise in use in any thread. This 000297 ** routine is not threadsafe. But it is safe to invoke this routine 000298 ** on when SQLite is already shut down. If SQLite is already shut down 000299 ** when this routine is invoked, then this routine is a harmless no-op. 000300 */ 000301 int sqlite3_shutdown(void){ 000302 #ifdef SQLITE_OMIT_WSD 000303 int rc = sqlite3_wsd_init(4096, 24); 000304 if( rc!=SQLITE_OK ){ 000305 return rc; 000306 } 000307 #endif 000308 000309 if( sqlite3GlobalConfig.isInit ){ 000310 #ifdef SQLITE_EXTRA_SHUTDOWN 000311 void SQLITE_EXTRA_SHUTDOWN(void); 000312 SQLITE_EXTRA_SHUTDOWN(); 000313 #endif 000314 sqlite3_os_end(); 000315 sqlite3_reset_auto_extension(); 000316 sqlite3GlobalConfig.isInit = 0; 000317 } 000318 if( sqlite3GlobalConfig.isPCacheInit ){ 000319 sqlite3PcacheShutdown(); 000320 sqlite3GlobalConfig.isPCacheInit = 0; 000321 } 000322 if( sqlite3GlobalConfig.isMallocInit ){ 000323 sqlite3MallocEnd(); 000324 sqlite3GlobalConfig.isMallocInit = 0; 000325 000326 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 000327 /* The heap subsystem has now been shutdown and these values are supposed 000328 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 000329 ** which would rely on that heap subsystem; therefore, make sure these 000330 ** values cannot refer to heap memory that was just invalidated when the 000331 ** heap subsystem was shutdown. This is only done if the current call to 000332 ** this function resulted in the heap subsystem actually being shutdown. 000333 */ 000334 sqlite3_data_directory = 0; 000335 sqlite3_temp_directory = 0; 000336 #endif 000337 } 000338 if( sqlite3GlobalConfig.isMutexInit ){ 000339 sqlite3MutexEnd(); 000340 sqlite3GlobalConfig.isMutexInit = 0; 000341 } 000342 000343 return SQLITE_OK; 000344 } 000345 000346 /* 000347 ** This API allows applications to modify the global configuration of 000348 ** the SQLite library at run-time. 000349 ** 000350 ** This routine should only be called when there are no outstanding 000351 ** database connections or memory allocations. This routine is not 000352 ** threadsafe. Failure to heed these warnings can lead to unpredictable 000353 ** behavior. 000354 */ 000355 int sqlite3_config(int op, ...){ 000356 va_list ap; 000357 int rc = SQLITE_OK; 000358 000359 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 000360 ** the SQLite library is in use. */ 000361 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 000362 000363 va_start(ap, op); 000364 switch( op ){ 000365 000366 /* Mutex configuration options are only available in a threadsafe 000367 ** compile. 000368 */ 000369 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ 000370 case SQLITE_CONFIG_SINGLETHREAD: { 000371 /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to 000372 ** Single-thread. */ 000373 sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ 000374 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 000375 break; 000376 } 000377 #endif 000378 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ 000379 case SQLITE_CONFIG_MULTITHREAD: { 000380 /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to 000381 ** Multi-thread. */ 000382 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 000383 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 000384 break; 000385 } 000386 #endif 000387 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ 000388 case SQLITE_CONFIG_SERIALIZED: { 000389 /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to 000390 ** Serialized. */ 000391 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 000392 sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ 000393 break; 000394 } 000395 #endif 000396 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ 000397 case SQLITE_CONFIG_MUTEX: { 000398 /* Specify an alternative mutex implementation */ 000399 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 000400 break; 000401 } 000402 #endif 000403 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ 000404 case SQLITE_CONFIG_GETMUTEX: { 000405 /* Retrieve the current mutex implementation */ 000406 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 000407 break; 000408 } 000409 #endif 000410 000411 case SQLITE_CONFIG_MALLOC: { 000412 /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a 000413 ** single argument which is a pointer to an instance of the 000414 ** sqlite3_mem_methods structure. The argument specifies alternative 000415 ** low-level memory allocation routines to be used in place of the memory 000416 ** allocation routines built into SQLite. */ 000417 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 000418 break; 000419 } 000420 case SQLITE_CONFIG_GETMALLOC: { 000421 /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a 000422 ** single argument which is a pointer to an instance of the 000423 ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is 000424 ** filled with the currently defined memory allocation routines. */ 000425 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 000426 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 000427 break; 000428 } 000429 case SQLITE_CONFIG_MEMSTATUS: { 000430 /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes 000431 ** single argument of type int, interpreted as a boolean, which enables 000432 ** or disables the collection of memory allocation statistics. */ 000433 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 000434 break; 000435 } 000436 case SQLITE_CONFIG_SCRATCH: { 000437 /* EVIDENCE-OF: R-08404-60887 There are three arguments to 000438 ** SQLITE_CONFIG_SCRATCH: A pointer an 8-byte aligned memory buffer from 000439 ** which the scratch allocations will be drawn, the size of each scratch 000440 ** allocation (sz), and the maximum number of scratch allocations (N). */ 000441 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 000442 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 000443 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 000444 break; 000445 } 000446 case SQLITE_CONFIG_PAGECACHE: { 000447 /* EVIDENCE-OF: R-18761-36601 There are three arguments to 000448 ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem), 000449 ** the size of each page cache line (sz), and the number of cache lines 000450 ** (N). */ 000451 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 000452 sqlite3GlobalConfig.szPage = va_arg(ap, int); 000453 sqlite3GlobalConfig.nPage = va_arg(ap, int); 000454 break; 000455 } 000456 case SQLITE_CONFIG_PCACHE_HDRSZ: { 000457 /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes 000458 ** a single parameter which is a pointer to an integer and writes into 000459 ** that integer the number of extra bytes per page required for each page 000460 ** in SQLITE_CONFIG_PAGECACHE. */ 000461 *va_arg(ap, int*) = 000462 sqlite3HeaderSizeBtree() + 000463 sqlite3HeaderSizePcache() + 000464 sqlite3HeaderSizePcache1(); 000465 break; 000466 } 000467 000468 case SQLITE_CONFIG_PCACHE: { 000469 /* no-op */ 000470 break; 000471 } 000472 case SQLITE_CONFIG_GETPCACHE: { 000473 /* now an error */ 000474 rc = SQLITE_ERROR; 000475 break; 000476 } 000477 000478 case SQLITE_CONFIG_PCACHE2: { 000479 /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a 000480 ** single argument which is a pointer to an sqlite3_pcache_methods2 000481 ** object. This object specifies the interface to a custom page cache 000482 ** implementation. */ 000483 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 000484 break; 000485 } 000486 case SQLITE_CONFIG_GETPCACHE2: { 000487 /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a 000488 ** single argument which is a pointer to an sqlite3_pcache_methods2 000489 ** object. SQLite copies of the current page cache implementation into 000490 ** that object. */ 000491 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 000492 sqlite3PCacheSetDefault(); 000493 } 000494 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 000495 break; 000496 } 000497 000498 /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only 000499 ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or 000500 ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ 000501 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 000502 case SQLITE_CONFIG_HEAP: { 000503 /* EVIDENCE-OF: R-19854-42126 There are three arguments to 000504 ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the 000505 ** number of bytes in the memory buffer, and the minimum allocation size. 000506 */ 000507 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 000508 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 000509 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 000510 000511 if( sqlite3GlobalConfig.mnReq<1 ){ 000512 sqlite3GlobalConfig.mnReq = 1; 000513 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 000514 /* cap min request size at 2^12 */ 000515 sqlite3GlobalConfig.mnReq = (1<<12); 000516 } 000517 000518 if( sqlite3GlobalConfig.pHeap==0 ){ 000519 /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) 000520 ** is NULL, then SQLite reverts to using its default memory allocator 000521 ** (the system malloc() implementation), undoing any prior invocation of 000522 ** SQLITE_CONFIG_MALLOC. 000523 ** 000524 ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to 000525 ** revert to its default implementation when sqlite3_initialize() is run 000526 */ 000527 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 000528 }else{ 000529 /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the 000530 ** alternative memory allocator is engaged to handle all of SQLites 000531 ** memory allocation needs. */ 000532 #ifdef SQLITE_ENABLE_MEMSYS3 000533 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 000534 #endif 000535 #ifdef SQLITE_ENABLE_MEMSYS5 000536 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 000537 #endif 000538 } 000539 break; 000540 } 000541 #endif 000542 000543 case SQLITE_CONFIG_LOOKASIDE: { 000544 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 000545 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 000546 break; 000547 } 000548 000549 /* Record a pointer to the logger function and its first argument. 000550 ** The default is NULL. Logging is disabled if the function pointer is 000551 ** NULL. 000552 */ 000553 case SQLITE_CONFIG_LOG: { 000554 /* MSVC is picky about pulling func ptrs from va lists. 000555 ** http://support.microsoft.com/kb/47961 000556 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 000557 */ 000558 typedef void(*LOGFUNC_t)(void*,int,const char*); 000559 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 000560 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 000561 break; 000562 } 000563 000564 /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames 000565 ** can be changed at start-time using the 000566 ** sqlite3_config(SQLITE_CONFIG_URI,1) or 000567 ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. 000568 */ 000569 case SQLITE_CONFIG_URI: { 000570 /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single 000571 ** argument of type int. If non-zero, then URI handling is globally 000572 ** enabled. If the parameter is zero, then URI handling is globally 000573 ** disabled. */ 000574 sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); 000575 break; 000576 } 000577 000578 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 000579 /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN 000580 ** option takes a single integer argument which is interpreted as a 000581 ** boolean in order to enable or disable the use of covering indices for 000582 ** full table scans in the query optimizer. */ 000583 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 000584 break; 000585 } 000586 000587 #ifdef SQLITE_ENABLE_SQLLOG 000588 case SQLITE_CONFIG_SQLLOG: { 000589 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 000590 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 000591 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 000592 break; 000593 } 000594 #endif 000595 000596 case SQLITE_CONFIG_MMAP_SIZE: { 000597 /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit 000598 ** integer (sqlite3_int64) values that are the default mmap size limit 000599 ** (the default setting for PRAGMA mmap_size) and the maximum allowed 000600 ** mmap size limit. */ 000601 sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); 000602 sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); 000603 /* EVIDENCE-OF: R-53367-43190 If either argument to this option is 000604 ** negative, then that argument is changed to its compile-time default. 000605 ** 000606 ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be 000607 ** silently truncated if necessary so that it does not exceed the 000608 ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE 000609 ** compile-time option. 000610 */ 000611 if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ 000612 mxMmap = SQLITE_MAX_MMAP_SIZE; 000613 } 000614 if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; 000615 if( szMmap>mxMmap) szMmap = mxMmap; 000616 sqlite3GlobalConfig.mxMmap = mxMmap; 000617 sqlite3GlobalConfig.szMmap = szMmap; 000618 break; 000619 } 000620 000621 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ 000622 case SQLITE_CONFIG_WIN32_HEAPSIZE: { 000623 /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit 000624 ** unsigned integer value that specifies the maximum size of the created 000625 ** heap. */ 000626 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 000627 break; 000628 } 000629 #endif 000630 000631 case SQLITE_CONFIG_PMASZ: { 000632 sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); 000633 break; 000634 } 000635 000636 case SQLITE_CONFIG_STMTJRNL_SPILL: { 000637 sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int); 000638 break; 000639 } 000640 000641 default: { 000642 rc = SQLITE_ERROR; 000643 break; 000644 } 000645 } 000646 va_end(ap); 000647 return rc; 000648 } 000649 000650 /* 000651 ** Set up the lookaside buffers for a database connection. 000652 ** Return SQLITE_OK on success. 000653 ** If lookaside is already active, return SQLITE_BUSY. 000654 ** 000655 ** The sz parameter is the number of bytes in each lookaside slot. 000656 ** The cnt parameter is the number of slots. If pStart is NULL the 000657 ** space for the lookaside memory is obtained from sqlite3_malloc(). 000658 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 000659 ** the lookaside memory. 000660 */ 000661 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 000662 #ifndef SQLITE_OMIT_LOOKASIDE 000663 void *pStart; 000664 if( db->lookaside.nOut ){ 000665 return SQLITE_BUSY; 000666 } 000667 /* Free any existing lookaside buffer for this handle before 000668 ** allocating a new one so we don't have to have space for 000669 ** both at the same time. 000670 */ 000671 if( db->lookaside.bMalloced ){ 000672 sqlite3_free(db->lookaside.pStart); 000673 } 000674 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 000675 ** than a pointer to be useful. 000676 */ 000677 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 000678 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 000679 if( cnt<0 ) cnt = 0; 000680 if( sz==0 || cnt==0 ){ 000681 sz = 0; 000682 pStart = 0; 000683 }else if( pBuf==0 ){ 000684 sqlite3BeginBenignMalloc(); 000685 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 000686 sqlite3EndBenignMalloc(); 000687 if( pStart ) cnt = sqlite3MallocSize(pStart)/sz; 000688 }else{ 000689 pStart = pBuf; 000690 } 000691 db->lookaside.pStart = pStart; 000692 db->lookaside.pFree = 0; 000693 db->lookaside.sz = (u16)sz; 000694 if( pStart ){ 000695 int i; 000696 LookasideSlot *p; 000697 assert( sz > (int)sizeof(LookasideSlot*) ); 000698 p = (LookasideSlot*)pStart; 000699 for(i=cnt-1; i>=0; i--){ 000700 p->pNext = db->lookaside.pFree; 000701 db->lookaside.pFree = p; 000702 p = (LookasideSlot*)&((u8*)p)[sz]; 000703 } 000704 db->lookaside.pEnd = p; 000705 db->lookaside.bDisable = 0; 000706 db->lookaside.bMalloced = pBuf==0 ?1:0; 000707 }else{ 000708 db->lookaside.pStart = db; 000709 db->lookaside.pEnd = db; 000710 db->lookaside.bDisable = 1; 000711 db->lookaside.bMalloced = 0; 000712 } 000713 #endif /* SQLITE_OMIT_LOOKASIDE */ 000714 return SQLITE_OK; 000715 } 000716 000717 /* 000718 ** Return the mutex associated with a database connection. 000719 */ 000720 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 000721 #ifdef SQLITE_ENABLE_API_ARMOR 000722 if( !sqlite3SafetyCheckOk(db) ){ 000723 (void)SQLITE_MISUSE_BKPT; 000724 return 0; 000725 } 000726 #endif 000727 return db->mutex; 000728 } 000729 000730 /* 000731 ** Free up as much memory as we can from the given database 000732 ** connection. 