000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains C code routines that are called by the parser 000013 ** to handle INSERT statements in SQLite. 000014 */ 000015 #include "sqliteInt.h" 000016 000017 /* 000018 ** Generate code that will 000019 ** 000020 ** (1) acquire a lock for table pTab then 000021 ** (2) open pTab as cursor iCur. 000022 ** 000023 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 000024 ** for that table that is actually opened. 000025 */ 000026 void sqlite3OpenTable( 000027 Parse *pParse, /* Generate code into this VDBE */ 000028 int iCur, /* The cursor number of the table */ 000029 int iDb, /* The database index in sqlite3.aDb[] */ 000030 Table *pTab, /* The table to be opened */ 000031 int opcode /* OP_OpenRead or OP_OpenWrite */ 000032 ){ 000033 Vdbe *v; 000034 assert( !IsVirtual(pTab) ); 000035 v = sqlite3GetVdbe(pParse); 000036 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 000037 sqlite3TableLock(pParse, iDb, pTab->tnum, 000038 (opcode==OP_OpenWrite)?1:0, pTab->zName); 000039 if( HasRowid(pTab) ){ 000040 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 000041 VdbeComment((v, "%s", pTab->zName)); 000042 }else{ 000043 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 000044 assert( pPk!=0 ); 000045 assert( pPk->tnum==pTab->tnum ); 000046 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 000047 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 000048 VdbeComment((v, "%s", pTab->zName)); 000049 } 000050 } 000051 000052 /* 000053 ** Return a pointer to the column affinity string associated with index 000054 ** pIdx. A column affinity string has one character for each column in 000055 ** the table, according to the affinity of the column: 000056 ** 000057 ** Character Column affinity 000058 ** ------------------------------ 000059 ** 'A' BLOB 000060 ** 'B' TEXT 000061 ** 'C' NUMERIC 000062 ** 'D' INTEGER 000063 ** 'F' REAL 000064 ** 000065 ** An extra 'D' is appended to the end of the string to cover the 000066 ** rowid that appears as the last column in every index. 000067 ** 000068 ** Memory for the buffer containing the column index affinity string 000069 ** is managed along with the rest of the Index structure. It will be 000070 ** released when sqlite3DeleteIndex() is called. 000071 */ 000072 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 000073 if( !pIdx->zColAff ){ 000074 /* The first time a column affinity string for a particular index is 000075 ** required, it is allocated and populated here. It is then stored as 000076 ** a member of the Index structure for subsequent use. 000077 ** 000078 ** The column affinity string will eventually be deleted by 000079 ** sqliteDeleteIndex() when the Index structure itself is cleaned 000080 ** up. 000081 */ 000082 int n; 000083 Table *pTab = pIdx->pTable; 000084 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 000085 if( !pIdx->zColAff ){ 000086 sqlite3OomFault(db); 000087 return 0; 000088 } 000089 for(n=0; n<pIdx->nColumn; n++){ 000090 i16 x = pIdx->aiColumn[n]; 000091 if( x>=0 ){ 000092 pIdx->zColAff[n] = pTab->aCol[x].affinity; 000093 }else if( x==XN_ROWID ){ 000094 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; 000095 }else{ 000096 char aff; 000097 assert( x==XN_EXPR ); 000098 assert( pIdx->aColExpr!=0 ); 000099 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 000100 if( aff==0 ) aff = SQLITE_AFF_BLOB; 000101 pIdx->zColAff[n] = aff; 000102 } 000103 } 000104 pIdx->zColAff[n] = 0; 000105 } 000106 000107 return pIdx->zColAff; 000108 } 000109 000110 /* 000111 ** Compute the affinity string for table pTab, if it has not already been 000112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 000113 ** 000114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 000115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 000116 ** for register iReg and following. Or if affinities exists and iReg==0, 000117 ** then just set the P4 operand of the previous opcode (which should be 000118 ** an OP_MakeRecord) to the affinity string. 000119 ** 000120 ** A column affinity string has one character per column: 000121 ** 000122 ** Character Column affinity 000123 ** ------------------------------ 000124 ** 'A' BLOB 000125 ** 'B' TEXT 000126 ** 'C' NUMERIC 000127 ** 'D' INTEGER 000128 ** 'E' REAL 000129 */ 000130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 000131 int i; 000132 char *zColAff = pTab->zColAff; 000133 if( zColAff==0 ){ 000134 sqlite3 *db = sqlite3VdbeDb(v); 000135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 000136 if( !zColAff ){ 000137 sqlite3OomFault(db); 000138 return; 000139 } 000140 000141 for(i=0; i<pTab->nCol; i++){ 000142 zColAff[i] = pTab->aCol[i].affinity; 000143 } 000144 do{ 000145 zColAff[i--] = 0; 000146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); 000147 pTab->zColAff = zColAff; 000148 } 000149 i = sqlite3Strlen30(zColAff); 000150 if( i ){ 000151 if( iReg ){ 000152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 000153 }else{ 000154 sqlite3VdbeChangeP4(v, -1, zColAff, i); 000155 } 000156 } 000157 } 000158 000159 /* 000160 ** Return non-zero if the table pTab in database iDb or any of its indices 000161 ** have been opened at any point in the VDBE program. This is used to see if 000162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 000163 ** run without using a temporary table for the results of the SELECT. 000164 */ 000165 static int readsTable(Parse *p, int iDb, Table *pTab){ 000166 Vdbe *v = sqlite3GetVdbe(p); 000167 int i; 000168 int iEnd = sqlite3VdbeCurrentAddr(v); 000169 #ifndef SQLITE_OMIT_VIRTUALTABLE 000170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 000171 #endif 000172 000173 for(i=1; i<iEnd; i++){ 000174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 000175 assert( pOp!=0 ); 000176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 000177 Index *pIndex; 000178 int tnum = pOp->p2; 000179 if( tnum==pTab->tnum ){ 000180 return 1; 000181 } 000182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 000183 if( tnum==pIndex->tnum ){ 000184 return 1; 000185 } 000186 } 000187 } 000188 #ifndef SQLITE_OMIT_VIRTUALTABLE 000189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 000190 assert( pOp->p4.pVtab!=0 ); 000191 assert( pOp->p4type==P4_VTAB ); 000192 return 1; 000193 } 000194 #endif 000195 } 000196 return 0; 000197 } 000198 000199 #ifndef SQLITE_OMIT_AUTOINCREMENT 000200 /* 000201 ** Locate or create an AutoincInfo structure associated with table pTab 000202 ** which is in database iDb. Return the register number for the register 000203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 000204 ** table. (Also return zero when doing a VACUUM since we do not want to 000205 ** update the AUTOINCREMENT counters during a VACUUM.) 000206 ** 000207 ** There is at most one AutoincInfo structure per table even if the 000208 ** same table is autoincremented multiple times due to inserts within 000209 ** triggers. A new AutoincInfo structure is created if this is the 000210 ** first use of table pTab. On 2nd and subsequent uses, the original 000211 ** AutoincInfo structure is used. 000212 ** 000213 ** Three memory locations are allocated: 000214 ** 000215 ** (1) Register to hold the name of the pTab table. 000216 ** (2) Register to hold the maximum ROWID of pTab. 000217 ** (3) Register to hold the rowid in sqlite_sequence of pTab 000218 ** 000219 ** The 2nd register is the one that is returned. That is all the 000220 ** insert routine needs to know about. 000221 */ 000222 static int autoIncBegin( 000223 Parse *pParse, /* Parsing context */ 000224 int iDb, /* Index of the database holding pTab */ 000225 Table *pTab /* The table we are writing to */ 000226 ){ 000227 int memId = 0; /* Register holding maximum rowid */ 000228 if( (pTab->tabFlags & TF_Autoincrement)!=0 000229 && (pParse->db->flags & SQLITE_Vacuum)==0 000230 ){ 000231 Parse *pToplevel = sqlite3ParseToplevel(pParse); 000232 AutoincInfo *pInfo; 000233 000234 pInfo = pToplevel->pAinc; 000235 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 000236 if( pInfo==0 ){ 000237 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 000238 if( pInfo==0 ) return 0; 000239 pInfo->pNext = pToplevel->pAinc; 000240 pToplevel->pAinc = pInfo; 000241 pInfo->pTab = pTab; 000242 pInfo->iDb = iDb; 000243 pToplevel->nMem++; /* Register to hold name of table */ 000244 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 000245 pToplevel->nMem++; /* Rowid in sqlite_sequence */ 000246 } 000247 memId = pInfo->regCtr; 000248 } 000249 return memId; 000250 } 000251 000252 /* 000253 ** This routine generates code that will initialize all of the 000254 ** register used by the autoincrement tracker. 000255 */ 000256 void sqlite3AutoincrementBegin(Parse *pParse){ 000257 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 000258 sqlite3 *db = pParse->db; /* The database connection */ 000259 Db *pDb; /* Database only autoinc table */ 000260 int memId; /* Register holding max rowid */ 000261 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 000262 000263 /* This routine is never called during trigger-generation. It is 000264 ** only called from the top-level */ 000265 assert( pParse->pTriggerTab==0 ); 000266 assert( sqlite3IsToplevel(pParse) ); 000267 000268 assert( v ); /* We failed long ago if this is not so */ 000269 for(p = pParse->pAinc; p; p = p->pNext){ 000270 static const int iLn = VDBE_OFFSET_LINENO(2); 000271 static const VdbeOpList autoInc[] = { 000272 /* 0 */ {OP_Null, 0, 0, 0}, 000273 /* 1 */ {OP_Rewind, 0, 9, 0}, 000274 /* 2 */ {OP_Column, 0, 0, 0}, 000275 /* 3 */ {OP_Ne, 0, 7, 0}, 000276 /* 4 */ {OP_Rowid, 0, 0, 0}, 000277 /* 5 */ {OP_Column, 0, 1, 0}, 000278 /* 6 */ {OP_Goto, 0, 9, 0}, 000279 /* 7 */ {OP_Next, 0, 2, 0}, 000280 /* 8 */ {OP_Integer, 0, 0, 0}, 000281 /* 9 */ {OP_Close, 0, 0, 0} 000282 }; 000283 VdbeOp *aOp; 000284 pDb = &db->aDb[p->iDb]; 000285 memId = p->regCtr; 000286 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 000287 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 000288 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 000289 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 000290 if( aOp==0 ) break; 000291 aOp[0].p2 = memId; 000292 aOp[0].p3 = memId+1; 000293 aOp[2].p3 = memId; 000294 aOp[3].p1 = memId-1; 000295 aOp[3].p3 = memId; 000296 aOp[3].p5 = SQLITE_JUMPIFNULL; 000297 aOp[4].p2 = memId+1; 000298 aOp[5].p3 = memId; 000299 aOp[8].p2 = memId; 000300 } 000301 } 000302 000303 /* 000304 ** Update the maximum rowid for an autoincrement calculation. 