000733 */ 000734 int sqlite3_db_release_memory(sqlite3 *db){ 000735 int i; 000736 000737 #ifdef SQLITE_ENABLE_API_ARMOR 000738 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 000739 #endif 000740 sqlite3_mutex_enter(db->mutex); 000741 sqlite3BtreeEnterAll(db); 000742 for(i=0; i<db->nDb; i++){ 000743 Btree *pBt = db->aDb[i].pBt; 000744 if( pBt ){ 000745 Pager *pPager = sqlite3BtreePager(pBt); 000746 sqlite3PagerShrink(pPager); 000747 } 000748 } 000749 sqlite3BtreeLeaveAll(db); 000750 sqlite3_mutex_leave(db->mutex); 000751 return SQLITE_OK; 000752 } 000753 000754 /* 000755 ** Flush any dirty pages in the pager-cache for any attached database 000756 ** to disk. 000757 */ 000758 int sqlite3_db_cacheflush(sqlite3 *db){ 000759 int i; 000760 int rc = SQLITE_OK; 000761 int bSeenBusy = 0; 000762 000763 #ifdef SQLITE_ENABLE_API_ARMOR 000764 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 000765 #endif 000766 sqlite3_mutex_enter(db->mutex); 000767 sqlite3BtreeEnterAll(db); 000768 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 000769 Btree *pBt = db->aDb[i].pBt; 000770 if( pBt && sqlite3BtreeIsInTrans(pBt) ){ 000771 Pager *pPager = sqlite3BtreePager(pBt); 000772 rc = sqlite3PagerFlush(pPager); 000773 if( rc==SQLITE_BUSY ){ 000774 bSeenBusy = 1; 000775 rc = SQLITE_OK; 000776 } 000777 } 000778 } 000779 sqlite3BtreeLeaveAll(db); 000780 sqlite3_mutex_leave(db->mutex); 000781 return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc); 000782 } 000783 000784 /* 000785 ** Configuration settings for an individual database connection 000786 */ 000787 int sqlite3_db_config(sqlite3 *db, int op, ...){ 000788 va_list ap; 000789 int rc; 000790 va_start(ap, op); 000791 switch( op ){ 000792 case SQLITE_DBCONFIG_MAINDBNAME: { 000793 db->aDb[0].zDbSName = va_arg(ap,char*); 000794 rc = SQLITE_OK; 000795 break; 000796 } 000797 case SQLITE_DBCONFIG_LOOKASIDE: { 000798 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 000799 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 000800 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 000801 rc = setupLookaside(db, pBuf, sz, cnt); 000802 break; 000803 } 000804 default: { 000805 static const struct { 000806 int op; /* The opcode */ 000807 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 000808 } aFlagOp[] = { 000809 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 000810 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 000811 { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, 000812 { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, 000813 { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, 000814 }; 000815 unsigned int i; 000816 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 000817 for(i=0; i<ArraySize(aFlagOp); i++){ 000818 if( aFlagOp[i].op==op ){ 000819 int onoff = va_arg(ap, int); 000820 int *pRes = va_arg(ap, int*); 000821 int oldFlags = db->flags; 000822 if( onoff>0 ){ 000823 db->flags |= aFlagOp[i].mask; 000824 }else if( onoff==0 ){ 000825 db->flags &= ~aFlagOp[i].mask; 000826 } 000827 if( oldFlags!=db->flags ){ 000828 sqlite3ExpirePreparedStatements(db); 000829 } 000830 if( pRes ){ 000831 *pRes = (db->flags & aFlagOp[i].mask)!=0; 000832 } 000833 rc = SQLITE_OK; 000834 break; 000835 } 000836 } 000837 break; 000838 } 000839 } 000840 va_end(ap); 000841 return rc; 000842 } 000843 000844 000845 /* 000846 ** Return true if the buffer z[0..n-1] contains all spaces. 000847 */ 000848 static int allSpaces(const char *z, int n){ 000849 while( n>0 && z[n-1]==' ' ){ n--; } 000850 return n==0; 000851 } 000852 000853 /* 000854 ** This is the default collating function named "BINARY" which is always 000855 ** available. 000856 ** 000857 ** If the padFlag argument is not NULL then space padding at the end 000858 ** of strings is ignored. This implements the RTRIM collation. 000859 */ 000860 static int binCollFunc( 000861 void *padFlag, 000862 int nKey1, const void *pKey1, 000863 int nKey2, const void *pKey2 000864 ){ 000865 int rc, n; 000866 n = nKey1<nKey2 ? nKey1 : nKey2; 000867 /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares 000868 ** strings byte by byte using the memcmp() function from the standard C 000869 ** library. */ 000870 rc = memcmp(pKey1, pKey2, n); 000871 if( rc==0 ){ 000872 if( padFlag 000873 && allSpaces(((char*)pKey1)+n, nKey1-n) 000874 && allSpaces(((char*)pKey2)+n, nKey2-n) 000875 ){ 000876 /* EVIDENCE-OF: R-31624-24737 RTRIM is like BINARY except that extra 000877 ** spaces at the end of either string do not change the result. In other 000878 ** words, strings will compare equal to one another as long as they 000879 ** differ only in the number of spaces at the end. 000880 */ 000881 }else{ 000882 rc = nKey1 - nKey2; 000883 } 000884 } 000885 return rc; 000886 } 000887 000888 /* 000889 ** Another built-in collating sequence: NOCASE. 000890 ** 000891 ** This collating sequence is intended to be used for "case independent 000892 ** comparison". SQLite's knowledge of upper and lower case equivalents 000893 ** extends only to the 26 characters used in the English language. 000894 ** 000895 ** At the moment there is only a UTF-8 implementation. 000896 */ 000897 static int nocaseCollatingFunc( 000898 void *NotUsed, 000899 int nKey1, const void *pKey1, 000900 int nKey2, const void *pKey2 000901 ){ 000902 int r = sqlite3StrNICmp( 000903 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 000904 UNUSED_PARAMETER(NotUsed); 000905 if( 0==r ){ 000906 r = nKey1-nKey2; 000907 } 000908 return r; 000909 } 000910 000911 /* 000912 ** Return the ROWID of the most recent insert 000913 */ 000914 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 000915 #ifdef SQLITE_ENABLE_API_ARMOR 000916 if( !sqlite3SafetyCheckOk(db) ){ 000917 (void)SQLITE_MISUSE_BKPT; 000918 return 0; 000919 } 000920 #endif 000921 return db->lastRowid; 000922 } 000923 000924 /* 000925 ** Return the number of changes in the most recent call to sqlite3_exec(). 000926 */ 000927 int sqlite3_changes(sqlite3 *db){ 000928 #ifdef SQLITE_ENABLE_API_ARMOR 000929 if( !sqlite3SafetyCheckOk(db) ){ 000930 (void)SQLITE_MISUSE_BKPT; 000931 return 0; 000932 } 000933 #endif 000934 return db->nChange; 000935 } 000936 000937 /* 000938 ** Return the number of changes since the database handle was opened. 000939 */ 000940 int sqlite3_total_changes(sqlite3 *db){ 000941 #ifdef SQLITE_ENABLE_API_ARMOR 000942 if( !sqlite3SafetyCheckOk(db) ){ 000943 (void)SQLITE_MISUSE_BKPT; 000944 return 0; 000945 } 000946 #endif 000947 return db->nTotalChange; 000948 } 000949 000950 /* 000951 ** Close all open savepoints. This function only manipulates fields of the 000952 ** database handle object, it does not close any savepoints that may be open 000953 ** at the b-tree/pager level. 000954 */ 000955 void sqlite3CloseSavepoints(sqlite3 *db){ 000956 while( db->pSavepoint ){ 000957 Savepoint *pTmp = db->pSavepoint; 000958 db->pSavepoint = pTmp->pNext; 000959 sqlite3DbFree(db, pTmp); 000960 } 000961 db->nSavepoint = 0; 000962 db->nStatement = 0; 000963 db->isTransactionSavepoint = 0; 000964 } 000965 000966 /* 000967 ** Invoke the destructor function associated with FuncDef p, if any. Except, 000968 ** if this is not the last copy of the function, do not invoke it. Multiple 000969 ** copies of a single function are created when create_function() is called 000970 ** with SQLITE_ANY as the encoding. 000971 */ 000972 static void functionDestroy(sqlite3 *db, FuncDef *p){ 000973 FuncDestructor *pDestructor = p->u.pDestructor; 000974 if( pDestructor ){ 000975 pDestructor->nRef--; 000976 if( pDestructor->nRef==0 ){ 000977 pDestructor->xDestroy(pDestructor->pUserData); 000978 sqlite3DbFree(db, pDestructor); 000979 } 000980 } 000981 } 000982 000983 /* 000984 ** Disconnect all sqlite3_vtab objects that belong to database connection 000985 ** db. This is called when db is being closed. 000986 */ 000987 static void disconnectAllVtab(sqlite3 *db){ 000988 #ifndef SQLITE_OMIT_VIRTUALTABLE 000989 int i; 000990 HashElem *p; 000991 sqlite3BtreeEnterAll(db); 000992 for(i=0; i<db->nDb; i++){ 000993 Schema *pSchema = db->aDb[i].pSchema; 000994 if( db->aDb[i].pSchema ){ 000995 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 000996 Table *pTab = (Table *)sqliteHashData(p); 000997 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 000998 } 000999 } 001000 } 001001 for(p=sqliteHashFirst(&db->aModule); p; p=sqliteHashNext(p)){ 001002 Module *pMod = (Module *)sqliteHashData(p); 001003 if( pMod->pEpoTab ){ 001004 sqlite3VtabDisconnect(db, pMod->pEpoTab); 001005 } 001006 } 001007 sqlite3VtabUnlockList(db); 001008 sqlite3BtreeLeaveAll(db); 001009 #else 001010 UNUSED_PARAMETER(db); 001011 #endif 001012 } 001013 001014 /* 001015 ** Return TRUE if database connection db has unfinalized prepared 001016 ** statements or unfinished sqlite3_backup objects. 001017 */ 001018 static int connectionIsBusy(sqlite3 *db){ 001019 int j; 001020 assert( sqlite3_mutex_held(db->mutex) ); 001021 if( db->pVdbe ) return 1; 001022 for(j=0; j<db->nDb; j++){ 001023 Btree *pBt = db->aDb[j].pBt; 001024 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 001025 } 001026 return 0; 001027 } 001028 001029 /* 001030 ** Close an existing SQLite database 001031 */ 001032 static int sqlite3Close(sqlite3 *db, int forceZombie){ 001033 if( !db ){ 001034 /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or 001035 ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ 001036 return SQLITE_OK; 001037 } 001038 if( !sqlite3SafetyCheckSickOrOk(db) ){ 001039 return SQLITE_MISUSE_BKPT; 001040 } 001041 sqlite3_mutex_enter(db->mutex); 001042 if( db->mTrace & SQLITE_TRACE_CLOSE ){ 001043 db->xTrace(SQLITE_TRACE_CLOSE, db->pTraceArg, db, 0); 001044 } 001045 001046 /* Force xDisconnect calls on all virtual tables */ 001047 disconnectAllVtab(db); 001048 001049 /* If a transaction is open, the disconnectAllVtab() call above 001050 ** will not have called the xDisconnect() method on any virtual 001051 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 001052 ** call will do so. We need to do this before the check for active 001053 ** SQL statements below, as the v-table implementation may be storing 001054 ** some prepared statements internally. 001055 */ 001056 sqlite3VtabRollback(db); 001057 001058 /* Legacy behavior (sqlite3_close() behavior) is to return 001059 ** SQLITE_BUSY if the connection can not be closed immediately. 001060 */ 001061 if( !forceZombie && connectionIsBusy(db) ){ 001062 sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " 001063 "statements or unfinished backups"); 001064 sqlite3_mutex_leave(db->mutex); 001065 return SQLITE_BUSY; 001066 } 001067 001068 #ifdef SQLITE_ENABLE_SQLLOG 001069 if( sqlite3GlobalConfig.xSqllog ){ 001070 /* Closing the handle. Fourth parameter is passed the value 2. */ 001071 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 001072 } 001073 #endif 001074 001075 /* Convert the connection into a zombie and then close it. 001076 */ 001077 db->magic = SQLITE_MAGIC_ZOMBIE; 001078 sqlite3LeaveMutexAndCloseZombie(db); 001079 return SQLITE_OK; 001080 } 001081 001082 /* 001083 ** Two variations on the public interface for closing a database 001084 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 001085 ** leaves the connection option if there are unfinalized prepared 001086 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 001087 ** version forces the connection to become a zombie if there are 001088 ** unclosed resources, and arranges for deallocation when the last 001089 ** prepare statement or sqlite3_backup closes. 001090 */ 001091 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 001092 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 001093 001094 001095 /* 001096 ** Close the mutex on database connection db. 001097 ** 001098 ** Furthermore, if database connection db is a zombie (meaning that there 001099 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 001100 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 001101 ** finished, then free all resources. 001102 */ 001103 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 001104 HashElem *i; /* Hash table iterator */ 001105 int j; 001106 001107 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 001108 ** or if the connection has not yet been closed by sqlite3_close_v2(), 001109 ** then just leave the mutex and return. 001110 */ 001111 if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){ 001112 sqlite3_mutex_leave(db->mutex); 001113 return; 001114 } 001115 001116 /* If we reach this point, it means that the database connection has 001117 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 001118 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 001119 ** go ahead and free all resources. 001120 */ 001121 001122 /* If a transaction is open, roll it back. This also ensures that if 001123 ** any database schemas have been modified by an uncommitted transaction 001124 ** they are reset. And that the required b-tree mutex is held to make 001125 ** the pager rollback and schema reset an atomic operation. */ 001126 sqlite3RollbackAll(db, SQLITE_OK); 001127 001128 /* Free any outstanding Savepoint structures. */ 001129 sqlite3CloseSavepoints(db); 001130 001131 /* Close all database connections */ 001132 for(j=0; j<db->nDb; j++){ 001133 struct Db *pDb = &db->aDb[j]; 001134 if( pDb->pBt ){ 001135 sqlite3BtreeClose(pDb->pBt); 001136 pDb->pBt = 0; 001137 if( j!=1 ){ 001138 pDb->pSchema = 0; 001139 } 001140 } 001141 } 001142 /* Clear the TEMP schema separately and last */ 001143 if( db->aDb[1].pSchema ){ 001144 sqlite3SchemaClear(db->aDb[1].pSchema); 001145 } 001146 sqlite3VtabUnlockList(db); 001147 001148 /* Free up the array of auxiliary databases */ 001149 sqlite3CollapseDatabaseArray(db); 001150 assert( db->nDb<=2 ); 001151 assert( db->aDb==db->aDbStatic ); 001152 001153 /* Tell the code in notify.c that the connection no longer holds any 001154 ** locks and does not require any further unlock-notify callbacks. 001155 */ 001156 sqlite3ConnectionClosed(db); 001157 001158 for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ 001159 FuncDef *pNext, *p; 001160 p = sqliteHashData(i); 001161 do{ 001162 functionDestroy(db, p); 001163 pNext = p->pNext; 001164 sqlite3DbFree(db, p); 001165 p = pNext; 001166 }while( p ); 001167 } 001168 sqlite3HashClear(&db->aFunc); 001169 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 001170 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 001171 /* Invoke any destructors registered for collation sequence user data. */ 001172 for(j=0; j<3; j++){ 001173 if( pColl[j].xDel ){ 001174 pColl[j].xDel(pColl[j].pUser); 001175 } 001176 } 001177 sqlite3DbFree(db, pColl); 001178 } 001179 sqlite3HashClear(&db->aCollSeq); 001180 #ifndef SQLITE_OMIT_VIRTUALTABLE 001181 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 001182 Module *pMod = (Module *)sqliteHashData(i); 001183 if( pMod->xDestroy ){ 001184 pMod->xDestroy(pMod->pAux); 001185 } 001186 sqlite3VtabEponymousTableClear(db, pMod); 001187 sqlite3DbFree(db, pMod); 001188 } 001189 sqlite3HashClear(&db->aModule); 001190 #endif 001191 001192 sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ 001193 sqlite3ValueFree(db->pErr); 001194 sqlite3CloseExtensions(db); 001195 #if SQLITE_USER_AUTHENTICATION 001196 sqlite3_free(db->auth.zAuthUser); 001197 sqlite3_free(db->auth.zAuthPW); 001198 #endif 001199 001200 db->magic = SQLITE_MAGIC_ERROR; 001201 001202 /* The temp-database schema is allocated differently from the other schema 001203 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 001204 ** So it needs to be freed here. Todo: Why not roll the temp schema into 001205 ** the same sqliteMalloc() as the one that allocates the database 001206 ** structure? 001207 */ 001208 sqlite3DbFree(db, db->aDb[1].pSchema); 001209 sqlite3_mutex_leave(db->mutex); 001210 db->magic = SQLITE_MAGIC_CLOSED; 001211 sqlite3_mutex_free(db->mutex); 001212 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 001213 if( db->lookaside.bMalloced ){ 001214 sqlite3_free(db->lookaside.pStart); 001215 } 001216 sqlite3_free(db); 001217 } 001218 001219 /* 001220 ** Rollback all database files. If tripCode is not SQLITE_OK, then 001221 ** any write cursors are invalidated ("tripped" - as in "tripping a circuit 001222 ** breaker") and made to return tripCode if there are any further 001223 ** attempts to use that cursor. Read cursors remain open and valid 001224 ** but are "saved" in case the table pages are moved around. 