000305 ** 000306 ** This routine should be called when the regRowid register holds a 000307 ** new rowid that is about to be inserted. If that new rowid is 000308 ** larger than the maximum rowid in the memId memory cell, then the 000309 ** memory cell is updated. 000310 */ 000311 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 000312 if( memId>0 ){ 000313 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 000314 } 000315 } 000316 000317 /* 000318 ** This routine generates the code needed to write autoincrement 000319 ** maximum rowid values back into the sqlite_sequence register. 000320 ** Every statement that might do an INSERT into an autoincrement 000321 ** table (either directly or through triggers) needs to call this 000322 ** routine just before the "exit" code. 000323 */ 000324 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 000325 AutoincInfo *p; 000326 Vdbe *v = pParse->pVdbe; 000327 sqlite3 *db = pParse->db; 000328 000329 assert( v ); 000330 for(p = pParse->pAinc; p; p = p->pNext){ 000331 static const int iLn = VDBE_OFFSET_LINENO(2); 000332 static const VdbeOpList autoIncEnd[] = { 000333 /* 0 */ {OP_NotNull, 0, 2, 0}, 000334 /* 1 */ {OP_NewRowid, 0, 0, 0}, 000335 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 000336 /* 3 */ {OP_Insert, 0, 0, 0}, 000337 /* 4 */ {OP_Close, 0, 0, 0} 000338 }; 000339 VdbeOp *aOp; 000340 Db *pDb = &db->aDb[p->iDb]; 000341 int iRec; 000342 int memId = p->regCtr; 000343 000344 iRec = sqlite3GetTempReg(pParse); 000345 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 000346 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 000347 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 000348 if( aOp==0 ) break; 000349 aOp[0].p1 = memId+1; 000350 aOp[1].p2 = memId+1; 000351 aOp[2].p1 = memId-1; 000352 aOp[2].p3 = iRec; 000353 aOp[3].p2 = iRec; 000354 aOp[3].p3 = memId+1; 000355 aOp[3].p5 = OPFLAG_APPEND; 000356 sqlite3ReleaseTempReg(pParse, iRec); 000357 } 000358 } 000359 void sqlite3AutoincrementEnd(Parse *pParse){ 000360 if( pParse->pAinc ) autoIncrementEnd(pParse); 000361 } 000362 #else 000363 /* 000364 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 000365 ** above are all no-ops 000366 */ 000367 # define autoIncBegin(A,B,C) (0) 000368 # define autoIncStep(A,B,C) 000369 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 000370 000371 000372 /* Forward declaration */ 000373 static int xferOptimization( 000374 Parse *pParse, /* Parser context */ 000375 Table *pDest, /* The table we are inserting into */ 000376 Select *pSelect, /* A SELECT statement to use as the data source */ 000377 int onError, /* How to handle constraint errors */ 000378 int iDbDest /* The database of pDest */ 000379 ); 000380 000381 /* 000382 ** This routine is called to handle SQL of the following forms: 000383 ** 000384 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 000385 ** insert into TABLE (IDLIST) select 000386 ** insert into TABLE (IDLIST) default values 000387 ** 000388 ** The IDLIST following the table name is always optional. If omitted, 000389 ** then a list of all (non-hidden) columns for the table is substituted. 000390 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 000391 ** is omitted. 000392 ** 000393 ** For the pSelect parameter holds the values to be inserted for the 000394 ** first two forms shown above. A VALUES clause is really just short-hand 000395 ** for a SELECT statement that omits the FROM clause and everything else 000396 ** that follows. If the pSelect parameter is NULL, that means that the 000397 ** DEFAULT VALUES form of the INSERT statement is intended. 000398 ** 000399 ** The code generated follows one of four templates. For a simple 000400 ** insert with data coming from a single-row VALUES clause, the code executes 000401 ** once straight down through. Pseudo-code follows (we call this 000402 ** the "1st template"): 000403 ** 000404 ** open write cursor to <table> and its indices 000405 ** put VALUES clause expressions into registers 000406 ** write the resulting record into <table> 000407 ** cleanup 000408 ** 000409 ** The three remaining templates assume the statement is of the form 000410 ** 000411 ** INSERT INTO <table> SELECT ... 000412 ** 000413 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 000414 ** in other words if the SELECT pulls all columns from a single table 000415 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 000416 ** if <table2> and <table1> are distinct tables but have identical 000417 ** schemas, including all the same indices, then a special optimization 000418 ** is invoked that copies raw records from <table2> over to <table1>. 000419 ** See the xferOptimization() function for the implementation of this 000420 ** template. This is the 2nd template. 000421 ** 000422 ** open a write cursor to <table> 000423 ** open read cursor on <table2> 000424 ** transfer all records in <table2> over to <table> 000425 ** close cursors 000426 ** foreach index on <table> 000427 ** open a write cursor on the <table> index 000428 ** open a read cursor on the corresponding <table2> index 000429 ** transfer all records from the read to the write cursors 000430 ** close cursors 000431 ** end foreach 000432 ** 000433 ** The 3rd template is for when the second template does not apply 000434 ** and the SELECT clause does not read from <table> at any time. 000435 ** The generated code follows this template: 000436 ** 000437 ** X <- A 000438 ** goto B 000439 ** A: setup for the SELECT 000440 ** loop over the rows in the SELECT 000441 ** load values into registers R..R+n 000442 ** yield X 000443 ** end loop 000444 ** cleanup after the SELECT 000445 ** end-coroutine X 000446 ** B: open write cursor to <table> and its indices 000447 ** C: yield X, at EOF goto D 000448 ** insert the select result into <table> from R..R+n 000449 ** goto C 000450 ** D: cleanup 000451 ** 000452 ** The 4th template is used if the insert statement takes its 000453 ** values from a SELECT but the data is being inserted into a table 000454 ** that is also read as part of the SELECT. In the third form, 000455 ** we have to use an intermediate table to store the results of 000456 ** the select. The template is like this: 000457 ** 000458 ** X <- A 000459 ** goto B 000460 ** A: setup for the SELECT 000461 ** loop over the tables in the SELECT 000462 ** load value into register R..R+n 000463 ** yield X 000464 ** end loop 000465 ** cleanup after the SELECT 000466 ** end co-routine R 000467 ** B: open temp table 000468 ** L: yield X, at EOF goto M 000469 ** insert row from R..R+n into temp table 000470 ** goto L 000471 ** M: open write cursor to <table> and its indices 000472 ** rewind temp table 000473 ** C: loop over rows of intermediate table 000474 ** transfer values form intermediate table into <table> 000475 ** end loop 000476 ** D: cleanup 000477 */ 000478 void sqlite3Insert( 000479 Parse *pParse, /* Parser context */ 000480 SrcList *pTabList, /* Name of table into which we are inserting */ 000481 Select *pSelect, /* A SELECT statement to use as the data source */ 000482 IdList *pColumn, /* Column names corresponding to IDLIST. */ 000483 int onError /* How to handle constraint errors */ 000484 ){ 000485 sqlite3 *db; /* The main database structure */ 000486 Table *pTab; /* The table to insert into. aka TABLE */ 000487 char *zTab; /* Name of the table into which we are inserting */ 000488 int i, j; /* Loop counters */ 000489 Vdbe *v; /* Generate code into this virtual machine */ 000490 Index *pIdx; /* For looping over indices of the table */ 000491 int nColumn; /* Number of columns in the data */ 000492 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 000493 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 000494 int iIdxCur = 0; /* First index cursor */ 000495 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 000496 int endOfLoop; /* Label for the end of the insertion loop */ 000497 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 000498 int addrInsTop = 0; /* Jump to label "D" */ 000499 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 000500 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 000501 int iDb; /* Index of database holding TABLE */ 000502 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 000503 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 000504 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 000505 u8 bIdListInOrder; /* True if IDLIST is in table order */ 000506 ExprList *pList = 0; /* List of VALUES() to be inserted */ 000507 000508 /* Register allocations */ 000509 int regFromSelect = 0;/* Base register for data coming from SELECT */ 000510 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 000511 int regRowCount = 0; /* Memory cell used for the row counter */ 000512 int regIns; /* Block of regs holding rowid+data being inserted */ 000513 int regRowid; /* registers holding insert rowid */ 000514 int regData; /* register holding first column to insert */ 000515 int *aRegIdx = 0; /* One register allocated to each index */ 000516 000517 #ifndef SQLITE_OMIT_TRIGGER 000518 int isView; /* True if attempting to insert into a view */ 000519 Trigger *pTrigger; /* List of triggers on pTab, if required */ 000520 int tmask; /* Mask of trigger times */ 000521 #endif 000522 000523 db = pParse->db; 000524 memset(&dest, 0, sizeof(dest)); 000525 if( pParse->nErr || db->mallocFailed ){ 000526 goto insert_cleanup; 000527 } 000528 000529 /* If the Select object is really just a simple VALUES() list with a 000530 ** single row (the common case) then keep that one row of values 000531 ** and discard the other (unused) parts of the pSelect object 000532 */ 000533 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 000534 pList = pSelect->pEList; 000535 pSelect->pEList = 0; 000536 sqlite3SelectDelete(db, pSelect); 000537 pSelect = 0; 000538 } 000539 000540 /* Locate the table into which we will be inserting new information. 