001225 */ 001226 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 001227 int i; 001228 int inTrans = 0; 001229 int schemaChange; 001230 assert( sqlite3_mutex_held(db->mutex) ); 001231 sqlite3BeginBenignMalloc(); 001232 001233 /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 001234 ** This is important in case the transaction being rolled back has 001235 ** modified the database schema. If the b-tree mutexes are not taken 001236 ** here, then another shared-cache connection might sneak in between 001237 ** the database rollback and schema reset, which can cause false 001238 ** corruption reports in some cases. */ 001239 sqlite3BtreeEnterAll(db); 001240 schemaChange = (db->flags & SQLITE_InternChanges)!=0 && db->init.busy==0; 001241 001242 for(i=0; i<db->nDb; i++){ 001243 Btree *p = db->aDb[i].pBt; 001244 if( p ){ 001245 if( sqlite3BtreeIsInTrans(p) ){ 001246 inTrans = 1; 001247 } 001248 sqlite3BtreeRollback(p, tripCode, !schemaChange); 001249 } 001250 } 001251 sqlite3VtabRollback(db); 001252 sqlite3EndBenignMalloc(); 001253 001254 if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ 001255 sqlite3ExpirePreparedStatements(db); 001256 sqlite3ResetAllSchemasOfConnection(db); 001257 } 001258 sqlite3BtreeLeaveAll(db); 001259 001260 /* Any deferred constraint violations have now been resolved. */ 001261 db->nDeferredCons = 0; 001262 db->nDeferredImmCons = 0; 001263 db->flags &= ~SQLITE_DeferFKs; 001264 001265 /* If one has been configured, invoke the rollback-hook callback */ 001266 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 001267 db->xRollbackCallback(db->pRollbackArg); 001268 } 001269 } 001270 001271 /* 001272 ** Return a static string containing the name corresponding to the error code 001273 ** specified in the argument. 001274 */ 001275 #if defined(SQLITE_NEED_ERR_NAME) 001276 const char *sqlite3ErrName(int rc){ 001277 const char *zName = 0; 001278 int i, origRc = rc; 001279 for(i=0; i<2 && zName==0; i++, rc &= 0xff){ 001280 switch( rc ){ 001281 case SQLITE_OK: zName = "SQLITE_OK"; break; 001282 case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; 001283 case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; 001284 case SQLITE_PERM: zName = "SQLITE_PERM"; break; 001285 case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; 001286 case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; 001287 case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; 001288 case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; 001289 case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; 001290 case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; 001291 case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; 001292 case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; 001293 case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; 001294 case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; 001295 case SQLITE_READONLY_CANTLOCK: zName = "SQLITE_READONLY_CANTLOCK"; break; 001296 case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; 001297 case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; 001298 case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; 001299 case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; 001300 case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; 001301 case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; 001302 case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; 001303 case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; 001304 case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; 001305 case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; 001306 case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; 001307 case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; 001308 case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; 001309 case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; 001310 case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; 001311 case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; 001312 case SQLITE_IOERR_CHECKRESERVEDLOCK: 001313 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; 001314 case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; 001315 case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; 001316 case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; 001317 case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; 001318 case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; 001319 case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; 001320 case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; 001321 case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; 001322 case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; 001323 case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; 001324 case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; 001325 case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; 001326 case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; 001327 case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; 001328 case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; 001329 case SQLITE_FULL: zName = "SQLITE_FULL"; break; 001330 case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; 001331 case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; 001332 case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; 001333 case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; 001334 case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; 001335 case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; 001336 case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; 001337 case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; 001338 case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; 001339 case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; 001340 case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; 001341 case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; 001342 case SQLITE_CONSTRAINT_FOREIGNKEY: 001343 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; 001344 case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; 001345 case SQLITE_CONSTRAINT_PRIMARYKEY: 001346 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; 001347 case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; 001348 case SQLITE_CONSTRAINT_COMMITHOOK: 001349 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; 001350 case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; 001351 case SQLITE_CONSTRAINT_FUNCTION: 001352 zName = "SQLITE_CONSTRAINT_FUNCTION"; break; 001353 case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; 001354 case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; 001355 case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; 001356 case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; 001357 case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; 001358 case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; 001359 case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; 001360 case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; 001361 case SQLITE_ROW: zName = "SQLITE_ROW"; break; 001362 case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; 001363 case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; 001364 case SQLITE_NOTICE_RECOVER_ROLLBACK: 001365 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; 001366 case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; 001367 case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; 001368 case SQLITE_DONE: zName = "SQLITE_DONE"; break; 001369 } 001370 } 001371 if( zName==0 ){ 001372 static char zBuf[50]; 001373 sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); 001374 zName = zBuf; 001375 } 001376 return zName; 001377 } 001378 #endif 001379 001380 /* 001381 ** Return a static string that describes the kind of error specified in the 001382 ** argument. 001383 */ 001384 const char *sqlite3ErrStr(int rc){ 001385 static const char* const aMsg[] = { 001386 /* SQLITE_OK */ "not an error", 001387 /* SQLITE_ERROR */ "SQL logic error or missing database", 001388 /* SQLITE_INTERNAL */ 0, 001389 /* SQLITE_PERM */ "access permission denied", 001390 /* SQLITE_ABORT */ "callback requested query abort", 001391 /* SQLITE_BUSY */ "database is locked", 001392 /* SQLITE_LOCKED */ "database table is locked", 001393 /* SQLITE_NOMEM */ "out of memory", 001394 /* SQLITE_READONLY */ "attempt to write a readonly database", 001395 /* SQLITE_INTERRUPT */ "interrupted", 001396 /* SQLITE_IOERR */ "disk I/O error", 001397 /* SQLITE_CORRUPT */ "database disk image is malformed", 001398 /* SQLITE_NOTFOUND */ "unknown operation", 001399 /* SQLITE_FULL */ "database or disk is full", 001400 /* SQLITE_CANTOPEN */ "unable to open database file", 001401 /* SQLITE_PROTOCOL */ "locking protocol", 001402 /* SQLITE_EMPTY */ "table contains no data", 001403 /* SQLITE_SCHEMA */ "database schema has changed", 001404 /* SQLITE_TOOBIG */ "string or blob too big", 001405 /* SQLITE_CONSTRAINT */ "constraint failed", 001406 /* SQLITE_MISMATCH */ "datatype mismatch", 001407 /* SQLITE_MISUSE */ "library routine called out of sequence", 001408 /* SQLITE_NOLFS */ "large file support is disabled", 001409 /* SQLITE_AUTH */ "authorization denied", 001410 /* SQLITE_FORMAT */ "auxiliary database format error", 001411 /* SQLITE_RANGE */ "bind or column index out of range", 001412 /* SQLITE_NOTADB */ "file is encrypted or is not a database", 001413 }; 001414 const char *zErr = "unknown error"; 001415 switch( rc ){ 001416 case SQLITE_ABORT_ROLLBACK: { 001417 zErr = "abort due to ROLLBACK"; 001418 break; 001419 } 001420 default: { 001421 rc &= 0xff; 001422 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 001423 zErr = aMsg[rc]; 001424 } 001425 break; 001426 } 001427 } 001428 return zErr; 001429 } 001430 001431 /* 001432 ** This routine implements a busy callback that sleeps and tries 001433 ** again until a timeout value is reached. The timeout value is 001434 ** an integer number of milliseconds passed in as the first 001435 ** argument. 001436 */ 001437 static int sqliteDefaultBusyCallback( 001438 void *ptr, /* Database connection */ 001439 int count /* Number of times table has been busy */ 001440 ){ 001441 #if SQLITE_OS_WIN || HAVE_USLEEP 001442 static const u8 delays[] = 001443 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 001444 static const u8 totals[] = 001445 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 001446 # define NDELAY ArraySize(delays) 001447 sqlite3 *db = (sqlite3 *)ptr; 001448 int timeout = db->busyTimeout; 001449 int delay, prior; 001450 001451 assert( count>=0 ); 001452 if( count < NDELAY ){ 001453 delay = delays[count]; 001454 prior = totals[count]; 001455 }else{ 001456 delay = delays[NDELAY-1]; 001457 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 001458 } 001459 if( prior + delay > timeout ){ 001460 delay = timeout - prior; 001461 if( delay<=0 ) return 0; 001462 } 001463 sqlite3OsSleep(db->pVfs, delay*1000); 001464 return 1; 001465 #else 001466 sqlite3 *db = (sqlite3 *)ptr; 001467 int timeout = ((sqlite3 *)ptr)->busyTimeout; 001468 if( (count+1)*1000 > timeout ){ 001469 return 0; 001470 } 001471 sqlite3OsSleep(db->pVfs, 1000000); 001472 return 1; 001473 #endif 001474 } 001475 001476 /* 001477 ** Invoke the given busy handler. 001478 ** 001479 ** This routine is called when an operation failed with a lock. 001480 ** If this routine returns non-zero, the lock is retried. If it 001481 ** returns 0, the operation aborts with an SQLITE_BUSY error. 001482 */ 001483 int sqlite3InvokeBusyHandler(BusyHandler *p){ 001484 int rc; 001485 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 001486 rc = p->xFunc(p->pArg, p->nBusy); 001487 if( rc==0 ){ 001488 p->nBusy = -1; 001489 }else{ 001490 p->nBusy++; 001491 } 001492 return rc; 001493 } 001494 001495 /* 001496 ** This routine sets the busy callback for an Sqlite database to the 001497 ** given callback function with the given argument. 001498 */ 001499 int sqlite3_busy_handler( 001500 sqlite3 *db, 001501 int (*xBusy)(void*,int), 001502 void *pArg 001503 ){ 001504 #ifdef SQLITE_ENABLE_API_ARMOR 001505 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 001506 #endif 001507 sqlite3_mutex_enter(db->mutex); 001508 db->busyHandler.xFunc = xBusy; 001509 db->busyHandler.pArg = pArg; 001510 db->busyHandler.nBusy = 0; 001511 db->busyTimeout = 0; 001512 sqlite3_mutex_leave(db->mutex); 001513 return SQLITE_OK; 001514 } 001515 001516 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 001517 /* 001518 ** This routine sets the progress callback for an Sqlite database to the 001519 ** given callback function with the given argument. The progress callback will 001520 ** be invoked every nOps opcodes. 001521 */ 001522 void sqlite3_progress_handler( 001523 sqlite3 *db, 001524 int nOps, 001525 int (*xProgress)(void*), 001526 void *pArg 001527 ){ 001528 #ifdef SQLITE_ENABLE_API_ARMOR 001529 if( !sqlite3SafetyCheckOk(db) ){ 001530 (void)SQLITE_MISUSE_BKPT; 001531 return; 001532 } 001533 #endif 001534 sqlite3_mutex_enter(db->mutex); 001535 if( nOps>0 ){ 001536 db->xProgress = xProgress; 001537 db->nProgressOps = (unsigned)nOps; 001538 db->pProgressArg = pArg; 001539 }else{ 001540 db->xProgress = 0; 001541 db->nProgressOps = 0; 001542 db->pProgressArg = 0; 001543 } 001544 sqlite3_mutex_leave(db->mutex); 001545 } 001546 #endif 001547 001548 001549 /* 001550 ** This routine installs a default busy handler that waits for the 001551 ** specified number of milliseconds before returning 0. 001552 */ 001553 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 001554 #ifdef SQLITE_ENABLE_API_ARMOR 001555 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 001556 #endif 001557 if( ms>0 ){ 001558 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 001559 db->busyTimeout = ms; 001560 }else{ 001561 sqlite3_busy_handler(db, 0, 0); 001562 } 001563 return SQLITE_OK; 001564 } 001565 001566 /* 001567 ** Cause any pending operation to stop at its earliest opportunity. 001568 */ 001569 void sqlite3_interrupt(sqlite3 *db){ 001570 #ifdef SQLITE_ENABLE_API_ARMOR 001571 if( !sqlite3SafetyCheckOk(db) && (db==0 || db->magic!=SQLITE_MAGIC_ZOMBIE) ){ 001572 (void)SQLITE_MISUSE_BKPT; 001573 return; 001574 } 001575 #endif 001576 db->u1.isInterrupted = 1; 001577 } 001578 001579 001580 /* 001581 ** This function is exactly the same as sqlite3_create_function(), except 001582 ** that it is designed to be called by internal code. The difference is 001583 ** that if a malloc() fails in sqlite3_create_function(), an error code 001584 ** is returned and the mallocFailed flag cleared. 001585 */ 001586 int sqlite3CreateFunc( 001587 sqlite3 *db, 001588 const char *zFunctionName, 001589 int nArg, 001590 int enc, 001591 void *pUserData, 001592 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 001593 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 001594 void (*xFinal)(sqlite3_context*), 001595 FuncDestructor *pDestructor 001596 ){ 001597 FuncDef *p; 001598 int nName; 001599 int extraFlags; 001600 001601 assert( sqlite3_mutex_held(db->mutex) ); 001602 if( zFunctionName==0 || 001603 (xSFunc && (xFinal || xStep)) || 001604 (!xSFunc && (xFinal && !xStep)) || 001605 (!xSFunc && (!xFinal && xStep)) || 001606 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 001607 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 001608 return SQLITE_MISUSE_BKPT; 001609 } 001610 001611 assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC ); 001612 extraFlags = enc & SQLITE_DETERMINISTIC; 001613 enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY); 001614 001615 #ifndef SQLITE_OMIT_UTF16 001616 /* If SQLITE_UTF16 is specified as the encoding type, transform this 001617 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 001618 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 001619 ** 001620 ** If SQLITE_ANY is specified, add three versions of the function 001621 ** to the hash table. 001622 */ 001623 if( enc==SQLITE_UTF16 ){ 001624 enc = SQLITE_UTF16NATIVE; 001625 }else if( enc==SQLITE_ANY ){ 001626 int rc; 001627 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags, 001628 pUserData, xSFunc, xStep, xFinal, pDestructor); 001629 if( rc==SQLITE_OK ){ 001630 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags, 001631 pUserData, xSFunc, xStep, xFinal, pDestructor); 001632 } 001633 if( rc!=SQLITE_OK ){ 001634 return rc; 001635 } 001636 enc = SQLITE_UTF16BE; 001637 } 001638 #else 001639 enc = SQLITE_UTF8; 001640 #endif 001641 001642 /* Check if an existing function is being overridden or deleted. If so, 001643 ** and there are active VMs, then return SQLITE_BUSY. If a function 001644 ** is being overridden/deleted but there are no active VMs, allow the 001645 ** operation to continue but invalidate all precompiled statements. 001646 */ 001647 p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 0); 001648 if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==enc && p->nArg==nArg ){ 001649 if( db->nVdbeActive ){ 001650 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 001651 "unable to delete/modify user-function due to active statements"); 001652 assert( !db->mallocFailed ); 001653 return SQLITE_BUSY; 001654 }else{ 001655 sqlite3ExpirePreparedStatements(db); 001656 } 001657 } 001658 001659 p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 1); 001660 assert(p || db->mallocFailed); 001661 if( !p ){ 001662 return SQLITE_NOMEM_BKPT; 001663 } 001664 001665 /* If an older version of the function with a configured destructor is 001666 ** being replaced invoke the destructor function here. */ 001667 functionDestroy(db, p); 001668 001669 if( pDestructor ){ 001670 pDestructor->nRef++; 001671 } 001672 p->u.pDestructor = pDestructor; 001673 p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; 001674 testcase( p->funcFlags & SQLITE_DETERMINISTIC ); 001675 p->xSFunc = xSFunc ? xSFunc : xStep; 001676 p->xFinalize = xFinal; 001677 p->pUserData = pUserData; 001678 p->nArg = (u16)nArg; 001679 return SQLITE_OK; 001680 } 001681 001682 /* 001683 ** Create new user functions. 001684 */ 001685 int sqlite3_create_function( 001686 sqlite3 *db, 001687 const char *zFunc, 001688 int nArg, 001689 int enc, 001690 void *p, 001691 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 001692 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 001693 void (*xFinal)(sqlite3_context*) 001694 ){ 001695 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xSFunc, xStep, 001696 xFinal, 0); 001697 } 001698 001699 int sqlite3_create_function_v2( 001700 sqlite3 *db, 001701 const char *zFunc, 001702 int nArg, 001703 int enc, 001704 void *p, 001705 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 001706 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 001707 void (*xFinal)(sqlite3_context*), 001708 void (*xDestroy)(void *) 001709 ){ 001710 int rc = SQLITE_ERROR; 001711 FuncDestructor *pArg = 0; 001712 001713 #ifdef SQLITE_ENABLE_API_ARMOR 001714 if( !sqlite3SafetyCheckOk(db) ){ 001715 return SQLITE_MISUSE_BKPT; 001716 } 001717 #endif 001718 sqlite3_mutex_enter(db->mutex); 001719 if( xDestroy ){ 001720 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 001721 if( !pArg ){ 001722 xDestroy(p); 001723 goto out; 001724 } 001725 pArg->xDestroy = xDestroy; 001726 pArg->pUserData = p; 001727 } 001728 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, pArg); 001729 if( pArg && pArg->nRef==0 ){ 001730 assert( rc!=SQLITE_OK ); 001731 xDestroy(p); 001732 sqlite3DbFree(db, pArg); 001733 } 001734 001735 out: 001736 rc = sqlite3ApiExit(db, rc); 001737 sqlite3_mutex_leave(db->mutex); 001738 return rc; 001739 } 001740 001741 #ifndef SQLITE_OMIT_UTF16 001742 int sqlite3_create_function16( 001743 sqlite3 *db, 001744 const void *zFunctionName, 001745 int nArg, 001746 int eTextRep, 001747 void *p, 001748 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), 001749 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 001750 void (*xFinal)(sqlite3_context*) 001751 ){ 001752 int rc; 001753 char *zFunc8; 001754 001755 #ifdef SQLITE_ENABLE_API_ARMOR 001756 if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; 001757 #endif 001758 sqlite3_mutex_enter(db->mutex); 001759 assert( !db->mallocFailed ); 001760 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 001761 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0); 001762 sqlite3DbFree(db, zFunc8); 001763 rc = sqlite3ApiExit(db, rc); 001764 sqlite3_mutex_leave(db->mutex); 001765 return rc; 001766 } 001767 #endif 001768 001769 001770 /* 001771 ** Declare that a function has been overloaded by a virtual table. 001772 ** 001773 ** If the function already exists as a regular global function, then 001774 ** this routine is a no-op. If the function does not exist, then create 001775 ** a new one that always throws a run-time error. 001776 ** 001777 ** When virtual tables intend to provide an overloaded function, they 001778 ** should call this routine to make sure the global function exists. 001779 ** A global function must exist in order for name resolution to work 001780 ** properly. 001781 */ 001782 int sqlite3_overload_function( 001783 sqlite3 *db, 001784 const char *zName, 001785 int nArg 001786 ){ 001787 int rc = SQLITE_OK; 001788 001789 #ifdef SQLITE_ENABLE_API_ARMOR 001790 if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ 001791 return SQLITE_MISUSE_BKPT; 001792 } 001793 #endif 001794 sqlite3_mutex_enter(db->mutex); 001795 if( sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)==0 ){ 001796 rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 001797 0, sqlite3InvalidFunction, 0, 0, 0); 001798 } 001799 rc = sqlite3ApiExit(db, rc); 001800 sqlite3_mutex_leave(db->mutex); 001801 return rc; 001802 } 001803 001804 #ifndef SQLITE_OMIT_TRACE 001805 /* 001806 ** Register a trace function. The pArg from the previously registered trace 001807 ** is returned. 001808 ** 001809 ** A NULL trace function means that no tracing is executes. A non-NULL 001810 ** trace is a pointer to a function that is invoked at the start of each 001811 ** SQL statement. 001812 */ 001813 #ifndef SQLITE_OMIT_DEPRECATED 001814 void *sqlite3_trace(sqlite3 *db, void(*xTrace)(void*,const char*), void *pArg){ 001815 void *pOld; 001816 001817 #ifdef SQLITE_ENABLE_API_ARMOR 001818 if( !sqlite3SafetyCheckOk(db) ){ 001819 (void)SQLITE_MISUSE_BKPT; 001820 return 0; 001821 } 001822 #endif 001823 sqlite3_mutex_enter(db->mutex); 001824 pOld = db->pTraceArg; 001825 db->mTrace = xTrace ? SQLITE_TRACE_LEGACY : 0; 001826 db->xTrace = (int(*)(u32,void*,void*,void*))xTrace; 001827 db->pTraceArg = pArg; 001828 sqlite3_mutex_leave(db->mutex); 001829 return pOld; 001830 } 001831 #endif /* SQLITE_OMIT_DEPRECATED */ 001832 001833 /* Register a trace callback using the version-2 interface. 001834 */ 001835 int sqlite3_trace_v2( 001836 sqlite3 *db, /* Trace this connection */ 001837 unsigned mTrace, /* Mask of events to be traced */ 001838 int(*xTrace)(unsigned,void*,void*,void*), /* Callback to invoke */ 001839 void *pArg /* Context */ 001840 ){ 001841 #ifdef SQLITE_ENABLE_API_ARMOR 001842 if( !sqlite3SafetyCheckOk(db) ){ 001843 return SQLITE_MISUSE_BKPT; 001844 } 001845 #endif 001846 sqlite3_mutex_enter(db->mutex); 001847 if( mTrace==0 ) xTrace = 0; 001848 if( xTrace==0 ) mTrace = 0; 001849 db->mTrace = mTrace; 001850 db->xTrace = xTrace; 001851 db->pTraceArg = pArg; 001852 sqlite3_mutex_leave(db->mutex); 001853 return SQLITE_OK; 001854 } 001855 001856 #ifndef SQLITE_OMIT_DEPRECATED 001857 /* 001858 ** Register a profile function. The pArg from the previously registered 001859 ** profile function is returned. 001860 ** 001861 ** A NULL profile function means that no profiling is executes. A non-NULL 001862 ** profile is a pointer to a function that is invoked at the conclusion of 001863 ** each SQL statement that is run. 001864 */ 001865 void *sqlite3_profile( 001866 sqlite3 *db, 001867 void (*xProfile)(void*,const char*,sqlite_uint64), 001868 void *pArg 001869 ){ 001870 void *pOld; 001871 001872 #ifdef SQLITE_ENABLE_API_ARMOR 001873 if( !sqlite3SafetyCheckOk(db) ){ 001874 (void)SQLITE_MISUSE_BKPT; 001875 return 0; 001876 } 001877 #endif 001878 sqlite3_mutex_enter(db->mutex); 001879 pOld = db->pProfileArg; 001880 db->xProfile = xProfile; 001881 db->pProfileArg = pArg; 001882 sqlite3_mutex_leave(db->mutex); 001883 return pOld; 001884 } 001885 #endif /* SQLITE_OMIT_DEPRECATED */ 001886 #endif /* SQLITE_OMIT_TRACE */ 001887 001888 /* 001889 ** Register a function to be invoked when a transaction commits. 001890 ** If the invoked function returns non-zero, then the commit becomes a 001891 ** rollback. 001892 */ 001893 void *sqlite3_commit_hook( 001894 sqlite3 *db, /* Attach the hook to this database */ 001895 int (*xCallback)(void*), /* Function to invoke on each commit */ 001896 void *pArg /* Argument to the function */ 001897 ){ 001898 void *pOld; 001899 001900 #ifdef SQLITE_ENABLE_API_ARMOR 001901 if( !sqlite3SafetyCheckOk(db) ){ 001902 (void)SQLITE_MISUSE_BKPT; 001903 return 0; 001904 } 001905 #endif 001906 sqlite3_mutex_enter(db->mutex); 001907 pOld = db->pCommitArg; 001908 db->xCommitCallback = xCallback; 001909 db->pCommitArg = pArg; 001910 sqlite3_mutex_leave(db->mutex); 001911 return pOld; 001912 } 001913 001914 /* 001915 ** Register a callback to be invoked each time a row is updated, 001916 ** inserted or deleted using this database connection. 001917 */ 001918 void *sqlite3_update_hook( 001919 sqlite3 *db, /* Attach the hook to this database */ 001920 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 001921 void *pArg /* Argument to the function */ 001922 ){ 001923 void *pRet; 001924 001925 #ifdef SQLITE_ENABLE_API_ARMOR 001926 if( !sqlite3SafetyCheckOk(db) ){ 001927 (void)SQLITE_MISUSE_BKPT; 001928 return 0; 001929 } 001930 #endif 001931 sqlite3_mutex_enter(db->mutex); 001932 pRet = db->pUpdateArg; 001933 db->xUpdateCallback = xCallback; 001934 db->pUpdateArg = pArg; 001935 sqlite3_mutex_leave(db->mutex); 001936 return pRet; 001937 } 001938 001939 /* 001940 ** Register a callback to be invoked each time a transaction is rolled 001941 ** back by this database connection. 001942 */ 001943 void *sqlite3_rollback_hook( 001944 sqlite3 *db, /* Attach the hook to this database */ 001945 void (*xCallback)(void*), /* Callback function */ 001946 void *pArg /* Argument to the function */ 001947 ){ 001948 void *pRet; 001949 001950 #ifdef SQLITE_ENABLE_API_ARMOR 001951 if( !sqlite3SafetyCheckOk(db) ){ 001952 (void)SQLITE_MISUSE_BKPT; 001953 return 0; 001954 } 001955 #endif 001956 sqlite3_mutex_enter(db->mutex); 001957 pRet = db->pRollbackArg; 001958 db->xRollbackCallback = xCallback; 001959 db->pRollbackArg = pArg; 001960 sqlite3_mutex_leave(db->mutex); 001961 return pRet; 001962 } 001963 001964 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 001965 /* 001966 ** Register a callback to be invoked each time a row is updated, 001967 ** inserted or deleted using this database connection. 001968 */ 001969 void *sqlite3_preupdate_hook( 001970 sqlite3 *db, /* Attach the hook to this database */ 001971 void(*xCallback)( /* Callback function */ 001972 void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64), 001973 void *pArg /* First callback argument */ 001974 ){ 001975 void *pRet; 001976 sqlite3_mutex_enter(db->mutex); 001977 pRet = db->pPreUpdateArg; 001978 db->xPreUpdateCallback = xCallback; 001979 db->pPreUpdateArg = pArg; 001980 sqlite3_mutex_leave(db->mutex); 001981 return pRet; 001982 } 001983 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 001984 001985 #ifndef SQLITE_OMIT_WAL 001986 /* 001987 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 001988 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 001989 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 001990 ** wal_autocheckpoint()). 001991 */ 001992 int sqlite3WalDefaultHook( 001993 void *pClientData, /* Argument */ 001994 sqlite3 *db, /* Connection */ 001995 const char *zDb, /* Database */ 001996 int nFrame /* Size of WAL */ 001997 ){ 001998 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 001999 sqlite3BeginBenignMalloc(); 002000 sqlite3_wal_checkpoint(db, zDb); 002001 sqlite3EndBenignMalloc(); 002002 } 002003 return SQLITE_OK; 002004 } 002005 #endif /* SQLITE_OMIT_WAL */ 002006 002007 /* 002008 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 002009 ** a database after committing a transaction if there are nFrame or 002010 ** more frames in the log file. Passing zero or a negative value as the 002011 ** nFrame parameter disables automatic checkpoints entirely. 002012 ** 002013 ** The callback registered by this function replaces any existing callback 002014 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 002015 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 002016 ** configured by this function. 002017 */ 002018 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 002019 #ifdef SQLITE_OMIT_WAL 002020 UNUSED_PARAMETER(db); 002021 UNUSED_PARAMETER(nFrame); 002022 #else 002023 #ifdef SQLITE_ENABLE_API_ARMOR 002024 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 002025 #endif 002026 if( nFrame>0 ){ 002027 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 002028 }else{ 002029 sqlite3_wal_hook(db, 0, 0); 002030 } 002031 #endif 002032 return SQLITE_OK; 002033 } 002034 002035 /* 002036 ** Register a callback to be invoked each time a transaction is written 002037 ** into the write-ahead-log by this database connection. 002038 */ 002039 void *sqlite3_wal_hook( 002040 sqlite3 *db, /* Attach the hook to this db handle */ 002041 int(*xCallback)(void *, sqlite3*, const char*, int), 002042 void *pArg /* First argument passed to xCallback() */ 002043 ){ 002044 #ifndef SQLITE_OMIT_WAL 002045 void *pRet; 002046 #ifdef SQLITE_ENABLE_API_ARMOR 002047 if( !sqlite3SafetyCheckOk(db) ){ 002048 (void)SQLITE_MISUSE_BKPT; 002049 return 0; 002050 } 002051 #endif 002052 sqlite3_mutex_enter(db->mutex); 002053 pRet = db->pWalArg; 002054 db->xWalCallback = xCallback; 002055 db->pWalArg = pArg; 002056 sqlite3_mutex_leave(db->mutex); 002057 return pRet; 002058 #else 002059 return 0; 002060 #endif 002061 } 002062 002063 /* 002064 ** Checkpoint database zDb. 002065 */ 002066 int sqlite3_wal_checkpoint_v2( 002067 sqlite3 *db, /* Database handle */ 002068 const char *zDb, /* Name of attached database (or NULL) */ 002069 int eMode, /* SQLITE_CHECKPOINT_* value */ 002070 int *pnLog, /* OUT: Size of WAL log in frames */ 002071 int *pnCkpt /* OUT: Total number of frames checkpointed */ 002072 ){ 002073 #ifdef SQLITE_OMIT_WAL 002074 return SQLITE_OK; 002075 #else 002076 int rc; /* Return code */ 002077 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 002078 002079 #ifdef SQLITE_ENABLE_API_ARMOR 002080 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 002081 #endif 002082 002083 /* Initialize the output variables to -1 in case an error occurs. */ 002084 if( pnLog ) *pnLog = -1; 002085 if( pnCkpt ) *pnCkpt = -1; 002086 002087 assert( SQLITE_CHECKPOINT_PASSIVE==0 ); 002088 assert( SQLITE_CHECKPOINT_FULL==1 ); 002089 assert( SQLITE_CHECKPOINT_RESTART==2 ); 002090 assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); 002091 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){ 002092 /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint 002093 ** mode: */ 002094 return SQLITE_MISUSE; 002095 } 002096 002097 sqlite3_mutex_enter(db->mutex); 002098 if( zDb && zDb[0] ){ 002099 iDb = sqlite3FindDbName(db, zDb); 002100 } 002101 if( iDb<0 ){ 002102 rc = SQLITE_ERROR; 002103 sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); 002104 }else{ 002105 db->busyHandler.nBusy = 0; 002106 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 002107 sqlite3Error(db, rc); 002108 } 002109 rc = sqlite3ApiExit(db, rc); 002110 002111 /* If there are no active statements, clear the interrupt flag at this 002112 ** point. */ 002113 if( db->nVdbeActive==0 ){ 002114 db->u1.isInterrupted = 0; 002115 } 002116 002117 sqlite3_mutex_leave(db->mutex); 002118 return rc; 002119 #endif 002120 } 002121 002122 002123 /* 002124 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 002125 ** to contains a zero-length string, all attached databases are 002126 ** checkpointed. 002127 */ 002128 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 002129 /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to 002130 ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ 002131 return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); 002132 } 002133 002134 #ifndef SQLITE_OMIT_WAL 002135 /* 002136 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 002137 ** not currently open in WAL mode. 002138 ** 002139 ** If a transaction is open on the database being checkpointed, this 002140 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 002141 ** an error occurs while running the checkpoint, an SQLite error code is 002142 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 002143 ** 002144 ** The mutex on database handle db should be held by the caller. The mutex 002145 ** associated with the specific b-tree being checkpointed is taken by 002146 ** this function while the checkpoint is running. 002147 ** 002148 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 002149 ** checkpointed. If an error is encountered it is returned immediately - 002150 ** no attempt is made to checkpoint any remaining databases. 