000541 */ 000542 assert( pTabList->nSrc==1 ); 000543 zTab = pTabList->a[0].zName; 000544 if( NEVER(zTab==0) ) goto insert_cleanup; 000545 pTab = sqlite3SrcListLookup(pParse, pTabList); 000546 if( pTab==0 ){ 000547 goto insert_cleanup; 000548 } 000549 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 000550 assert( iDb<db->nDb ); 000551 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 000552 db->aDb[iDb].zDbSName) ){ 000553 goto insert_cleanup; 000554 } 000555 withoutRowid = !HasRowid(pTab); 000556 000557 /* Figure out if we have any triggers and if the table being 000558 ** inserted into is a view 000559 */ 000560 #ifndef SQLITE_OMIT_TRIGGER 000561 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 000562 isView = pTab->pSelect!=0; 000563 #else 000564 # define pTrigger 0 000565 # define tmask 0 000566 # define isView 0 000567 #endif 000568 #ifdef SQLITE_OMIT_VIEW 000569 # undef isView 000570 # define isView 0 000571 #endif 000572 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 000573 000574 /* If pTab is really a view, make sure it has been initialized. 000575 ** ViewGetColumnNames() is a no-op if pTab is not a view. 000576 */ 000577 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 000578 goto insert_cleanup; 000579 } 000580 000581 /* Cannot insert into a read-only table. 000582 */ 000583 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 000584 goto insert_cleanup; 000585 } 000586 000587 /* Allocate a VDBE 000588 */ 000589 v = sqlite3GetVdbe(pParse); 000590 if( v==0 ) goto insert_cleanup; 000591 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 000592 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 000593 000594 #ifndef SQLITE_OMIT_XFER_OPT 000595 /* If the statement is of the form 000596 ** 000597 ** INSERT INTO <table1> SELECT * FROM <table2>; 000598 ** 000599 ** Then special optimizations can be applied that make the transfer 000600 ** very fast and which reduce fragmentation of indices. 000601 ** 000602 ** This is the 2nd template. 000603 */ 000604 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 000605 assert( !pTrigger ); 000606 assert( pList==0 ); 000607 goto insert_end; 000608 } 000609 #endif /* SQLITE_OMIT_XFER_OPT */ 000610 000611 /* If this is an AUTOINCREMENT table, look up the sequence number in the 000612 ** sqlite_sequence table and store it in memory cell regAutoinc. 000613 */ 000614 regAutoinc = autoIncBegin(pParse, iDb, pTab); 000615 000616 /* Allocate registers for holding the rowid of the new row, 000617 ** the content of the new row, and the assembled row record. 000618 */ 000619 regRowid = regIns = pParse->nMem+1; 000620 pParse->nMem += pTab->nCol + 1; 000621 if( IsVirtual(pTab) ){ 000622 regRowid++; 000623 pParse->nMem++; 000624 } 000625 regData = regRowid+1; 000626 000627 /* If the INSERT statement included an IDLIST term, then make sure 000628 ** all elements of the IDLIST really are columns of the table and 000629 ** remember the column indices. 000630 ** 000631 ** If the table has an INTEGER PRIMARY KEY column and that column 000632 ** is named in the IDLIST, then record in the ipkColumn variable 000633 ** the index into IDLIST of the primary key column. ipkColumn is 000634 ** the index of the primary key as it appears in IDLIST, not as 000635 ** is appears in the original table. (The index of the INTEGER 000636 ** PRIMARY KEY in the original table is pTab->iPKey.) 000637 */ 000638 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 000639 if( pColumn ){ 000640 for(i=0; i<pColumn->nId; i++){ 000641 pColumn->a[i].idx = -1; 000642 } 000643 for(i=0; i<pColumn->nId; i++){ 000644 for(j=0; j<pTab->nCol; j++){ 000645 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 000646 pColumn->a[i].idx = j; 000647 if( i!=j ) bIdListInOrder = 0; 000648 if( j==pTab->iPKey ){ 000649 ipkColumn = i; assert( !withoutRowid ); 000650 } 000651 break; 000652 } 000653 } 000654 if( j>=pTab->nCol ){ 000655 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 000656 ipkColumn = i; 000657 bIdListInOrder = 0; 000658 }else{ 000659 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 000660 pTabList, 0, pColumn->a[i].zName); 000661 pParse->checkSchema = 1; 000662 goto insert_cleanup; 000663 } 000664 } 000665 } 000666 } 000667 000668 /* Figure out how many columns of data are supplied. If the data 000669 ** is coming from a SELECT statement, then generate a co-routine that 000670 ** produces a single row of the SELECT on each invocation. The 000671 ** co-routine is the common header to the 3rd and 4th templates. 000672 */ 000673 if( pSelect ){ 000674 /* Data is coming from a SELECT or from a multi-row VALUES clause. 000675 ** Generate a co-routine to run the SELECT. */ 000676 int regYield; /* Register holding co-routine entry-point */ 000677 int addrTop; /* Top of the co-routine */ 000678 int rc; /* Result code */ 000679 000680 regYield = ++pParse->nMem; 000681 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 000682 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 000683 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 000684 dest.iSdst = bIdListInOrder ? regData : 0; 000685 dest.nSdst = pTab->nCol; 000686 rc = sqlite3Select(pParse, pSelect, &dest); 000687 regFromSelect = dest.iSdst; 000688 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 000689 sqlite3VdbeEndCoroutine(v, regYield); 000690 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 000691 assert( pSelect->pEList ); 000692 nColumn = pSelect->pEList->nExpr; 000693 000694 /* Set useTempTable to TRUE if the result of the SELECT statement 000695 ** should be written into a temporary table (template 4). Set to 000696 ** FALSE if each output row of the SELECT can be written directly into 000697 ** the destination table (template 3). 000698 ** 000699 ** A temp table must be used if the table being updated is also one 000700 ** of the tables being read by the SELECT statement. Also use a 000701 ** temp table in the case of row triggers. 000702 */ 000703 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 000704 useTempTable = 1; 000705 } 000706 000707 if( useTempTable ){ 000708 /* Invoke the coroutine to extract information from the SELECT 000709 ** and add it to a transient table srcTab. The code generated 000710 ** here is from the 4th template: 000711 ** 000712 ** B: open temp table 000713 ** L: yield X, goto M at EOF 000714 ** insert row from R..R+n into temp table 000715 ** goto L 000716 ** M: ... 000717 */ 000718 int regRec; /* Register to hold packed record */ 000719 int regTempRowid; /* Register to hold temp table ROWID */ 000720 int addrL; /* Label "L" */ 000721 000722 srcTab = pParse->nTab++; 000723 regRec = sqlite3GetTempReg(pParse); 000724 regTempRowid = sqlite3GetTempReg(pParse); 000725 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 000726 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 000727 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 000728 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 000729 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 000730 sqlite3VdbeGoto(v, addrL); 000731 sqlite3VdbeJumpHere(v, addrL); 000732 sqlite3ReleaseTempReg(pParse, regRec); 000733 sqlite3ReleaseTempReg(pParse, regTempRowid); 000734 } 000735 }else{ 000736 /* This is the case if the data for the INSERT is coming from a 000737 ** single-row VALUES clause 000738 */ 000739 NameContext sNC; 000740 memset(&sNC, 0, sizeof(sNC)); 000741 sNC.pParse = pParse; 000742 srcTab = -1; 000743 assert( useTempTable==0 ); 000744 if( pList ){ 000745 nColumn = pList->nExpr; 000746 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 000747 goto insert_cleanup; 000748 } 000749 }else{ 000750 nColumn = 0; 000751 } 000752 } 000753 000754 /* If there is no IDLIST term but the table has an integer primary 000755 ** key, the set the ipkColumn variable to the integer primary key 000756 ** column index in the original table definition. 000757 */ 000758 if( pColumn==0 && nColumn>0 ){ 000759 ipkColumn = pTab->iPKey; 000760 } 000761 000762 /* Make sure the number of columns in the source data matches the number 000763 ** of columns to be inserted into the table. 000764 */ 000765 for(i=0; i<pTab->nCol; i++){ 000766 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 000767 } 000768 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 000769 sqlite3ErrorMsg(pParse, 000770 "table %S has %d columns but %d values were supplied", 000771 pTabList, 0, pTab->nCol-nHidden, nColumn); 000772 goto insert_cleanup; 000773 } 000774 if( pColumn!=0 && nColumn!