002151 ** 002152 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 002153 */ 002154 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 002155 int rc = SQLITE_OK; /* Return code */ 002156 int i; /* Used to iterate through attached dbs */ 002157 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 002158 002159 assert( sqlite3_mutex_held(db->mutex) ); 002160 assert( !pnLog || *pnLog==-1 ); 002161 assert( !pnCkpt || *pnCkpt==-1 ); 002162 002163 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 002164 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 002165 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 002166 pnLog = 0; 002167 pnCkpt = 0; 002168 if( rc==SQLITE_BUSY ){ 002169 bBusy = 1; 002170 rc = SQLITE_OK; 002171 } 002172 } 002173 } 002174 002175 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 002176 } 002177 #endif /* SQLITE_OMIT_WAL */ 002178 002179 /* 002180 ** This function returns true if main-memory should be used instead of 002181 ** a temporary file for transient pager files and statement journals. 002182 ** The value returned depends on the value of db->temp_store (runtime 002183 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 002184 ** following table describes the relationship between these two values 002185 ** and this functions return value. 002186 ** 002187 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 002188 ** ----------------- -------------- ------------------------------ 002189 ** 0 any file (return 0) 002190 ** 1 1 file (return 0) 002191 ** 1 2 memory (return 1) 002192 ** 1 0 file (return 0) 002193 ** 2 1 file (return 0) 002194 ** 2 2 memory (return 1) 002195 ** 2 0 memory (return 1) 002196 ** 3 any memory (return 1) 002197 */ 002198 int sqlite3TempInMemory(const sqlite3 *db){ 002199 #if SQLITE_TEMP_STORE==1 002200 return ( db->temp_store==2 ); 002201 #endif 002202 #if SQLITE_TEMP_STORE==2 002203 return ( db->temp_store!=1 ); 002204 #endif 002205 #if SQLITE_TEMP_STORE==3 002206 UNUSED_PARAMETER(db); 002207 return 1; 002208 #endif 002209 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 002210 UNUSED_PARAMETER(db); 002211 return 0; 002212 #endif 002213 } 002214 002215 /* 002216 ** Return UTF-8 encoded English language explanation of the most recent 002217 ** error. 002218 */ 002219 const char *sqlite3_errmsg(sqlite3 *db){ 002220 const char *z; 002221 if( !db ){ 002222 return sqlite3ErrStr(SQLITE_NOMEM_BKPT); 002223 } 002224 if( !sqlite3SafetyCheckSickOrOk(db) ){ 002225 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 002226 } 002227 sqlite3_mutex_enter(db->mutex); 002228 if( db->mallocFailed ){ 002229 z = sqlite3ErrStr(SQLITE_NOMEM_BKPT); 002230 }else{ 002231 testcase( db->pErr==0 ); 002232 z = (char*)sqlite3_value_text(db->pErr); 002233 assert( !db->mallocFailed ); 002234 if( z==0 ){ 002235 z = sqlite3ErrStr(db->errCode); 002236 } 002237 } 002238 sqlite3_mutex_leave(db->mutex); 002239 return z; 002240 } 002241 002242 #ifndef SQLITE_OMIT_UTF16 002243 /* 002244 ** Return UTF-16 encoded English language explanation of the most recent 002245 ** error. 002246 */ 002247 const void *sqlite3_errmsg16(sqlite3 *db){ 002248 static const u16 outOfMem[] = { 002249 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 002250 }; 002251 static const u16 misuse[] = { 002252 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 002253 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 002254 'c', 'a', 'l', 'l', 'e', 'd', ' ', 002255 'o', 'u', 't', ' ', 002256 'o', 'f', ' ', 002257 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 002258 }; 002259 002260 const void *z; 002261 if( !db ){ 002262 return (void *)outOfMem; 002263 } 002264 if( !sqlite3SafetyCheckSickOrOk(db) ){ 002265 return (void *)misuse; 002266 } 002267 sqlite3_mutex_enter(db->mutex); 002268 if( db->mallocFailed ){ 002269 z = (void *)outOfMem; 002270 }else{ 002271 z = sqlite3_value_text16(db->pErr); 002272 if( z==0 ){ 002273 sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); 002274 z = sqlite3_value_text16(db->pErr); 002275 } 002276 /* A malloc() may have failed within the call to sqlite3_value_text16() 002277 ** above. If this is the case, then the db->mallocFailed flag needs to 002278 ** be cleared before returning. Do this directly, instead of via 002279 ** sqlite3ApiExit(), to avoid setting the database handle error message. 002280 */ 002281 sqlite3OomClear(db); 002282 } 002283 sqlite3_mutex_leave(db->mutex); 002284 return z; 002285 } 002286 #endif /* SQLITE_OMIT_UTF16 */ 002287 002288 /* 002289 ** Return the most recent error code generated by an SQLite routine. If NULL is 002290 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 002291 */ 002292 int sqlite3_errcode(sqlite3 *db){ 002293 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 002294 return SQLITE_MISUSE_BKPT; 002295 } 002296 if( !db || db->mallocFailed ){ 002297 return SQLITE_NOMEM_BKPT; 002298 } 002299 return db->errCode & db->errMask; 002300 } 002301 int sqlite3_extended_errcode(sqlite3 *db){ 002302 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 002303 return SQLITE_MISUSE_BKPT; 002304 } 002305 if( !db || db->mallocFailed ){ 002306 return SQLITE_NOMEM_BKPT; 002307 } 002308 return db->errCode; 002309 } 002310 int sqlite3_system_errno(sqlite3 *db){ 002311 return db ? db->iSysErrno : 0; 002312 } 002313 002314 /* 002315 ** Return a string that describes the kind of error specified in the 002316 ** argument. For now, this simply calls the internal sqlite3ErrStr() 002317 ** function. 002318 */ 002319 const char *sqlite3_errstr(int rc){ 002320 return sqlite3ErrStr(rc); 002321 } 002322 002323 /* 002324 ** Create a new collating function for database "db". The name is zName 002325 ** and the encoding is enc. 002326 */ 002327 static int createCollation( 002328 sqlite3* db, 002329 const char *zName, 002330 u8 enc, 002331 void* pCtx, 002332 int(*xCompare)(void*,int,const void*,int,const void*), 002333 void(*xDel)(void*) 002334 ){ 002335 CollSeq *pColl; 002336 int enc2; 002337 002338 assert( sqlite3_mutex_held(db->mutex) ); 002339 002340 /* If SQLITE_UTF16 is specified as the encoding type, transform this 002341 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 002342 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 002343 */ 002344 enc2 = enc; 002345 testcase( enc2==SQLITE_UTF16 ); 002346 testcase( enc2==SQLITE_UTF16_ALIGNED ); 002347 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 002348 enc2 = SQLITE_UTF16NATIVE; 002349 } 002350 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 002351 return SQLITE_MISUSE_BKPT; 002352 } 002353 002354 /* Check if this call is removing or replacing an existing collation 002355 ** sequence. If so, and there are active VMs, return busy. If there 002356 ** are no active VMs, invalidate any pre-compiled statements. 002357 */ 002358 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 002359 if( pColl && pColl->xCmp ){ 002360 if( db->nVdbeActive ){ 002361 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 002362 "unable to delete/modify collation sequence due to active statements"); 002363 return SQLITE_BUSY; 002364 } 002365 sqlite3ExpirePreparedStatements(db); 002366 002367 /* If collation sequence pColl was created directly by a call to 002368 ** sqlite3_create_collation, and not generated by synthCollSeq(), 002369 ** then any copies made by synthCollSeq() need to be invalidated. 002370 ** Also, collation destructor - CollSeq.xDel() - function may need 002371 ** to be called. 002372 */ 002373 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 002374 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); 002375 int j; 002376 for(j=0; j<3; j++){ 002377 CollSeq *p = &aColl[j]; 002378 if( p->enc==pColl->enc ){ 002379 if( p->xDel ){ 002380 p->xDel(p->pUser); 002381 } 002382 p->xCmp = 0; 002383 } 002384 } 002385 } 002386 } 002387 002388 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 002389 if( pColl==0 ) return SQLITE_NOMEM_BKPT; 002390 pColl->xCmp = xCompare; 002391 pColl->pUser = pCtx; 002392 pColl->xDel = xDel; 002393 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 002394 sqlite3Error(db, SQLITE_OK); 002395 return SQLITE_OK; 002396 } 002397 002398 002399 /* 002400 ** This array defines hard upper bounds on limit values. The 002401 ** initializer must be kept in sync with the SQLITE_LIMIT_* 002402 ** #defines in sqlite3.h. 002403 */ 002404 static const int aHardLimit[] = { 002405 SQLITE_MAX_LENGTH, 002406 SQLITE_MAX_SQL_LENGTH, 002407 SQLITE_MAX_COLUMN, 002408 SQLITE_MAX_EXPR_DEPTH, 002409 SQLITE_MAX_COMPOUND_SELECT, 002410 SQLITE_MAX_VDBE_OP, 002411 SQLITE_MAX_FUNCTION_ARG, 002412 SQLITE_MAX_ATTACHED, 002413 SQLITE_MAX_LIKE_PATTERN_LENGTH, 002414 SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ 002415 SQLITE_MAX_TRIGGER_DEPTH, 002416 SQLITE_MAX_WORKER_THREADS, 002417 }; 002418 002419 /* 002420 ** Make sure the hard limits are set to reasonable values 002421 */ 002422 #if SQLITE_MAX_LENGTH<100 002423 # error SQLITE_MAX_LENGTH must be at least 100 002424 #endif 002425 #if SQLITE_MAX_SQL_LENGTH<100 002426 # error SQLITE_MAX_SQL_LENGTH must be at least 100 002427 #endif 002428 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 002429 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 002430 #endif 002431 #if SQLITE_MAX_COMPOUND_SELECT<2 002432 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 002433 #endif 002434 #if SQLITE_MAX_VDBE_OP<40 002435 # error SQLITE_MAX_VDBE_OP must be at least 40 002436 #endif 002437 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127 002438 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127 002439 #endif 002440 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 002441 # error SQLITE_MAX_ATTACHED must be between 0 and 125 002442 #endif 002443 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 002444 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 002445 #endif 002446 #if SQLITE_MAX_COLUMN>32767 002447 # error SQLITE_MAX_COLUMN must not exceed 32767 002448 #endif 002449 #if SQLITE_MAX_TRIGGER_DEPTH<1 002450 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 002451 #endif 002452 #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 002453 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 002454 #endif 002455 002456 002457 /* 002458 ** Change the value of a limit. Report the old value. 002459 ** If an invalid limit index is supplied, report -1. 002460 ** Make no changes but still report the old value if the 002461 ** new limit is negative. 002462 ** 002463 ** A new lower limit does not shrink existing constructs. 002464 ** It merely prevents new constructs that exceed the limit 002465 ** from forming. 002466 */ 002467 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 002468 int oldLimit; 002469 002470 #ifdef SQLITE_ENABLE_API_ARMOR 002471 if( !sqlite3SafetyCheckOk(db) ){ 002472 (void)SQLITE_MISUSE_BKPT; 002473 return -1; 002474 } 002475 #endif 002476 002477 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 002478 ** there is a hard upper bound set at compile-time by a C preprocessor 002479 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 002480 ** "_MAX_".) 002481 */ 002482 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 002483 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 002484 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 002485 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 002486 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 002487 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 002488 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 002489 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 002490 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 002491 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 002492 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 002493 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 002494 assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); 002495 assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); 002496 002497 002498 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 002499 return -1; 002500 } 002501 oldLimit = db->aLimit[limitId]; 002502 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 002503 if( newLimit>aHardLimit[limitId] ){ 002504 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 002505 } 002506 db->aLimit[limitId] = newLimit; 002507 } 002508 return oldLimit; /* IMP: R-53341-35419 */ 002509 } 002510 002511 /* 002512 ** This function is used to parse both URIs and non-URI filenames passed by the 002513 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 002514 ** URIs specified as part of ATTACH statements. 002515 ** 002516 ** The first argument to this function is the name of the VFS to use (or 002517 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 002518 ** query parameter. The second argument contains the URI (or non-URI filename) 002519 ** itself. When this function is called the *pFlags variable should contain 002520 ** the default flags to open the database handle with. The value stored in 002521 ** *pFlags may be updated before returning if the URI filename contains 002522 ** "cache=xxx" or "mode=xxx" query parameters. 002523 ** 002524 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 002525 ** the VFS that should be used to open the database file. *pzFile is set to 002526 ** point to a buffer containing the name of the file to open. It is the 002527 ** responsibility of the caller to eventually call sqlite3_free() to release 002528 ** this buffer. 002529 ** 002530 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 002531 ** may be set to point to a buffer containing an English language error 002532 ** message. It is the responsibility of the caller to eventually release 002533 ** this buffer by calling sqlite3_free(). 002534 */ 002535 int sqlite3ParseUri( 002536 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 002537 const char *zUri, /* Nul-terminated URI to parse */ 002538 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 002539 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 002540 char **pzFile, /* OUT: Filename component of URI */ 002541 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 002542 ){ 002543 int rc = SQLITE_OK; 002544 unsigned int flags = *pFlags; 002545 const char *zVfs = zDefaultVfs; 002546 char *zFile; 002547 char c; 002548 int nUri = sqlite3Strlen30(zUri); 002549 002550 assert( *pzErrMsg==0 ); 002551 002552 if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ 002553 || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */ 002554 && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ 002555 ){ 002556 char *zOpt; 002557 int eState; /* Parser state when parsing URI */ 002558 int iIn; /* Input character index */ 002559 int iOut = 0; /* Output character index */ 002560 u64 nByte = nUri+2; /* Bytes of space to allocate */ 002561 002562 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 002563 ** method that there may be extra parameters following the file-name. */ 002564 flags |= SQLITE_OPEN_URI; 002565 002566 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 002567 zFile = sqlite3_malloc64(nByte); 002568 if( !zFile ) return SQLITE_NOMEM_BKPT; 002569 002570 iIn = 5; 002571 #ifdef SQLITE_ALLOW_URI_AUTHORITY 002572 if( strncmp(zUri+5, "///", 3)==0 ){ 002573 iIn = 7; 002574 /* The following condition causes URIs with five leading / characters 002575 ** like file://///host/path to be converted into UNCs like //host/path. 002576 ** The correct URI for that UNC has only two or four leading / characters 002577 ** file://host/path or file:////host/path. But 5 leading slashes is a 002578 ** common error, we are told, so we handle it as a special case. */ 002579 if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; } 002580 }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){ 002581 iIn = 16; 002582 } 002583 #else 002584 /* Discard the scheme and authority segments of the URI. */ 002585 if( zUri[5]=='/' && zUri[6]=='/' ){ 002586 iIn = 7; 002587 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 002588 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 002589 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 002590 iIn-7, &zUri[7]); 002591 rc = SQLITE_ERROR; 002592 goto parse_uri_out; 002593 } 002594 } 002595 #endif 002596 002597 /* Copy the filename and any query parameters into the zFile buffer. 002598 ** Decode %HH escape codes along the way. 002599 ** 002600 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 002601 ** on the parsing context. As follows: 002602 ** 002603 ** 0: Parsing file-name. 002604 ** 1: Parsing name section of a name=value query parameter. 