=pColumn->nId ){ 000775 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 000776 goto insert_cleanup; 000777 } 000778 000779 /* Initialize the count of rows to be inserted 000780 */ 000781 if( db->flags & SQLITE_CountRows ){ 000782 regRowCount = ++pParse->nMem; 000783 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 000784 } 000785 000786 /* If this is not a view, open the table and and all indices */ 000787 if( !isView ){ 000788 int nIdx; 000789 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 000790 &iDataCur, &iIdxCur); 000791 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); 000792 if( aRegIdx==0 ){ 000793 goto insert_cleanup; 000794 } 000795 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 000796 assert( pIdx ); 000797 aRegIdx[i] = ++pParse->nMem; 000798 pParse->nMem += pIdx->nColumn; 000799 } 000800 } 000801 000802 /* This is the top of the main insertion loop */ 000803 if( useTempTable ){ 000804 /* This block codes the top of loop only. The complete loop is the 000805 ** following pseudocode (template 4): 000806 ** 000807 ** rewind temp table, if empty goto D 000808 ** C: loop over rows of intermediate table 000809 ** transfer values form intermediate table into <table> 000810 ** end loop 000811 ** D: ... 000812 */ 000813 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 000814 addrCont = sqlite3VdbeCurrentAddr(v); 000815 }else if( pSelect ){ 000816 /* This block codes the top of loop only. The complete loop is the 000817 ** following pseudocode (template 3): 000818 ** 000819 ** C: yield X, at EOF goto D 000820 ** insert the select result into <table> from R..R+n 000821 ** goto C 000822 ** D: ... 000823 */ 000824 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 000825 VdbeCoverage(v); 000826 } 000827 000828 /* Run the BEFORE and INSTEAD OF triggers, if there are any 000829 */ 000830 endOfLoop = sqlite3VdbeMakeLabel(v); 000831 if( tmask & TRIGGER_BEFORE ){ 000832 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 000833 000834 /* build the NEW.* reference row. Note that if there is an INTEGER 000835 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 000836 ** translated into a unique ID for the row. But on a BEFORE trigger, 000837 ** we do not know what the unique ID will be (because the insert has 000838 ** not happened yet) so we substitute a rowid of -1 000839 */ 000840 if( ipkColumn<0 ){ 000841 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 000842 }else{ 000843 int addr1; 000844 assert( !withoutRowid ); 000845 if( useTempTable ){ 000846 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 000847 }else{ 000848 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 000849 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 000850 } 000851 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 000852 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 000853 sqlite3VdbeJumpHere(v, addr1); 000854 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 000855 } 000856 000857 /* Cannot have triggers on a virtual table. If it were possible, 000858 ** this block would have to account for hidden column. 000859 */ 000860 assert( !IsVirtual(pTab) ); 000861 000862 /* Create the new column data 000863 */ 000864 for(i=j=0; i<pTab->nCol; i++){ 000865 if( pColumn ){ 000866 for(j=0; j<pColumn->nId; j++){ 000867 if( pColumn->a[j].idx==i ) break; 000868 } 000869 } 000870 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 000871 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 000872 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 000873 }else if( useTempTable ){ 000874 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 000875 }else{ 000876 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 000877 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 000878 } 000879 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 000880 } 000881 000882 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 000883 ** do not attempt any conversions before assembling the record. 000884 ** If this is a real table, attempt conversions as required by the 000885 ** table column affinities. 000886 */ 000887 if( !isView ){ 000888 sqlite3TableAffinity(v, pTab, regCols+1); 000889 } 000890 000891 /* Fire BEFORE or INSTEAD OF triggers */ 000892 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 000893 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 000894 000895 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 000896 } 000897 000898 /* Compute the content of the next row to insert into a range of 000899 ** registers beginning at regIns. 000900 */ 000901 if( !isView ){ 000902 if( IsVirtual(pTab) ){ 000903 /* The row that the VUpdate opcode will delete: none */ 000904 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 000905 } 000906 if( ipkColumn>=0 ){ 000907 if( useTempTable ){ 000908 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 000909 }else if( pSelect ){ 000910 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 000911 }else{ 000912 VdbeOp *pOp; 000913 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 000914 pOp = sqlite3VdbeGetOp(v, -1); 000915 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 000916 appendFlag = 1; 000917 pOp->opcode = OP_NewRowid; 000918 pOp->p1 = iDataCur; 000919 pOp->p2 = regRowid; 000920 pOp->p3 = regAutoinc; 000921 } 000922 } 000923 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 000924 ** to generate a unique primary key value. 000925 */ 000926 if( !appendFlag ){ 000927 int addr1; 000928 if( !IsVirtual(pTab) ){ 000929 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 000930 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 000931 sqlite3VdbeJumpHere(v, addr1); 000932 }else{ 000933 addr1 = sqlite3VdbeCurrentAddr(v); 000934 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 000935 } 000936 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 000937 } 000938 }else if( IsVirtual(pTab) || withoutRowid ){ 000939 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 000940 }else{ 000941 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 000942 appendFlag = 1; 000943 } 000944 autoIncStep(pParse, regAutoinc, regRowid); 000945 000946 /* Compute data for all columns of the new entry, beginning 000947 ** with the first column. 000948 */ 000949 nHidden = 0; 000950 for(i=0; i<pTab->nCol; i++){ 000951 int iRegStore = regRowid+1+i; 000952 if( i==pTab->iPKey ){ 000953 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 000954 ** Whenever this column is read, the rowid will be substituted 000955 ** in its place. Hence, fill this column with a NULL to avoid 000956 ** taking up data space with information that will never be used. 000957 ** As there may be shallow copies of this value, make it a soft-NULL */ 000958 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 000959 continue; 000960 } 000961 if( pColumn==0 ){ 000962 if( IsHiddenColumn(&pTab->aCol[i]) ){ 000963 j = -1; 000964 nHidden++; 000965 }else{ 000966 j = i - nHidden; 000967 } 000968 }else{ 000969 for(j=0; j<pColumn->nId; j++){ 000970 if( pColumn->a[j].idx==i ) break; 000971 } 000972 } 000973 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 000974 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 000975 }else if( useTempTable ){ 000976 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 000977 }else if( pSelect ){ 000978 if( regFromSelect!=regData ){ 000979 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 000980 } 000981 }else{ 000982 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 000983 } 000984 } 000985 000986 /* Generate code to check constraints and generate index keys and 000987 ** do the insertion. 000988 */ 000989 #ifndef SQLITE_OMIT_VIRTUALTABLE 000990 if( IsVirtual(pTab) ){ 000991 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 000992 sqlite3VtabMakeWritable(pParse, pTab); 000993 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 000994 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 000995 sqlite3MayAbort(pParse); 000996 }else 000997 #endif 000998 { 000999 int isReplace; /* Set to true if constraints may cause a replace */ 001000 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 001001 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 001002 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0 001003 ); 001004 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 001005 001006 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 001007 ** constraints or (b) there are no triggers and this table is not a 001008 ** parent table in a foreign key constraint. It is safe to set the 001009 ** flag in the second case as if any REPLACE constraint is hit, an 001010 ** OP_Delete or OP_IdxDelete instruction will be executed on each 001011 ** cursor that is disturbed. And these instructions both clear the 001012 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 001013 ** functionality. */ 001014 bUseSeek = (isReplace==0 || (pTrigger==0 && 001015 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 001016 )); 001017 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 001018 regIns, aRegIdx, 0, appendFlag, bUseSeek 001019 ); 001020 } 001021 } 001022 001023 /* Update the count of rows that are inserted 001024 */ 001025 if( (db->flags & SQLITE_CountRows)!=0 ){ 001026 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 001027 } 001028 001029 if( pTrigger ){ 001030 /* Code AFTER triggers */ 001031 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 001032 pTab, regData-2-pTab->nCol, onError, endOfLoop); 001033 } 001034 001035 /* The bottom of the main insertion loop, if the data source 001036 ** is a SELECT statement. 001037 */ 001038 sqlite3VdbeResolveLabel(v, endOfLoop); 001039 if( useTempTable ){ 001040 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 001041 sqlite3VdbeJumpHere(v, addrInsTop); 001042 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 001043 }else if( pSelect ){ 001044 sqlite3VdbeGoto(v, addrCont); 001045 sqlite3VdbeJumpHere(v, addrInsTop); 001046 } 001047 001048 insert_end: 001049 /* Update the sqlite_sequence table by storing the content of the 001050 ** maximum rowid counter values recorded while inserting into 001051 ** autoincrement tables. 