002605 ** 2: Parsing value section of a name=value query parameter. 002606 */ 002607 eState = 0; 002608 while( (c = zUri[iIn])!=0 && c!='#' ){ 002609 iIn++; 002610 if( c=='%' 002611 && sqlite3Isxdigit(zUri[iIn]) 002612 && sqlite3Isxdigit(zUri[iIn+1]) 002613 ){ 002614 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 002615 octet += sqlite3HexToInt(zUri[iIn++]); 002616 002617 assert( octet>=0 && octet<256 ); 002618 if( octet==0 ){ 002619 #ifndef SQLITE_ENABLE_URI_00_ERROR 002620 /* This branch is taken when "%00" appears within the URI. In this 002621 ** case we ignore all text in the remainder of the path, name or 002622 ** value currently being parsed. So ignore the current character 002623 ** and skip to the next "?", "=" or "&", as appropriate. */ 002624 while( (c = zUri[iIn])!=0 && c!='#' 002625 && (eState!=0 || c!='?') 002626 && (eState!=1 || (c!='=' && c!='&')) 002627 && (eState!=2 || c!='&') 002628 ){ 002629 iIn++; 002630 } 002631 continue; 002632 #else 002633 /* If ENABLE_URI_00_ERROR is defined, "%00" in a URI is an error. */ 002634 *pzErrMsg = sqlite3_mprintf("unexpected %%00 in uri"); 002635 rc = SQLITE_ERROR; 002636 goto parse_uri_out; 002637 #endif 002638 } 002639 c = octet; 002640 }else if( eState==1 && (c=='&' || c=='=') ){ 002641 if( zFile[iOut-1]==0 ){ 002642 /* An empty option name. Ignore this option altogether. */ 002643 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 002644 continue; 002645 } 002646 if( c=='&' ){ 002647 zFile[iOut++] = '\0'; 002648 }else{ 002649 eState = 2; 002650 } 002651 c = 0; 002652 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 002653 c = 0; 002654 eState = 1; 002655 } 002656 zFile[iOut++] = c; 002657 } 002658 if( eState==1 ) zFile[iOut++] = '\0'; 002659 zFile[iOut++] = '\0'; 002660 zFile[iOut++] = '\0'; 002661 002662 /* Check if there were any options specified that should be interpreted 002663 ** here. Options that are interpreted here include "vfs" and those that 002664 ** correspond to flags that may be passed to the sqlite3_open_v2() 002665 ** method. */ 002666 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 002667 while( zOpt[0] ){ 002668 int nOpt = sqlite3Strlen30(zOpt); 002669 char *zVal = &zOpt[nOpt+1]; 002670 int nVal = sqlite3Strlen30(zVal); 002671 002672 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 002673 zVfs = zVal; 002674 }else{ 002675 struct OpenMode { 002676 const char *z; 002677 int mode; 002678 } *aMode = 0; 002679 char *zModeType = 0; 002680 int mask = 0; 002681 int limit = 0; 002682 002683 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 002684 static struct OpenMode aCacheMode[] = { 002685 { "shared", SQLITE_OPEN_SHAREDCACHE }, 002686 { "private", SQLITE_OPEN_PRIVATECACHE }, 002687 { 0, 0 } 002688 }; 002689 002690 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 002691 aMode = aCacheMode; 002692 limit = mask; 002693 zModeType = "cache"; 002694 } 002695 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 002696 static struct OpenMode aOpenMode[] = { 002697 { "ro", SQLITE_OPEN_READONLY }, 002698 { "rw", SQLITE_OPEN_READWRITE }, 002699 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 002700 { "memory", SQLITE_OPEN_MEMORY }, 002701 { 0, 0 } 002702 }; 002703 002704 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 002705 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 002706 aMode = aOpenMode; 002707 limit = mask & flags; 002708 zModeType = "access"; 002709 } 002710 002711 if( aMode ){ 002712 int i; 002713 int mode = 0; 002714 for(i=0; aMode[i].z; i++){ 002715 const char *z = aMode[i].z; 002716 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 002717 mode = aMode[i].mode; 002718 break; 002719 } 002720 } 002721 if( mode==0 ){ 002722 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 002723 rc = SQLITE_ERROR; 002724 goto parse_uri_out; 002725 } 002726 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 002727 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 002728 zModeType, zVal); 002729 rc = SQLITE_PERM; 002730 goto parse_uri_out; 002731 } 002732 flags = (flags & ~mask) | mode; 002733 } 002734 } 002735 002736 zOpt = &zVal[nVal+1]; 002737 } 002738 002739 }else{ 002740 zFile = sqlite3_malloc64(nUri+2); 002741 if( !zFile ) return SQLITE_NOMEM_BKPT; 002742 if( nUri ){ 002743 memcpy(zFile, zUri, nUri); 002744 } 002745 zFile[nUri] = '\0'; 002746 zFile[nUri+1] = '\0'; 002747 flags &= ~SQLITE_OPEN_URI; 002748 } 002749 002750 *ppVfs = sqlite3_vfs_find(zVfs); 002751 if( *ppVfs==0 ){ 002752 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 002753 rc = SQLITE_ERROR; 002754 } 002755 parse_uri_out: 002756 if( rc!=SQLITE_OK ){ 002757 sqlite3_free(zFile); 002758 zFile = 0; 002759 } 002760 *pFlags = flags; 002761 *pzFile = zFile; 002762 return rc; 002763 } 002764 002765 002766 /* 002767 ** This routine does the work of opening a database on behalf of 002768 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 002769 ** is UTF-8 encoded. 002770 */ 002771 static int openDatabase( 002772 const char *zFilename, /* Database filename UTF-8 encoded */ 002773 sqlite3 **ppDb, /* OUT: Returned database handle */ 002774 unsigned int flags, /* Operational flags */ 002775 const char *zVfs /* Name of the VFS to use */ 002776 ){ 002777 sqlite3 *db; /* Store allocated handle here */ 002778 int rc; /* Return code */ 002779 int isThreadsafe; /* True for threadsafe connections */ 002780 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 002781 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 002782 002783 #ifdef SQLITE_ENABLE_API_ARMOR 002784 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 002785 #endif 002786 *ppDb = 0; 002787 #ifndef SQLITE_OMIT_AUTOINIT 002788 rc = sqlite3_initialize(); 002789 if( rc ) return rc; 002790 #endif 002791 002792 /* Only allow sensible combinations of bits in the flags argument. 002793 ** Throw an error if any non-sense combination is used. If we 002794 ** do not block illegal combinations here, it could trigger 002795 ** assert() statements in deeper layers. Sensible combinations 002796 ** are: 002797 ** 002798 ** 1: SQLITE_OPEN_READONLY 002799 ** 2: SQLITE_OPEN_READWRITE 002800 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 002801 */ 002802 assert( SQLITE_OPEN_READONLY == 0x01 ); 002803 assert( SQLITE_OPEN_READWRITE == 0x02 ); 002804 assert( SQLITE_OPEN_CREATE == 0x04 ); 002805 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 002806 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 002807 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 002808 if( ((1<<(flags&7)) & 0x46)==0 ){ 002809 return SQLITE_MISUSE_BKPT; /* IMP: R-65497-44594 */ 002810 } 002811 002812 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 002813 isThreadsafe = 0; 002814 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 002815 isThreadsafe = 0; 002816 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 002817 isThreadsafe = 1; 002818 }else{ 002819 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 002820 } 002821 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 002822 flags &= ~SQLITE_OPEN_SHAREDCACHE; 002823 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 002824 flags |= SQLITE_OPEN_SHAREDCACHE; 002825 } 002826 002827 /* Remove harmful bits from the flags parameter 002828 ** 002829 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 002830 ** dealt with in the previous code block. Besides these, the only 002831 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 002832 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 002833 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 002834 ** off all other flags. 002835 */ 002836 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 002837 SQLITE_OPEN_EXCLUSIVE | 002838 SQLITE_OPEN_MAIN_DB | 002839 SQLITE_OPEN_TEMP_DB | 002840 SQLITE_OPEN_TRANSIENT_DB | 002841 SQLITE_OPEN_MAIN_JOURNAL | 002842 SQLITE_OPEN_TEMP_JOURNAL | 002843 SQLITE_OPEN_SUBJOURNAL | 002844 SQLITE_OPEN_MASTER_JOURNAL | 002845 SQLITE_OPEN_NOMUTEX | 002846 SQLITE_OPEN_FULLMUTEX | 002847 SQLITE_OPEN_WAL 002848 ); 002849 002850 /* Allocate the sqlite data structure */ 002851 db = sqlite3MallocZero( sizeof(sqlite3) ); 002852 if( db==0 ) goto opendb_out; 002853 if( isThreadsafe ){ 002854 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 002855 if( db->mutex==0 ){ 002856 sqlite3_free(db); 002857 db = 0; 002858 goto opendb_out; 002859 } 002860 } 002861 sqlite3_mutex_enter(db->mutex); 002862 db->errMask = 0xff; 002863 db->nDb = 2; 002864 db->magic = SQLITE_MAGIC_BUSY; 002865 db->aDb = db->aDbStatic; 002866 002867 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 002868 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 002869 db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; 002870 db->autoCommit = 1; 002871 db->nextAutovac = -1; 002872 db->szMmap = sqlite3GlobalConfig.szMmap; 002873 db->nextPagesize = 0; 002874 db->nMaxSorterMmap = 0x7FFFFFFF; 002875 db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill 002876 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX 002877 | SQLITE_AutoIndex 002878 #endif 002879 #if SQLITE_DEFAULT_CKPTFULLFSYNC 002880 | SQLITE_CkptFullFSync 002881 #endif 002882 #if SQLITE_DEFAULT_FILE_FORMAT<4 002883 | SQLITE_LegacyFileFmt 002884 #endif 002885 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 002886 | SQLITE_LoadExtension 002887 #endif 002888 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 002889 | SQLITE_RecTriggers 002890 #endif 002891 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 002892 | SQLITE_ForeignKeys 002893 #endif 002894 #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) 002895 | SQLITE_ReverseOrder 002896 #endif 002897 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) 002898 | SQLITE_CellSizeCk 002899 #endif 002900 #if defined(SQLITE_ENABLE_FTS3_TOKENIZER) 002901 | SQLITE_Fts3Tokenizer 002902 #endif 002903 ; 002904 sqlite3HashInit(&db->aCollSeq); 002905 #ifndef SQLITE_OMIT_VIRTUALTABLE 002906 sqlite3HashInit(&db->aModule); 002907 #endif 002908 002909 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 002910 ** and UTF-16, so add a version for each to avoid any unnecessary 002911 ** conversions. The only error that can occur here is a malloc() failure. 002912 ** 002913 ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating 002914 ** functions: 002915 */ 002916 createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0); 002917 createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0); 002918 createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0); 002919 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 002920 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 002921 if( db->mallocFailed ){ 002922 goto opendb_out; 002923 } 002924 /* EVIDENCE-OF: R-08308-17224 The default collating function for all 002925 ** strings is BINARY. 002926 */ 002927 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, sqlite3StrBINARY, 0); 002928 assert( db->pDfltColl!=0 ); 002929 002930 /* Parse the filename/URI argument. */ 002931 db->openFlags = flags; 002932 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 002933 if( rc!=SQLITE_OK ){ 002934 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 002935 sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 002936 sqlite3_free(zErrMsg); 002937 goto opendb_out; 002938 } 002939 002940 /* Open the backend database driver */ 002941 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 002942 flags | SQLITE_OPEN_MAIN_DB); 002943 if( rc!=SQLITE_OK ){ 002944 if( rc==SQLITE_IOERR_NOMEM ){ 002945 rc = SQLITE_NOMEM_BKPT; 002946 } 002947 sqlite3Error(db, rc); 002948 goto opendb_out; 002949 } 002950 sqlite3BtreeEnter(db->aDb[0].pBt); 002951 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 002952 if( !db->mallocFailed ) ENC(db) = SCHEMA_ENC(db); 002953 sqlite3BtreeLeave(db->aDb[0].pBt); 002954 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 002955 002956 /* The default safety_level for the main database is FULL; for the temp 002957 ** database it is OFF. This matches the pager layer defaults. 002958 */ 002959 db->aDb[0].zDbSName = "main"; 002960 db->aDb[0].safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1; 002961 db->aDb[1].zDbSName = "temp"; 002962 db->aDb[1].safety_level = PAGER_SYNCHRONOUS_OFF; 002963 002964 db->magic = SQLITE_MAGIC_OPEN; 002965 if( db->mallocFailed ){ 002966 goto opendb_out; 002967 } 002968 002969 /* Register all built-in functions, but do not attempt to read the 002970 ** database schema yet. This is delayed until the first time the database 002971 ** is accessed. 002972 */ 002973 sqlite3Error(db, SQLITE_OK); 002974 sqlite3RegisterPerConnectionBuiltinFunctions(db); 002975 rc = sqlite3_errcode(db); 002976 002977 #ifdef SQLITE_ENABLE_FTS5 002978 /* Register any built-in FTS5 module before loading the automatic 002979 ** extensions. This allows automatic extensions to register FTS5 002980 ** tokenizers and auxiliary functions. */ 002981 if( !db->mallocFailed && rc==SQLITE_OK ){ 002982 rc = sqlite3Fts5Init(db); 002983 } 002984 #endif 002985 002986 /* Load automatic extensions - extensions that have been registered 002987 ** using the sqlite3_automatic_extension() API. 002988 */ 002989 if( rc==SQLITE_OK ){ 002990 sqlite3AutoLoadExtensions(db); 002991 rc = sqlite3_errcode(db); 002992 if( rc!=SQLITE_OK ){ 002993 goto opendb_out; 002994 } 002995 } 002996 002997 #ifdef SQLITE_ENABLE_FTS1 002998 if( !db->mallocFailed ){ 002999 extern int sqlite3Fts1Init(sqlite3*); 003000 rc = sqlite3Fts1Init(db); 003001 } 003002 #endif 003003 003004 #ifdef SQLITE_ENABLE_FTS2 003005 if( !db->mallocFailed && rc==SQLITE_OK ){ 003006 extern int sqlite3Fts2Init(sqlite3*); 003007 rc = sqlite3Fts2Init(db); 003008 } 003009 #endif 003010 003011 #ifdef SQLITE_ENABLE_FTS3 /* automatically defined by SQLITE_ENABLE_FTS4 */ 003012 if( !db->mallocFailed && rc==SQLITE_OK ){ 003013 rc = sqlite3Fts3Init(db); 003014 } 003015 #endif 003016 003017 #ifdef SQLITE_ENABLE_ICU 003018 if( !db->mallocFailed && rc==SQLITE_OK ){ 003019 rc = sqlite3IcuInit(db); 003020 } 003021 #endif 003022 003023 #ifdef SQLITE_ENABLE_RTREE 003024 if( !db->mallocFailed && rc==SQLITE_OK){ 003025 rc = sqlite3RtreeInit(db); 003026 } 003027 #endif 003028 003029 #ifdef SQLITE_ENABLE_DBSTAT_VTAB 003030 if( !db->mallocFailed && rc==SQLITE_OK){ 003031 rc = sqlite3DbstatRegister(db); 003032 } 003033 #endif 003034 003035 #ifdef SQLITE_ENABLE_JSON1 003036 if( !db->mallocFailed && rc==SQLITE_OK){ 003037 rc = sqlite3Json1Init(db); 003038 } 003039 #endif 003040 003041 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 003042 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 003043 ** mode. Doing nothing at all also makes NORMAL the default. 003044 */ 003045 #ifdef SQLITE_DEFAULT_LOCKING_MODE 003046 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 003047 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 003048 SQLITE_DEFAULT_LOCKING_MODE); 003049 #endif 003050 003051 if( rc ) sqlite3Error(db, rc); 003052 003053 /* Enable the lookaside-malloc subsystem */ 003054 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 003055 sqlite3GlobalConfig.nLookaside); 003056 003057 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 003058 003059 opendb_out: 003060 if( db ){ 003061 assert( db->mutex!=0 || isThreadsafe==0 003062 || sqlite3GlobalConfig.bFullMutex==0 ); 003063 sqlite3_mutex_leave(db->mutex); 003064 } 003065 rc = sqlite3_errcode(db); 003066 assert( db!=0 || rc==SQLITE_NOMEM ); 003067 if( rc==SQLITE_NOMEM ){ 003068 sqlite3_close(db); 003069 db = 0; 003070 }else if( rc!=SQLITE_OK ){ 003071 db->magic = SQLITE_MAGIC_SICK; 003072 } 003073 *ppDb = db; 003074 #ifdef SQLITE_ENABLE_SQLLOG 003075 if( sqlite3GlobalConfig.xSqllog ){ 003076 /* Opening a db handle. Fourth parameter is passed 0. */ 003077 void *pArg = sqlite3GlobalConfig.pSqllogArg; 003078 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 003079 } 003080 #endif 003081 #if defined(SQLITE_HAS_CODEC) 003082 if( rc==SQLITE_OK ){ 003083 const char *zHexKey = sqlite3_uri_parameter(zOpen, "hexkey"); 003084 if( zHexKey && zHexKey[0] ){ 003085 u8 iByte; 003086 int i; 003087 char zKey[40]; 003088 for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zHexKey[i]); i++){ 003089 iByte = (iByte<<4) + sqlite3HexToInt(zHexKey[i]); 003090 if( (i&1)!=0 ) zKey[i/2] = iByte; 003091 } 003092 sqlite3_key_v2(db, 0, zKey, i/2); 003093 } 003094 } 003095 #endif 003096 sqlite3_free(zOpen); 003097 return rc & 0xff; 003098 } 003099 003100 /* 003101 ** Open a new database handle. 003102 */ 003103 int sqlite3_open( 003104 const char *zFilename, 003105 sqlite3 **ppDb 003106 ){ 003107 return openDatabase(zFilename, ppDb, 003108 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 003109 } 003110 int sqlite3_open_v2( 003111 const char *filename, /* Database filename (UTF-8) */ 003112 sqlite3 **ppDb, /* OUT: SQLite db handle */ 003113 int flags, /* Flags */ 003114 const char *zVfs /* Name of VFS module to use */ 003115 ){ 003116 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 003117 } 003118 003119 #ifndef SQLITE_OMIT_UTF16 003120 /* 003121 ** Open a new database handle. 003122 */ 003123 int sqlite3_open16( 003124 const void *zFilename, 003125 sqlite3 **ppDb 003126 ){ 003127 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 003128 sqlite3_value *pVal; 003129 int rc; 003130 003131 #ifdef SQLITE_ENABLE_API_ARMOR 003132 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 003133 #endif 003134 *ppDb = 0; 003135 #ifndef SQLITE_OMIT_AUTOINIT 003136 rc = sqlite3_initialize(); 003137 if( rc ) return rc; 003138 #endif 003139 if( zFilename==0 ) zFilename = "\000\000"; 003140 pVal = sqlite3ValueNew(0); 003141 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 003142 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 003143 if( zFilename8 ){ 003144 rc = openDatabase(zFilename8, ppDb, 003145 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 003146 assert( *ppDb || rc==SQLITE_NOMEM ); 003147 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 003148 SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; 003149 } 003150 }else{ 003151 rc = SQLITE_NOMEM_BKPT; 003152 } 003153 sqlite3ValueFree(pVal); 003154 003155 return rc & 0xff; 003156 } 003157 #endif /* SQLITE_OMIT_UTF16 */ 003158 003159 /* 003160 ** Register a new collation sequence with the database handle db. 003161 */ 003162 int sqlite3_create_collation( 003163 sqlite3* db, 003164 const char *zName, 003165 int enc, 003166 void* pCtx, 003167 int(*xCompare)(void*,int,const void*,int,const void*) 003168 ){ 003169 return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); 003170 } 003171 003172 /* 003173 ** Register a new collation sequence with the database handle db. 003174 */ 003175 int sqlite3_create_collation_v2( 003176 sqlite3* db, 003177 const char *zName, 003178 int enc, 003179 void* pCtx, 003180 int(*xCompare)(void*,int,const void*,int,const void*), 003181 void(*xDel)(void*) 003182 ){ 003183 int rc; 003184 003185 #ifdef SQLITE_ENABLE_API_ARMOR 003186 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 003187 #endif 003188 sqlite3_mutex_enter(db->mutex); 003189 assert( !db->mallocFailed ); 003190 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 003191 rc = sqlite3ApiExit(db, rc); 003192 sqlite3_mutex_leave(db->mutex); 003193 return rc; 003194 } 003195 003196 #ifndef SQLITE_OMIT_UTF16 003197 /* 003198 ** Register a new collation sequence with the database handle db. 003199 */ 003200 int sqlite3_create_collation16( 003201 sqlite3* db, 003202 const void *zName, 003203 int enc, 003204 void* pCtx, 003205 int(*xCompare)(void*,int,const void*,int,const void*) 003206 ){ 003207 int rc = SQLITE_OK; 003208 char *zName8; 003209 003210 #ifdef SQLITE_ENABLE_API_ARMOR 003211 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 003212 #endif 003213 sqlite3_mutex_enter(db->mutex); 003214 assert( !db->mallocFailed ); 003215 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 003216 if( zName8 ){ 003217 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 003218 sqlite3DbFree(db, zName8); 003219 } 003220 rc = sqlite3ApiExit(db, rc); 003221 sqlite3_mutex_leave(db->mutex); 003222 return rc; 003223 } 003224 #endif /* SQLITE_OMIT_UTF16 */ 003225 003226 /* 003227 ** Register a collation sequence factory callback with the database handle 003228 ** db. Replace any previously installed collation sequence factory. 003229 */ 003230 int sqlite3_collation_needed( 003231 sqlite3 *db, 003232 void *pCollNeededArg, 003233 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 003234 ){ 003235 #ifdef SQLITE_ENABLE_API_ARMOR 003236 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 003237 #endif 003238 sqlite3_mutex_enter(db->mutex); 003239 db->xCollNeeded = xCollNeeded; 003240 db->xCollNeeded16 = 0; 003241 db->pCollNeededArg = pCollNeededArg; 003242 sqlite3_mutex_leave(db->mutex); 003243 return SQLITE_OK; 003244 } 003245 003246 #ifndef SQLITE_OMIT_UTF16 003247 /* 003248 ** Register a collation sequence factory callback with the database handle 003249 ** db. Replace any previously installed collation sequence factory. 003250 */ 003251 int sqlite3_collation_needed16( 003252 sqlite3 *db, 003253 void *pCollNeededArg, 003254 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 003255 ){ 003256 #ifdef SQLITE_ENABLE_API_ARMOR 003257 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 003258 #endif 003259 sqlite3_mutex_enter(db->mutex); 003260 db->xCollNeeded = 0; 003261 db->xCollNeeded16 = xCollNeeded16; 003262 db->pCollNeededArg = pCollNeededArg; 003263 sqlite3_mutex_leave(db->mutex); 003264 return SQLITE_OK; 003265 } 003266 #endif /* SQLITE_OMIT_UTF16 */ 003267 003268 #ifndef SQLITE_OMIT_DEPRECATED 003269 /* 003270 ** This function is now an anachronism. It used to be used to recover from a 003271 ** malloc() failure, but SQLite now does this automatically. 003272 */ 003273 int sqlite3_global_recover(void){ 003274 return SQLITE_OK; 003275 } 003276 #endif 003277 003278 /* 003279 ** Test to see whether or not the database connection is in autocommit 003280 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 003281 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 003282 ** by the next COMMIT or ROLLBACK. 003283 */ 003284 int sqlite3_get_autocommit(sqlite3 *db){ 003285 #ifdef SQLITE_ENABLE_API_ARMOR 003286 if( !sqlite3SafetyCheckOk(db) ){ 003287 (void)SQLITE_MISUSE_BKPT; 003288 return 0; 003289 } 003290 #endif 003291 return db->autoCommit; 003292 } 003293 003294 /* 003295 ** The following routines are substitutes for constants SQLITE_CORRUPT, 003296 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_NOMEM and possibly other error 003297 ** constants. They serve two purposes: 003298 ** 003299 ** 1. Serve as a convenient place to set a breakpoint in a debugger 003300 ** to detect when version error conditions occurs. 003301 ** 003302 ** 2. Invoke sqlite3_log() to provide the source code location where 003303 ** a low-level error is first detected. 003304 */ 003305 static int reportError(int iErr, int lineno, const char *zType){ 003306 sqlite3_log(iErr, "%s at line %d of [%.10s]", 003307 zType, lineno, 20+sqlite3_sourceid()); 003308 return iErr; 003309 } 003310 int sqlite3CorruptError(int lineno){ 003311 testcase( sqlite3GlobalConfig.xLog!=0 ); 003312 return reportError(SQLITE_CORRUPT, lineno, "database corruption"); 003313 } 003314 int sqlite3MisuseError(int lineno){ 003315 testcase( sqlite3GlobalConfig.xLog!=0 ); 003316 return reportError(SQLITE_MISUSE, lineno, "misuse"); 003317 } 003318 int sqlite3CantopenError(int lineno){ 003319 testcase( sqlite3GlobalConfig.xLog!=0 ); 003320 return reportError(SQLITE_CANTOPEN, lineno, "cannot open file"); 003321 } 003322 #ifdef SQLITE_DEBUG 003323 int sqlite3NomemError(int lineno){ 003324 testcase( sqlite3GlobalConfig.xLog!=0 ); 003325 return reportError(SQLITE_NOMEM, lineno, "OOM"); 003326 } 003327 int sqlite3IoerrnomemError(int lineno){ 003328 testcase( sqlite3GlobalConfig.xLog!=0 ); 003329 return reportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error"); 003330 } 003331 #endif 003332 003333 #ifndef SQLITE_OMIT_DEPRECATED 003334 /* 003335 ** This is a convenience routine that makes sure that all thread-specific 003336 ** data for this thread has been deallocated. 003337 ** 003338 ** SQLite no longer uses thread-specific data so this routine is now a 003339 ** no-op. It is retained for historical compatibility. 003340 */ 003341 void sqlite3_thread_cleanup(void){ 003342 } 003343 #endif 003344 003345 /* 003346 ** Return meta information about a specific column of a database table. 003347 ** See comment in sqlite3.h (sqlite.h.in) for details. 003348 */ 003349 int sqlite3_table_column_metadata( 003350 sqlite3 *db, /* Connection handle */ 003351 const char *zDbName, /* Database name or NULL */ 003352 const char *zTableName, /* Table name */ 003353 const char *zColumnName, /* Column name */ 003354 char const **pzDataType, /* OUTPUT: Declared data type */ 003355 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 003356 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 003357 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 003358 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 003359 ){ 003360 int rc; 003361 char *zErrMsg = 0; 003362 Table *pTab = 0; 003363 Column *pCol = 0; 003364 int iCol = 0; 003365 char const *zDataType = 0; 003366 char const *zCollSeq = 0; 003367 int notnull = 0; 003368 int primarykey = 0; 003369 int autoinc = 0; 003370 003371 003372 #ifdef SQLITE_ENABLE_API_ARMOR 003373 if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ 003374 return SQLITE_MISUSE_BKPT; 003375 } 003376 #endif 003377 003378 /* Ensure the database schema has been loaded */ 003379 sqlite3_mutex_enter(db->mutex); 003380 sqlite3BtreeEnterAll(db); 003381 rc = sqlite3Init(db, &zErrMsg); 003382 if( SQLITE_OK!=rc ){ 003383 goto error_out; 003384 } 003385 003386 /* Locate the table in question */ 003387 pTab = sqlite3FindTable(db, zTableName, zDbName); 003388 if( !pTab || pTab->pSelect ){ 003389 pTab = 0; 003390 goto error_out; 003391 } 003392 003393 /* Find the column for which info is requested */ 003394 if( zColumnName==0 ){ 003395 /* Query for existance of table only */ 003396 }else{ 003397 for(iCol=0; iCol<pTab->nCol; iCol++){ 003398 pCol = &pTab->aCol[iCol]; 003399 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 003400 break; 003401 } 003402 } 003403 if( iCol==pTab->nCol ){ 003404 if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ 003405 iCol = pTab->iPKey; 003406 pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; 003407 }else{ 003408 pTab = 0; 003409 goto error_out; 003410 } 003411 } 003412 } 003413 003414 /* The following block stores the meta information that will be returned 003415 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 003416 ** and autoinc. At this point there are two possibilities: 003417 ** 003418 ** 1. The specified column name was rowid", "oid" or "_rowid_" 003419 ** and there is no explicitly declared IPK column. 003420 ** 003421 ** 2. The table is not a view and the column name identified an 003422 ** explicitly declared column. Copy meta information from *pCol. 003423 */ 003424 if( pCol ){ 003425 zDataType = sqlite3ColumnType(pCol,0); 003426 zCollSeq = pCol->zColl; 003427 notnull = pCol->notNull!=0; 003428 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 003429 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 003430 }else{ 003431 zDataType = "INTEGER"; 003432 primarykey = 1; 003433 } 003434 if( !zCollSeq ){ 003435 zCollSeq = sqlite3StrBINARY; 003436 } 003437 003438 error_out: 003439 sqlite3BtreeLeaveAll(db); 003440 003441 /* Whether the function call succeeded or failed, set the output parameters 003442 ** to whatever their local counterparts contain. If an error did occur, 003443 ** this has the effect of zeroing all output parameters. 003444 */ 003445 if( pzDataType ) *pzDataType = zDataType; 003446 if( pzCollSeq ) *pzCollSeq = zCollSeq; 003447 if( pNotNull ) *pNotNull = notnull; 003448 if( pPrimaryKey ) *pPrimaryKey = primarykey; 003449 if( pAutoinc ) *pAutoinc = autoinc; 003450 003451 if( SQLITE_OK==rc && !pTab ){ 003452 sqlite3DbFree(db, zErrMsg); 003453 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 003454 zColumnName); 003455 rc = SQLITE_ERROR; 003456 } 003457 sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); 003458 sqlite3DbFree(db, zErrMsg); 003459 rc = sqlite3ApiExit(db, rc); 003460 sqlite3_mutex_leave(db->mutex); 003461 return rc; 003462 } 003463 003464 /* 003465 ** Sleep for a little while. Return the amount of time slept. 003466 */ 003467 int sqlite3_sleep(int ms){ 003468 sqlite3_vfs *pVfs; 003469 int rc; 003470 pVfs = sqlite3_vfs_find(0); 003471 if( pVfs==0 ) return 0; 003472 003473 /* This function works in milliseconds, but the underlying OsSleep() 003474 ** API uses microseconds. Hence the 1000's. 003475 */ 003476 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 003477 return rc; 003478 } 003479 003480 /* 003481 ** Enable or disable the extended result codes. 003482 */ 003483 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 003484 #ifdef SQLITE_ENABLE_API_ARMOR 003485 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 003486 #endif 003487 sqlite3_mutex_enter(db->mutex); 003488 db->errMask = onoff ? 0xffffffff : 0xff; 003489 sqlite3_mutex_leave(db->mutex); 003490 return SQLITE_OK; 003491 } 003492 003493 /* 003494 ** Invoke the xFileControl method on a particular database. 003495 */ 003496 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 003497 int rc = SQLITE_ERROR; 003498 Btree *pBtree; 003499 003500 #ifdef SQLITE_ENABLE_API_ARMOR 003501 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 003502 #endif 003503 sqlite3_mutex_enter(db->mutex); 003504 pBtree = sqlite3DbNameToBtree(db, zDbName); 003505 if( pBtree ){ 003506 Pager *pPager; 003507 sqlite3_file *fd; 003508 sqlite3BtreeEnter(pBtree); 003509 pPager = sqlite3BtreePager(pBtree); 003510 assert( pPager!=0 ); 003511 fd = sqlite3PagerFile(pPager); 003512 assert( fd!=0 ); 003513 if( op==SQLITE_FCNTL_FILE_POINTER ){ 003514 *(sqlite3_file**)pArg = fd; 003515 rc = SQLITE_OK; 003516 }else if( op==SQLITE_FCNTL_VFS_POINTER ){ 003517 *(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager); 003518 rc = SQLITE_OK; 003519 }else if( op==SQLITE_FCNTL_JOURNAL_POINTER ){ 003520 *(sqlite3_file**)pArg = sqlite3PagerJrnlFile(pPager); 003521 rc = SQLITE_OK; 003522 }else if( fd->pMethods ){ 003523 rc = sqlite3OsFileControl(fd, op, pArg); 003524 }else{ 003525 rc = SQLITE_NOTFOUND; 003526 } 003527 sqlite3BtreeLeave(pBtree); 003528 } 003529 sqlite3_mutex_leave(db->mutex); 003530 return rc; 003531 } 003532 003533 /* 003534 ** Interface to the testing logic. 003535 */ 003536 int sqlite3_test_control(int op, ...){ 003537 int rc = 0; 003538 #ifdef SQLITE_UNTESTABLE 003539 UNUSED_PARAMETER(op); 003540 #else 003541 va_list ap; 003542 va_start(ap, op); 003543 switch( op ){ 003544 003545 /* 003546 ** Save the current state of the PRNG. 003547 */ 003548 case SQLITE_TESTCTRL_PRNG_SAVE: { 003549 sqlite3PrngSaveState(); 003550 break; 003551 } 003552 003553 /* 003554 ** Restore the state of the PRNG to the last state saved using 003555 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 003556 ** this verb acts like PRNG_RESET. 003557 */ 003558 case SQLITE_TESTCTRL_PRNG_RESTORE: { 003559 sqlite3PrngRestoreState(); 003560 break; 003561 } 003562 003563 /* 003564 ** Reset the PRNG back to its uninitialized state. The next call 003565 ** to sqlite3_randomness() will reseed the PRNG using a single call 003566 ** to the xRandomness method of the default VFS. 003567 */ 003568 case SQLITE_TESTCTRL_PRNG_RESET: { 003569 sqlite3_randomness(0,0); 003570 break; 003571 } 003572 003573 /* 003574 ** sqlite3_test_control(BITVEC_TEST, size, program) 003575 ** 003576 ** Run a test against a Bitvec object of size. The program argument 003577 ** is an array of integers that defines the test. Return -1 on a 003578 ** memory allocation error, 0 on success, or non-zero for an error. 003579 ** See the sqlite3BitvecBuiltinTest() for additional information. 003580 */ 003581 case SQLITE_TESTCTRL_BITVEC_TEST: { 003582 int sz = va_arg(ap, int); 003583 int *aProg = va_arg(ap, int*); 003584 rc = sqlite3BitvecBuiltinTest(sz, aProg); 003585 break; 003586 } 003587 003588 /* 003589 ** sqlite3_test_control(FAULT_INSTALL, xCallback) 003590 ** 003591 ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, 003592 ** if xCallback is not NULL. 003593 ** 003594 ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) 003595 ** is called immediately after installing the new callback and the return 003596 ** value from sqlite3FaultSim(0) becomes the return from 003597 ** sqlite3_test_control(). 003598 */ 003599 case SQLITE_TESTCTRL_FAULT_INSTALL: { 003600 /* MSVC is picky about pulling func ptrs from va lists. 003601 ** http://support.microsoft.com/kb/47961 003602 ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); 003603 */ 003604 typedef int(*TESTCALLBACKFUNC_t)(int); 003605 sqlite3GlobalConfig.xTestCallback = va_arg(ap, TESTCALLBACKFUNC_t); 003606 rc = sqlite3FaultSim(0); 003607 break; 003608 } 003609 003610 /* 003611 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 003612 ** 003613 ** Register hooks to call to indicate which malloc() failures 003614 ** are benign. 