001052 */ 001053 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 001054 sqlite3AutoincrementEnd(pParse); 001055 } 001056 001057 /* 001058 ** Return the number of rows inserted. If this routine is 001059 ** generating code because of a call to sqlite3NestedParse(), do not 001060 ** invoke the callback function. 001061 */ 001062 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ 001063 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 001064 sqlite3VdbeSetNumCols(v, 1); 001065 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 001066 } 001067 001068 insert_cleanup: 001069 sqlite3SrcListDelete(db, pTabList); 001070 sqlite3ExprListDelete(db, pList); 001071 sqlite3SelectDelete(db, pSelect); 001072 sqlite3IdListDelete(db, pColumn); 001073 sqlite3DbFree(db, aRegIdx); 001074 } 001075 001076 /* Make sure "isView" and other macros defined above are undefined. Otherwise 001077 ** they may interfere with compilation of other functions in this file 001078 ** (or in another file, if this file becomes part of the amalgamation). */ 001079 #ifdef isView 001080 #undef isView 001081 #endif 001082 #ifdef pTrigger 001083 #undef pTrigger 001084 #endif 001085 #ifdef tmask 001086 #undef tmask 001087 #endif 001088 001089 /* 001090 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged() 001091 */ 001092 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 001093 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 001094 001095 /* This is the Walker callback from checkConstraintUnchanged(). Set 001096 ** bit 0x01 of pWalker->eCode if 001097 ** pWalker->eCode to 0 if this expression node references any of the 001098 ** columns that are being modifed by an UPDATE statement. 001099 */ 001100 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 001101 if( pExpr->op==TK_COLUMN ){ 001102 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 001103 if( pExpr->iColumn>=0 ){ 001104 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 001105 pWalker->eCode |= CKCNSTRNT_COLUMN; 001106 } 001107 }else{ 001108 pWalker->eCode |= CKCNSTRNT_ROWID; 001109 } 001110 } 001111 return WRC_Continue; 001112 } 001113 001114 /* 001115 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 001116 ** only columns that are modified by the UPDATE are those for which 001117 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 001118 ** 001119 ** Return true if CHECK constraint pExpr does not use any of the 001120 ** changing columns (or the rowid if it is changing). In other words, 001121 ** return true if this CHECK constraint can be skipped when validating 001122 ** the new row in the UPDATE statement. 001123 */ 001124 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){ 001125 Walker w; 001126 memset(&w, 0, sizeof(w)); 001127 w.eCode = 0; 001128 w.xExprCallback = checkConstraintExprNode; 001129 w.u.aiCol = aiChng; 001130 sqlite3WalkExpr(&w, pExpr); 001131 if( !chngRowid ){ 001132 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 001133 w.eCode &= ~CKCNSTRNT_ROWID; 001134 } 001135 testcase( w.eCode==0 ); 001136 testcase( w.eCode==CKCNSTRNT_COLUMN ); 001137 testcase( w.eCode==CKCNSTRNT_ROWID ); 001138 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 001139 return !w.eCode; 001140 } 001141 001142 /* 001143 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 001144 ** on table pTab. 001145 ** 001146 ** The regNewData parameter is the first register in a range that contains 001147 ** the data to be inserted or the data after the update. There will be 001148 ** pTab->nCol+1 registers in this range. The first register (the one 001149 ** that regNewData points to) will contain the new rowid, or NULL in the 001150 ** case of a WITHOUT ROWID table. The second register in the range will 001151 ** contain the content of the first table column. The third register will 001152 ** contain the content of the second table column. And so forth. 001153 ** 001154 ** The regOldData parameter is similar to regNewData except that it contains 001155 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 001156 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 001157 ** checking regOldData for zero. 001158 ** 001159 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 001160 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 001161 ** might be modified by the UPDATE. If pkChng is false, then the key of 001162 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 001163 ** 001164 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 001165 ** was explicitly specified as part of the INSERT statement. If pkChng 001166 ** is zero, it means that the either rowid is computed automatically or 001167 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 001168 ** pkChng will only be true if the INSERT statement provides an integer 001169 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 001170 ** 001171 ** The code generated by this routine will store new index entries into 001172 ** registers identified by aRegIdx[]. No index entry is created for 001173 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 001174 ** the same as the order of indices on the linked list of indices 001175 ** at pTab->pIndex. 001176 ** 001177 ** The caller must have already opened writeable cursors on the main 001178 ** table and all applicable indices (that is to say, all indices for which 001179 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 001180 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 001181 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 001182 ** for the first index in the pTab->pIndex list. Cursors for other indices 001183 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 001184 ** 001185 ** This routine also generates code to check constraints. NOT NULL, 001186 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 001187 ** then the appropriate action is performed. There are five possible 001188 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 001189 ** 001190 ** Constraint type Action What Happens 001191 ** --------------- ---------- ---------------------------------------- 001192 ** any ROLLBACK The current transaction is rolled back and 001193 ** sqlite3_step() returns immediately with a 001194 ** return code of SQLITE_CONSTRAINT. 001195 ** 001196 ** any ABORT Back out changes from the current command 001197 ** only (do not do a complete rollback) then 001198 ** cause sqlite3_step() to return immediately 001199 ** with SQLITE_CONSTRAINT. 001200 ** 001201 ** any FAIL Sqlite3_step() returns immediately with a 001202 ** return code of SQLITE_CONSTRAINT. The 001203 ** transaction is not rolled back and any 001204 ** changes to prior rows are retained. 001205 ** 001206 ** any IGNORE The attempt in insert or update the current 001207 ** row is skipped, without throwing an error. 001208 ** Processing continues with the next row. 001209 ** (There is an immediate jump to ignoreDest.) 001210 ** 001211 ** NOT NULL REPLACE The NULL value is replace by the default 001212 ** value for that column. If the default value 001213 ** is NULL, the action is the same as ABORT. 001214 ** 001215 ** UNIQUE REPLACE The other row that conflicts with the row 001216 ** being inserted is removed. 001217 ** 001218 ** CHECK REPLACE Illegal. The results in an exception. 001219 ** 001220 ** Which action to take is determined by the overrideError parameter. 001221 ** Or if overrideError==OE_Default, then the pParse->onError parameter 001222 ** is used. Or if pParse->onError==OE_Default then the onError value 001223 ** for the constraint is used. 001224 */ 001225 void sqlite3GenerateConstraintChecks( 001226 Parse *pParse, /* The parser context */ 001227 Table *pTab, /* The table being inserted or updated */ 001228 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 001229 int iDataCur, /* Canonical data cursor (main table or PK index) */ 001230 int iIdxCur, /* First index cursor */ 001231 int regNewData, /* First register in a range holding values to insert */ 001232 int regOldData, /* Previous content. 0 for INSERTs */ 001233 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 001234 u8 overrideError, /* Override onError to this if not OE_Default */ 001235 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 001236 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 001237 int *aiChng /* column i is unchanged if aiChng[i]<0 */ 001238 ){ 001239 Vdbe *v; /* VDBE under constrution */ 001240 Index *pIdx; /* Pointer to one of the indices */ 001241 Index *pPk = 0; /* The PRIMARY KEY index */ 001242 sqlite3 *db; /* Database connection */ 001243 int i; /* loop counter */ 001244 int ix; /* Index loop counter */ 001245 int nCol; /* Number of columns */ 001246 int onError; /* Conflict resolution strategy */ 001247 int addr1; /* Address of jump instruction */ 001248 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 001249 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 001250 int ipkTop = 0; /* Top of the rowid change constraint check */ 001251 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ 001252 u8 isUpdate; /* True if this is an UPDATE operation */ 001253 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 001254 001255 isUpdate = regOldData!=0; 001256 db = pParse->db; 001257 v = sqlite3GetVdbe(pParse); 001258 assert( v!=0 ); 001259 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 001260 nCol = pTab->nCol; 001261 001262 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 001263 ** normal rowid tables. nPkField is the number of key fields in the 001264 ** pPk index or 1 for a rowid table. In other words, nPkField is the 001265 ** number of fields in the true primary key of the table. */ 001266 if( HasRowid(pTab) ){ 001267 pPk = 0; 001268 nPkField = 1; 001269 }else{ 001270 pPk = sqlite3PrimaryKeyIndex(pTab); 001271 nPkField = pPk->nKeyCol; 001272 } 001273 001274 /* Record that this module has started */ 001275 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 001276 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 001277 001278 /* Test all NOT NULL constraints. 001279 */ 001280 for(i=0; i<nCol; i++){ 001281 if( i==pTab->iPKey ){ 001282 continue; /* ROWID is never NULL */ 001283 } 001284 if( aiChng && aiChng[i]<0 ){ 001285 /* Don't bother checking for NOT NULL on columns that do not change */ 001286 continue; 001287 } 001288 onError = pTab->aCol[i].notNull; 001289 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 001290 if( overrideError!=OE_Default ){ 001291 onError = overrideError; 001292 }else if( onError==OE_Default ){ 001293 onError = OE_Abort; 001294 } 001295 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 001296 onError = OE_Abort; 001297 } 001298 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 001299 || onError==OE_Ignore || onError==OE_Replace ); 001300 switch( onError ){ 001301 case OE_Abort: 001302 sqlite3MayAbort(pParse); 001303 /* Fall through */ 001304 case OE_Rollback: 001305 case OE_Fail: { 001306 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 001307 pTab->aCol[i].zName); 001308 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 001309 regNewData+1+i); 001310 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 001311 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 001312 VdbeCoverage(v); 001313 break; 001314 } 001315 case OE_Ignore: { 001316 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 001317 VdbeCoverage(v); 001318 break; 001319 } 001320 default: { 001321 assert( onError==OE_Replace ); 001322 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); 001323 VdbeCoverage(v); 001324 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 001325 sqlite3VdbeJumpHere(v, addr1); 001326 break; 001327 } 001328 } 001329 } 001330 001331 /* Test all CHECK constraints 001332 */ 001333 #ifndef SQLITE_OMIT_CHECK 001334 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 001335 ExprList *pCheck = pTab->pCheck; 001336 pParse->ckBase = regNewData+1; 001337 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 001338 for(i=0; i<pCheck->nExpr; i++){ 001339 int allOk; 001340 Expr *pExpr = pCheck->a[i].pExpr; 001341 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue; 001342 allOk = sqlite3VdbeMakeLabel(v); 001343 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 001344 if( onError==OE_Ignore ){ 001345 sqlite3VdbeGoto(v, ignoreDest); 001346 }else{ 001347 char *zName = pCheck->a[i].zName; 001348 if( zName==0 ) zName = pTab->zName; 001349 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 001350 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 001351 onError, zName, P4_TRANSIENT, 001352 P5_ConstraintCheck); 001353 } 001354 sqlite3VdbeResolveLabel(v, allOk); 001355 } 001356 } 001357 #endif /* !defined(SQLITE_OMIT_CHECK) */ 001358 001359 /* If rowid is changing, make sure the new rowid does not previously 001360 ** exist in the table. 001361 */ 001362 if( pkChng && pPk==0 ){ 001363 int addrRowidOk = sqlite3VdbeMakeLabel(v); 001364 001365 /* Figure out what action to take in case of a rowid collision */ 001366 onError = pTab->keyConf; 001367 if( overrideError!=OE_Default ){ 001368 onError = overrideError; 001369 }else if( onError==OE_Default ){ 001370 onError = OE_Abort; 001371 } 001372 001373 if( isUpdate ){ 001374 /* pkChng!=0 does not mean that the rowid has changed, only that 001375 ** it might have changed. Skip the conflict logic below if the rowid 001376 ** is unchanged. */ 001377 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 001378 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 001379 VdbeCoverage(v); 001380 } 001381 001382 /* If the response to a rowid conflict is REPLACE but the response 001383 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 001384 ** to defer the running of the rowid conflict checking until after 001385 ** the UNIQUE constraints have run. 001386 */ 001387 if( onError==OE_Replace && overrideError!=OE_Replace ){ 001388 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 001389 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ 001390 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); 001391 break; 001392 } 001393 } 001394 } 001395 001396 /* Check to see if the new rowid already exists in the table. Skip 001397 ** the following conflict logic if it does not. */ 001398 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 001399 VdbeCoverage(v); 001400 001401 /* Generate code that deals with a rowid collision */ 001402 switch( onError ){ 001403 default: { 001404 onError = OE_Abort; 001405 /* Fall thru into the next case */ 001406 } 001407 case OE_Rollback: 001408 case OE_Abort: 001409 case OE_Fail: { 001410 sqlite3RowidConstraint(pParse, onError, pTab); 001411 break; 001412 } 001413 case OE_Replace: { 001414 /* If there are DELETE triggers on this table and the 001415 ** recursive-triggers flag is set, call GenerateRowDelete() to 001416 ** remove the conflicting row from the table. This will fire 001417 ** the triggers and remove both the table and index b-tree entries. 001418 ** 001419 ** Otherwise, if there are no triggers or the recursive-triggers 001420 ** flag is not set, but the table has one or more indexes, call 001421 ** GenerateRowIndexDelete(). This removes the index b-tree entries 001422 ** only. The table b-tree entry will be replaced by the new entry 001423 ** when it is inserted. 001424 ** 001425 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 001426 ** also invoke MultiWrite() to indicate that this VDBE may require 001427 ** statement rollback (if the statement is aborted after the delete 001428 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 001429 ** but being more selective here allows statements like: 001430 ** 001431 ** REPLACE INTO t(rowid) VALUES($newrowid) 001432 ** 001433 ** to run without a statement journal if there are no indexes on the 001434 ** table. 001435 */ 001436 Trigger *pTrigger = 0; 001437 if( db->flags&SQLITE_RecTriggers ){ 001438 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 001439 } 001440 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 001441 sqlite3MultiWrite(pParse); 001442 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 001443 regNewData, 1, 0, OE_Replace, 1, -1); 001444 }else{ 001445 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 001446 if( HasRowid(pTab) ){ 001447 /* This OP_Delete opcode fires the pre-update-hook only. It does 001448 ** not modify the b-tree. It is more efficient to let the coming 001449 ** OP_Insert replace the existing entry than it is to delete the 001450 ** existing entry and then insert a new one. */ 001451 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 001452 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 001453 } 001454 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 001455 if( pTab->pIndex ){ 001456 sqlite3MultiWrite(pParse); 001457 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 001458 } 001459 } 001460 seenReplace = 1; 001461 break; 001462 } 001463 case OE_Ignore: { 001464 /*assert( seenReplace==0 );*/ 001465 sqlite3VdbeGoto(v, ignoreDest); 001466 break; 001467 } 001468 } 001469 sqlite3VdbeResolveLabel(v, addrRowidOk); 001470 if( ipkTop ){ 001471 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 001472 sqlite3VdbeJumpHere(v, ipkTop); 001473 } 001474 } 001475 001476 /* Test all UNIQUE constraints by creating entries for each UNIQUE 001477 ** index and making sure that duplicate entries do not already exist. 001478 ** Compute the revised record entries for indices as we go. 001479 ** 001480 ** This loop also handles the case of the PRIMARY KEY index for a 001481 ** WITHOUT ROWID table. 001482 */ 001483 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 001484 int regIdx; /* Range of registers hold conent for pIdx */ 001485 int regR; /* Range of registers holding conflicting PK */ 001486 int iThisCur; /* Cursor for this UNIQUE index */ 001487 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 001488 001489 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 001490 if( bAffinityDone==0 ){ 001491 sqlite3TableAffinity(v, pTab, regNewData+1); 001492 bAffinityDone = 1; 001493 } 001494 iThisCur = iIdxCur+ix; 001495 addrUniqueOk = sqlite3VdbeMakeLabel(v); 001496 001497 /* Skip partial indices for which the WHERE clause is not true */ 001498 if( pIdx->pPartIdxWhere ){ 001499 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 001500 pParse->ckBase = regNewData+1; 001501 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 001502 SQLITE_JUMPIFNULL); 001503 pParse->ckBase = 0; 001504 } 001505 001506 /* Create a record for this index entry as it should appear after 001507 ** the insert or update. Store that record in the aRegIdx[ix] register 001508 */ 001509 regIdx = aRegIdx[ix]+1; 001510 for(i=0; i<pIdx->nColumn; i++){ 001511 int iField = pIdx->aiColumn[i]; 001512 int x; 001513 if( iField==XN_EXPR ){ 001514 pParse->ckBase = regNewData+1; 001515 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 001516 pParse->ckBase = 0; 001517 VdbeComment((v, "%s column %d", pIdx->zName, i)); 001518 }else{ 001519 if( iField==XN_ROWID || iField==pTab->iPKey ){ 001520 x = regNewData; 001521 }else{ 001522 x = iField + regNewData + 1; 001523 } 001524 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 001525 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 001526 } 001527 } 001528 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 001529 VdbeComment((v, "for %s", pIdx->zName)); 001530 001531 /* In an UPDATE operation, if this index is the PRIMARY KEY index 001532 ** of a WITHOUT ROWID table and there has been no change the 001533 ** primary key, then no collision is possible. The collision detection 001534 ** logic below can all be skipped. */ 001535 if( isUpdate && pPk==pIdx && pkChng==0 ){ 001536 sqlite3VdbeResolveLabel(v, addrUniqueOk); 001537 continue; 001538 } 001539 001540 /* Find out what action to take in case there is a uniqueness conflict */ 001541 onError = pIdx->onError; 001542 if( onError==OE_None ){ 001543 sqlite3VdbeResolveLabel(v, addrUniqueOk); 001544 continue; /* pIdx is not a UNIQUE index */ 001545 } 001546 if( overrideError!