003615 */ 003616 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 003617 typedef void (*void_function)(void); 003618 void_function xBenignBegin; 003619 void_function xBenignEnd; 003620 xBenignBegin = va_arg(ap, void_function); 003621 xBenignEnd = va_arg(ap, void_function); 003622 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 003623 break; 003624 } 003625 003626 /* 003627 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 003628 ** 003629 ** Set the PENDING byte to the value in the argument, if X>0. 003630 ** Make no changes if X==0. Return the value of the pending byte 003631 ** as it existing before this routine was called. 003632 ** 003633 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 003634 ** an incompatible database file format. Changing the PENDING byte 003635 ** while any database connection is open results in undefined and 003636 ** deleterious behavior. 003637 */ 003638 case SQLITE_TESTCTRL_PENDING_BYTE: { 003639 rc = PENDING_BYTE; 003640 #ifndef SQLITE_OMIT_WSD 003641 { 003642 unsigned int newVal = va_arg(ap, unsigned int); 003643 if( newVal ) sqlite3PendingByte = newVal; 003644 } 003645 #endif 003646 break; 003647 } 003648 003649 /* 003650 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 003651 ** 003652 ** This action provides a run-time test to see whether or not 003653 ** assert() was enabled at compile-time. If X is true and assert() 003654 ** is enabled, then the return value is true. If X is true and 003655 ** assert() is disabled, then the return value is zero. If X is 003656 ** false and assert() is enabled, then the assertion fires and the 003657 ** process aborts. If X is false and assert() is disabled, then the 003658 ** return value is zero. 003659 */ 003660 case SQLITE_TESTCTRL_ASSERT: { 003661 volatile int x = 0; 003662 assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 ); 003663 rc = x; 003664 break; 003665 } 003666 003667 003668 /* 003669 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 003670 ** 003671 ** This action provides a run-time test to see how the ALWAYS and 003672 ** NEVER macros were defined at compile-time. 003673 ** 003674 ** The return value is ALWAYS(X). 003675 ** 003676 ** The recommended test is X==2. If the return value is 2, that means 003677 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 003678 ** default setting. If the return value is 1, then ALWAYS() is either 003679 ** hard-coded to true or else it asserts if its argument is false. 003680 ** The first behavior (hard-coded to true) is the case if 003681 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 003682 ** behavior (assert if the argument to ALWAYS() is false) is the case if 003683 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 003684 ** 003685 ** The run-time test procedure might look something like this: 003686 ** 003687 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 003688 ** // ALWAYS() and NEVER() are no-op pass-through macros 003689 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 003690 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 003691 ** }else{ 003692 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 003693 ** } 003694 */ 003695 case SQLITE_TESTCTRL_ALWAYS: { 003696 int x = va_arg(ap,int); 003697 rc = ALWAYS(x); 003698 break; 003699 } 003700 003701 /* 003702 ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); 003703 ** 003704 ** The integer returned reveals the byte-order of the computer on which 003705 ** SQLite is running: 003706 ** 003707 ** 1 big-endian, determined at run-time 003708 ** 10 little-endian, determined at run-time 003709 ** 432101 big-endian, determined at compile-time 003710 ** 123410 little-endian, determined at compile-time 003711 */ 003712 case SQLITE_TESTCTRL_BYTEORDER: { 003713 rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; 003714 break; 003715 } 003716 003717 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 003718 ** 003719 ** Set the nReserve size to N for the main database on the database 003720 ** connection db. 003721 */ 003722 case SQLITE_TESTCTRL_RESERVE: { 003723 sqlite3 *db = va_arg(ap, sqlite3*); 003724 int x = va_arg(ap,int); 003725 sqlite3_mutex_enter(db->mutex); 003726 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 003727 sqlite3_mutex_leave(db->mutex); 003728 break; 003729 } 003730 003731 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 003732 ** 003733 ** Enable or disable various optimizations for testing purposes. The 003734 ** argument N is a bitmask of optimizations to be disabled. For normal 003735 ** operation N should be 0. The idea is that a test program (like the 003736 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 003737 ** with various optimizations disabled to verify that the same answer 003738 ** is obtained in every case. 003739 */ 003740 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 003741 sqlite3 *db = va_arg(ap, sqlite3*); 003742 db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); 003743 break; 003744 } 003745 003746 #ifdef SQLITE_N_KEYWORD 003747 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 003748 ** 003749 ** If zWord is a keyword recognized by the parser, then return the 003750 ** number of keywords. Or if zWord is not a keyword, return 0. 003751 ** 003752 ** This test feature is only available in the amalgamation since 003753 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 003754 ** is built using separate source files. 003755 */ 003756 case SQLITE_TESTCTRL_ISKEYWORD: { 003757 const char *zWord = va_arg(ap, const char*); 003758 int n = sqlite3Strlen30(zWord); 003759 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 003760 break; 003761 } 003762 #endif 003763 003764 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 003765 ** 003766 ** Pass pFree into sqlite3ScratchFree(). 003767 ** If sz>0 then allocate a scratch buffer into pNew. 003768 */ 003769 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 003770 void *pFree, **ppNew; 003771 int sz; 003772 sz = va_arg(ap, int); 003773 ppNew = va_arg(ap, void**); 003774 pFree = va_arg(ap, void*); 003775 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 003776 sqlite3ScratchFree(pFree); 003777 break; 003778 } 003779 003780 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); 003781 ** 003782 ** If parameter onoff is non-zero, configure the wrappers so that all 003783 ** subsequent calls to localtime() and variants fail. If onoff is zero, 003784 ** undo this setting. 003785 */ 003786 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 003787 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 003788 break; 003789 } 003790 003791 /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); 003792 ** 003793 ** Set or clear a flag that indicates that the database file is always well- 003794 ** formed and never corrupt. This flag is clear by default, indicating that 003795 ** database files might have arbitrary corruption. Setting the flag during 003796 ** testing causes certain assert() statements in the code to be activated 003797 ** that demonstrat invariants on well-formed database files. 003798 */ 003799 case SQLITE_TESTCTRL_NEVER_CORRUPT: { 003800 sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); 003801 break; 003802 } 003803 003804 /* Set the threshold at which OP_Once counters reset back to zero. 003805 ** By default this is 0x7ffffffe (over 2 billion), but that value is 003806 ** too big to test in a reasonable amount of time, so this control is 003807 ** provided to set a small and easily reachable reset value. 003808 */ 003809 case SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: { 003810 sqlite3GlobalConfig.iOnceResetThreshold = va_arg(ap, int); 003811 break; 003812 } 003813 003814 /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); 003815 ** 003816 ** Set the VDBE coverage callback function to xCallback with context 003817 ** pointer ptr. 003818 */ 003819 case SQLITE_TESTCTRL_VDBE_COVERAGE: { 003820 #ifdef SQLITE_VDBE_COVERAGE 003821 typedef void (*branch_callback)(void*,int,u8,u8); 003822 sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); 003823 sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); 003824 #endif 003825 break; 003826 } 003827 003828 /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ 003829 case SQLITE_TESTCTRL_SORTER_MMAP: { 003830 sqlite3 *db = va_arg(ap, sqlite3*); 003831 db->nMaxSorterMmap = va_arg(ap, int); 003832 break; 003833 } 003834 003835 /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); 003836 ** 003837 ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if 003838 ** not. 003839 */ 003840 case SQLITE_TESTCTRL_ISINIT: { 003841 if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; 003842 break; 003843 } 003844 003845 /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); 003846 ** 003847 ** This test control is used to create imposter tables. "db" is a pointer 003848 ** to the database connection. dbName is the database name (ex: "main" or 003849 ** "temp") which will receive the imposter. "onOff" turns imposter mode on 003850 ** or off. "tnum" is the root page of the b-tree to which the imposter 003851 ** table should connect. 003852 ** 003853 ** Enable imposter mode only when the schema has already been parsed. Then 003854 ** run a single CREATE TABLE statement to construct the imposter table in 003855 ** the parsed schema. Then turn imposter mode back off again. 003856 ** 003857 ** If onOff==0 and tnum>0 then reset the schema for all databases, causing 003858 ** the schema to be reparsed the next time it is needed. This has the 003859 ** effect of erasing all imposter tables. 003860 */ 003861 case SQLITE_TESTCTRL_IMPOSTER: { 003862 sqlite3 *db = va_arg(ap, sqlite3*); 003863 sqlite3_mutex_enter(db->mutex); 003864 db->init.iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); 003865 db->init.busy = db->init.imposterTable = va_arg(ap,int); 003866 db->init.newTnum = va_arg(ap,int); 003867 if( db->init.busy==0 && db->init.newTnum>0 ){ 003868 sqlite3ResetAllSchemasOfConnection(db); 003869 } 003870 sqlite3_mutex_leave(db->mutex); 003871 break; 003872 } 003873 } 003874 va_end(ap); 003875 #endif /* SQLITE_UNTESTABLE */ 003876 return rc; 003877 } 003878 003879 /* 003880 ** This is a utility routine, useful to VFS implementations, that checks 003881 ** to see if a database file was a URI that contained a specific query 003882 ** parameter, and if so obtains the value of the query parameter. 003883 ** 003884 ** The zFilename argument is the filename pointer passed into the xOpen() 003885 ** method of a VFS implementation. The zParam argument is the name of the 003886 ** query parameter we seek. This routine returns the value of the zParam 003887 ** parameter if it exists. If the parameter does not exist, this routine 003888 ** returns a NULL pointer. 003889 */ 003890 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 003891 if( zFilename==0 || zParam==0 ) return 0; 003892 zFilename += sqlite3Strlen30(zFilename) + 1; 003893 while( zFilename[0] ){ 003894 int x = strcmp(zFilename, zParam); 003895 zFilename += sqlite3Strlen30(zFilename) + 1; 003896 if( x==0 ) return zFilename; 003897 zFilename += sqlite3Strlen30(zFilename) + 1; 003898 } 003899 return 0; 003900 } 003901 003902 /* 003903 ** Return a boolean value for a query parameter. 003904 */ 003905 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 003906 const char *z = sqlite3_uri_parameter(zFilename, zParam); 003907 bDflt = bDflt!=0; 003908 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 003909 } 003910 003911 /* 003912 ** Return a 64-bit integer value for a query parameter. 003913 */ 003914 sqlite3_int64 sqlite3_uri_int64( 003915 const char *zFilename, /* Filename as passed to xOpen */ 003916 const char *zParam, /* URI parameter sought */ 003917 sqlite3_int64 bDflt /* return if parameter is missing */ 003918 ){ 003919 const char *z = sqlite3_uri_parameter(zFilename, zParam); 003920 sqlite3_int64 v; 003921 if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){ 003922 bDflt = v; 003923 } 003924 return bDflt; 003925 } 003926 003927 /* 003928 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 003929 */ 003930 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 003931 int iDb = zDbName ? sqlite3FindDbName(db, zDbName) : 0; 003932 return iDb<0 ? 0 : db->aDb[iDb].pBt; 003933 } 003934 003935 /* 003936 ** Return the filename of the database associated with a database 003937 ** connection. 003938 */ 003939 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 003940 Btree *pBt; 003941 #ifdef SQLITE_ENABLE_API_ARMOR 003942 if( !sqlite3SafetyCheckOk(db) ){ 003943 (void)SQLITE_MISUSE_BKPT; 003944 return 0; 003945 } 003946 #endif 003947 pBt = sqlite3DbNameToBtree(db, zDbName); 003948 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 003949 } 003950 003951 /* 003952 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 003953 ** no such database exists. 003954 */ 003955 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 003956 Btree *pBt; 003957 #ifdef SQLITE_ENABLE_API_ARMOR 003958 if( !sqlite3SafetyCheckOk(db) ){ 003959 (void)SQLITE_MISUSE_BKPT; 003960 return -1; 003961 } 003962 #endif 003963 pBt = sqlite3DbNameToBtree(db, zDbName); 003964 return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; 003965 } 003966 003967 #ifdef SQLITE_ENABLE_SNAPSHOT 003968 /* 003969 ** Obtain a snapshot handle for the snapshot of database zDb currently 003970 ** being read by handle db. 003971 */ 003972 int sqlite3_snapshot_get( 003973 sqlite3 *db, 003974 const char *zDb, 003975 sqlite3_snapshot **ppSnapshot 003976 ){ 003977 int rc = SQLITE_ERROR; 003978 #ifndef SQLITE_OMIT_WAL 003979 003980 #ifdef SQLITE_ENABLE_API_ARMOR 003981 if( !sqlite3SafetyCheckOk(db) ){ 003982 return SQLITE_MISUSE_BKPT; 003983 } 003984 #endif 003985 sqlite3_mutex_enter(db->mutex); 003986 003987 if( db->autoCommit==0 ){ 003988 int iDb = sqlite3FindDbName(db, zDb); 003989 if( iDb==0 || iDb>1 ){ 003990 Btree *pBt = db->aDb[iDb].pBt; 003991 if( 0==sqlite3BtreeIsInTrans(pBt) ){ 003992 rc = sqlite3BtreeBeginTrans(pBt, 0); 003993 if( rc==SQLITE_OK ){ 003994 rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot); 003995 } 003996 } 003997 } 003998 } 003999 004000 sqlite3_mutex_leave(db->mutex); 004001 #endif /* SQLITE_OMIT_WAL */ 004002 return rc; 004003 } 004004 004005 /* 004006 ** Open a read-transaction on the snapshot idendified by pSnapshot. 004007 */ 004008 int sqlite3_snapshot_open( 004009 sqlite3 *db, 004010 const char *zDb, 004011 sqlite3_snapshot *pSnapshot 004012 ){ 004013 int rc = SQLITE_ERROR; 004014 #ifndef SQLITE_OMIT_WAL 004015 004016 #ifdef SQLITE_ENABLE_API_ARMOR 004017 if( !sqlite3SafetyCheckOk(db) ){ 004018 return SQLITE_MISUSE_BKPT; 004019 } 004020 #endif 004021 sqlite3_mutex_enter(db->mutex); 004022 if( db->autoCommit==0 ){ 004023 int iDb; 004024 iDb = sqlite3FindDbName(db, zDb); 004025 if( iDb==0 || iDb>1 ){ 004026 Btree *pBt = db->aDb[iDb].pBt; 004027 if( 0==sqlite3BtreeIsInReadTrans(pBt) ){ 004028 rc = sqlite3PagerSnapshotOpen(sqlite3BtreePager(pBt), pSnapshot); 004029 if( rc==SQLITE_OK ){ 004030 rc = sqlite3BtreeBeginTrans(pBt, 0); 004031 sqlite3PagerSnapshotOpen(sqlite3BtreePager(pBt), 0); 004032 } 004033 } 004034 } 004035 } 004036 004037 sqlite3_mutex_leave(db->mutex); 004038 #endif /* SQLITE_OMIT_WAL */ 004039 return rc; 004040 } 004041 004042 /* 004043 ** Recover as many snapshots as possible from the wal file associated with 004044 ** schema zDb of database db. 004045 */ 004046 int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){ 004047 int rc = SQLITE_ERROR; 004048 int iDb; 004049 #ifndef SQLITE_OMIT_WAL 004050 004051 #ifdef SQLITE_ENABLE_API_ARMOR 004052 if( !sqlite3SafetyCheckOk(db) ){ 004053 return SQLITE_MISUSE_BKPT; 004054 } 004055 #endif 004056 004057 sqlite3_mutex_enter(db->mutex); 004058 iDb = sqlite3FindDbName(db, zDb); 004059 if( iDb==0 || iDb>1 ){ 004060 Btree *pBt = db->aDb[iDb].pBt; 004061 if( 0==sqlite3BtreeIsInReadTrans(pBt) ){ 004062 rc = sqlite3BtreeBeginTrans(pBt, 0); 004063 if( rc==SQLITE_OK ){ 004064 rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt)); 004065 sqlite3BtreeCommit(pBt); 004066 } 004067 } 004068 } 004069 sqlite3_mutex_leave(db->mutex); 004070 #endif /* SQLITE_OMIT_WAL */ 004071 return rc; 004072 } 004073 004074 /* 004075 ** Free a snapshot handle obtained from sqlite3_snapshot_get(). 004076 */ 004077 void sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){ 004078 sqlite3_free(pSnapshot); 004079 } 004080 #endif /* SQLITE_ENABLE_SNAPSHOT */