=OE_Default ){ 001547 onError = overrideError; 001548 }else if( onError==OE_Default ){ 001549 onError = OE_Abort; 001550 } 001551 001552 if( ix==0 && pPk==pIdx && onError==OE_Replace && pPk->pNext==0 ){ 001553 sqlite3VdbeResolveLabel(v, addrUniqueOk); 001554 continue; 001555 } 001556 001557 001558 /* Check to see if the new index entry will be unique */ 001559 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 001560 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 001561 001562 /* Generate code to handle collisions */ 001563 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 001564 if( isUpdate || onError==OE_Replace ){ 001565 if( HasRowid(pTab) ){ 001566 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 001567 /* Conflict only if the rowid of the existing index entry 001568 ** is different from old-rowid */ 001569 if( isUpdate ){ 001570 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 001571 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 001572 VdbeCoverage(v); 001573 } 001574 }else{ 001575 int x; 001576 /* Extract the PRIMARY KEY from the end of the index entry and 001577 ** store it in registers regR..regR+nPk-1 */ 001578 if( pIdx!=pPk ){ 001579 for(i=0; i<pPk->nKeyCol; i++){ 001580 assert( pPk->aiColumn[i]>=0 ); 001581 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 001582 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 001583 VdbeComment((v, "%s.%s", pTab->zName, 001584 pTab->aCol[pPk->aiColumn[i]].zName)); 001585 } 001586 } 001587 if( isUpdate ){ 001588 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 001589 ** table, only conflict if the new PRIMARY KEY values are actually 001590 ** different from the old. 001591 ** 001592 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 001593 ** of the matched index row are different from the original PRIMARY 001594 ** KEY values of this row before the update. */ 001595 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 001596 int op = OP_Ne; 001597 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 001598 001599 for(i=0; i<pPk->nKeyCol; i++){ 001600 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 001601 x = pPk->aiColumn[i]; 001602 assert( x>=0 ); 001603 if( i==(pPk->nKeyCol-1) ){ 001604 addrJump = addrUniqueOk; 001605 op = OP_Eq; 001606 } 001607 sqlite3VdbeAddOp4(v, op, 001608 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 001609 ); 001610 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 001611 VdbeCoverageIf(v, op==OP_Eq); 001612 VdbeCoverageIf(v, op==OP_Ne); 001613 } 001614 } 001615 } 001616 } 001617 001618 /* Generate code that executes if the new index entry is not unique */ 001619 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 001620 || onError==OE_Ignore || onError==OE_Replace ); 001621 switch( onError ){ 001622 case OE_Rollback: 001623 case OE_Abort: 001624 case OE_Fail: { 001625 sqlite3UniqueConstraint(pParse, onError, pIdx); 001626 break; 001627 } 001628 case OE_Ignore: { 001629 sqlite3VdbeGoto(v, ignoreDest); 001630 break; 001631 } 001632 default: { 001633 Trigger *pTrigger = 0; 001634 assert( onError==OE_Replace ); 001635 sqlite3MultiWrite(pParse); 001636 if( db->flags&SQLITE_RecTriggers ){ 001637 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 001638 } 001639 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 001640 regR, nPkField, 0, OE_Replace, 001641 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), -1); 001642 seenReplace = 1; 001643 break; 001644 } 001645 } 001646 sqlite3VdbeResolveLabel(v, addrUniqueOk); 001647 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 001648 } 001649 if( ipkTop ){ 001650 sqlite3VdbeGoto(v, ipkTop+1); 001651 sqlite3VdbeJumpHere(v, ipkBottom); 001652 } 001653 001654 *pbMayReplace = seenReplace; 001655 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 001656 } 001657 001658 /* 001659 ** This routine generates code to finish the INSERT or UPDATE operation 001660 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 001661 ** A consecutive range of registers starting at regNewData contains the 001662 ** rowid and the content to be inserted. 001663 ** 001664 ** The arguments to this routine should be the same as the first six 001665 ** arguments to sqlite3GenerateConstraintChecks. 001666 */ 001667 void sqlite3CompleteInsertion( 001668 Parse *pParse, /* The parser context */ 001669 Table *pTab, /* the table into which we are inserting */ 001670 int iDataCur, /* Cursor of the canonical data source */ 001671 int iIdxCur, /* First index cursor */ 001672 int regNewData, /* Range of content */ 001673 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 001674 int isUpdate, /* True for UPDATE, False for INSERT */ 001675 int appendBias, /* True if this is likely to be an append */ 001676 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 001677 ){ 001678 Vdbe *v; /* Prepared statements under construction */ 001679 Index *pIdx; /* An index being inserted or updated */ 001680 u8 pik_flags; /* flag values passed to the btree insert */ 001681 int regData; /* Content registers (after the rowid) */ 001682 int regRec; /* Register holding assembled record for the table */ 001683 int i; /* Loop counter */ 001684 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ 001685 001686 v = sqlite3GetVdbe(pParse); 001687 assert( v!=0 ); 001688 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 001689 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 001690 if( aRegIdx[i]==0 ) continue; 001691 bAffinityDone = 1; 001692 if( pIdx->pPartIdxWhere ){ 001693 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 001694 VdbeCoverage(v); 001695 } 001696 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 001697 aRegIdx[i]+1, 001698 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 001699 pik_flags = 0; 001700 if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; 001701 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 001702 assert( pParse->nested==0 ); 001703 pik_flags |= OPFLAG_NCHANGE; 001704 } 001705 sqlite3VdbeChangeP5(v, pik_flags); 001706 } 001707 if( !HasRowid(pTab) ) return; 001708 regData = regNewData + 1; 001709 regRec = sqlite3GetTempReg(pParse); 001710 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 001711 if( !bAffinityDone ){ 001712 sqlite3TableAffinity(v, pTab, 0); 001713 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 001714 } 001715 if( pParse->nested ){ 001716 pik_flags = 0; 001717 }else{ 001718 pik_flags = OPFLAG_NCHANGE; 001719 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 001720 } 001721 if( appendBias ){ 001722 pik_flags |= OPFLAG_APPEND; 001723 } 001724 if( useSeekResult ){ 001725 pik_flags |= OPFLAG_USESEEKRESULT; 001726 } 001727 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 001728 if( !pParse->nested ){ 001729 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 001730 } 001731 sqlite3VdbeChangeP5(v, pik_flags); 001732 } 001733 001734 /* 001735 ** Allocate cursors for the pTab table and all its indices and generate 001736 ** code to open and initialized those cursors. 001737 ** 001738 ** The cursor for the object that contains the complete data (normally 001739 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 001740 ** ROWID table) is returned in *piDataCur. The first index cursor is 001741 ** returned in *piIdxCur. The number of indices is returned. 001742 ** 001743 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 001744 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 001745 ** If iBase is negative, then allocate the next available cursor. 001746 ** 001747 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 001748 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 001749 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 001750 ** pTab->pIndex list. 001751 ** 001752 ** If pTab is a virtual table, then this routine is a no-op and the 001753 ** *piDataCur and *piIdxCur values are left uninitialized. 001754 */ 001755 int sqlite3OpenTableAndIndices( 001756 Parse *pParse, /* Parsing context */ 001757 Table *pTab, /* Table to be opened */ 001758 int op, /* OP_OpenRead or OP_OpenWrite */ 001759 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 001760 int iBase, /* Use this for the table cursor, if there is one */ 001761 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 001762 int *piDataCur, /* Write the database source cursor number here */ 001763 int *piIdxCur /* Write the first index cursor number here */ 001764 ){ 001765 int i; 001766 int iDb; 001767 int iDataCur; 001768 Index *pIdx; 001769 Vdbe *v; 001770 001771 assert( op==OP_OpenRead || op==OP_OpenWrite ); 001772 assert( op==OP_OpenWrite || p5==0 ); 001773 if( IsVirtual(pTab) ){ 001774 /* This routine is a no-op for virtual tables. Leave the output 001775 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 001776 ** can detect if they are used by mistake in the caller. */ 001777 return 0; 001778 } 001779 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 001780 v = sqlite3GetVdbe(pParse); 001781 assert( v!=0 ); 001782 if( iBase<0 ) iBase = pParse->nTab; 001783 iDataCur = iBase++; 001784 if( piDataCur ) *piDataCur = iDataCur; 001785 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 001786 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 001787 }else{ 001788 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 001789 } 001790 if( piIdxCur ) *piIdxCur = iBase; 001791 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 001792 int iIdxCur = iBase++; 001793 assert( pIdx->pSchema==pTab->pSchema ); 001794 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 001795 if( piDataCur ) *piDataCur = iIdxCur; 001796 p5 = 0; 001797 } 001798 if( aToOpen==0 || aToOpen[i+1] ){ 001799 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 001800 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 001801 sqlite3VdbeChangeP5(v, p5); 001802 VdbeComment((v, "%s", pIdx->zName)); 001803 } 001804 } 001805 if( iBase>pParse->nTab ) pParse->nTab = iBase; 001806 return i; 001807 } 001808 001809 001810 #ifdef SQLITE_TEST 001811 /* 001812 ** The following global variable is incremented whenever the 001813 ** transfer optimization is used. This is used for testing 001814 ** purposes only - to make sure the transfer optimization really 001815 ** is happening when it is supposed to. 001816 */ 001817 int sqlite3_xferopt_count; 001818 #endif /* SQLITE_TEST */ 001819 001820 001821 #ifndef SQLITE_OMIT_XFER_OPT 001822 /* 001823 ** Check to see if index pSrc is compatible as a source of data 001824 ** for index pDest in an insert transfer optimization. The rules 001825 ** for a compatible index: 001826 ** 001827 ** * The index is over the same set of columns 001828 ** * The same DESC and ASC markings occurs on all columns 001829 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 001830 ** * The same collating sequence on each column 001831 ** * The index has the exact same WHERE clause 001832 */ 001833 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 001834 int i; 001835 assert( pDest && pSrc ); 001836 assert( pDest->pTable!=pSrc->pTable ); 001837 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 001838 return 0; /* Different number of columns */ 001839 } 001840 if( pDest->onError!=pSrc->onError ){ 001841 return 0; /* Different conflict resolution strategies */ 001842 } 001843 for(i=0; i<pSrc->nKeyCol; i++){ 001844 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 001845 return 0; /* Different columns indexed */ 001846 } 001847 if( pSrc->aiColumn[i]==XN_EXPR ){ 001848 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 001849 if( sqlite3ExprCompare(pSrc->aColExpr->a[i].pExpr, 001850 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 001851 return 0; /* Different expressions in the index */ 001852 } 001853 } 001854 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 001855 return 0; /* Different sort orders */ 001856 } 001857 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 001858 return 0; /* Different collating sequences */ 001859 } 001860 } 001861 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 001862 return 0; /* Different WHERE clauses */ 001863 } 001864 001865 /* If no test above fails then the indices must be compatible */ 001866 return 1; 001867 } 001868 001869 /* 001870 ** Attempt the transfer optimization on INSERTs of the form 001871 ** 001872 ** INSERT INTO tab1 SELECT * FROM tab2; 001873 ** 001874 ** The xfer optimization transfers raw records from tab2 over to tab1. 001875 ** Columns are not decoded and reassembled, which greatly improves 001876 ** performance. Raw index records are transferred in the same way. 001877 ** 001878 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 001879 ** There are lots of rules for determining compatibility - see comments 001880 ** embedded in the code for details. 001881 ** 001882 ** This routine returns TRUE if the optimization is guaranteed to be used. 001883 ** Sometimes the xfer optimization will only work if the destination table 001884 ** is empty - a factor that can only be determined at run-time. In that 001885 ** case, this routine generates code for the xfer optimization but also 001886 ** does a test to see if the destination table is empty and jumps over the 001887 ** xfer optimization code if the test fails. In that case, this routine 001888 ** returns FALSE so that the caller will know to go ahead and generate 001889 ** an unoptimized transfer. This routine also returns FALSE if there 001890 ** is no chance that the xfer optimization can be applied. 001891 ** 001892 ** This optimization is particularly useful at making VACUUM run faster. 001893 */ 001894 static int xferOptimization( 001895 Parse *pParse, /* Parser context */ 001896 Table *pDest, /* The table we are inserting into */ 001897 Select *pSelect, /* A SELECT statement to use as the data source */ 001898 int onError, /* How to handle constraint errors */ 001899 int iDbDest /* The database of pDest */ 001900 ){ 001901 sqlite3 *db = pParse->db; 001902 ExprList *pEList; /* The result set of the SELECT */ 001903 Table *pSrc; /* The table in the FROM clause of SELECT */ 001904 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 001905 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 001906 int i; /* Loop counter */ 001907 int iDbSrc; /* The database of pSrc */ 001908 int iSrc, iDest; /* Cursors from source and destination */ 001909 int addr1, addr2; /* Loop addresses */ 001910 int emptyDestTest = 0; /* Address of test for empty pDest */ 001911 int emptySrcTest = 0; /* Address of test for empty pSrc */ 001912 Vdbe *v; /* The VDBE we are building */ 001913 int regAutoinc; /* Memory register used by AUTOINC */ 001914 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 001915 int regData, regRowid; /* Registers holding data and rowid */ 001916 001917 if( pSelect==0 ){ 001918 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 001919 } 001920 if( pParse->pWith || pSelect->pWith ){ 001921 /* Do not attempt to process this query if there are an WITH clauses 001922 ** attached to it. Proceeding may generate a false "no such table: xxx" 001923 ** error if pSelect reads from a CTE named "xxx". */ 001924 return 0; 001925 } 001926 if( sqlite3TriggerList(pParse, pDest) ){ 001927 return 0; /* tab1 must not have triggers */ 001928 } 001929 #ifndef SQLITE_OMIT_VIRTUALTABLE 001930 if( pDest->tabFlags & TF_Virtual ){ 001931 return 0; /* tab1 must not be a virtual table */ 001932 } 001933 #endif 001934 if( onError==OE_Default ){ 001935 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 001936 if( onError==OE_Default ) onError = OE_Abort; 001937 } 001938 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 001939 if( pSelect->pSrc->nSrc!=1 ){ 001940 return 0; /* FROM clause must have exactly one term */ 001941 } 001942 if( pSelect->pSrc->a[0].pSelect ){ 001943 return 0; /* FROM clause cannot contain a subquery */ 001944 } 001945 if( pSelect->pWhere ){ 001946 return 0; /* SELECT may not have a WHERE clause */ 001947 } 001948 if( pSelect->pOrderBy ){ 001949 return 0; /* SELECT may not have an ORDER BY clause */ 001950 } 001951 /* Do not need to test for a HAVING clause. If HAVING is present but 001952 ** there is no ORDER BY, we will get an error. */ 001953 if( pSelect->pGroupBy ){ 001954 return 0; /* SELECT may not have a GROUP BY clause */ 001955 } 001956 if( pSelect->pLimit ){ 001957 return 0; /* SELECT may not have a LIMIT clause */ 001958 } 001959 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 001960 if( pSelect->pPrior ){ 001961 return 0; /* SELECT may not be a compound query */ 001962 } 001963 if( pSelect->selFlags & SF_Distinct ){ 001964 return 0; /* SELECT may not be DISTINCT */ 001965 } 001966 pEList = pSelect->pEList; 001967 assert( pEList!=0 ); 001968 if( pEList->nExpr!=1 ){ 001969 return 0; /* The result set must have exactly one column */ 001970 } 001971 assert( pEList->a[0].pExpr ); 001972 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 001973 return 0; /* The result set must be the special operator "*" */ 001974 } 001975 001976 /* At this point we have established that the statement is of the 001977 ** correct syntactic form to participate in this optimization. Now 001978 ** we have to check the semantics. 001979 */ 001980 pItem = pSelect->pSrc->a; 001981 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 001982 if( pSrc==0 ){ 001983 return 0; /* FROM clause does not contain a real table */ 001984 } 001985 if( pSrc==pDest ){ 001986 return 0; /* tab1 and tab2 may not be the same table */ 001987 } 001988 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 001989 return 0; /* source and destination must both be WITHOUT ROWID or not */ 001990 } 001991 #ifndef SQLITE_OMIT_VIRTUALTABLE 001992 if( pSrc->tabFlags & TF_Virtual ){ 001993 return 0; /* tab2 must not be a virtual table */ 001994 } 001995 #endif 001996 if( pSrc->pSelect ){ 001997 return 0; /* tab2 may not be a view */ 001998 } 001999 if( pDest->nCol!=pSrc->nCol ){ 002000 return 0; /* Number of columns must be the same in tab1 and tab2 */ 002001 } 002002 if( pDest->iPKey!=pSrc->iPKey ){ 002003 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 002004 } 002005 for(i=0; i<pDest->nCol; i++){ 002006 Column *pDestCol = &pDest->aCol[i]; 002007 Column *pSrcCol = &pSrc->aCol[i]; 002008 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 002009 if( (db->flags & SQLITE_Vacuum)==0 002010 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 002011 ){ 002012 return 0; /* Neither table may have __hidden__ columns */ 002013 } 002014 #endif 002015 if( pDestCol->affinity!=pSrcCol->affinity ){ 002016 return 0; /* Affinity must be the same on all columns */ 002017 } 002018 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 002019 return 0; /* Collating sequence must be the same on all columns */ 002020 } 002021 if( pDestCol->notNull && !pSrcCol->notNull ){ 002022 return 0; /* tab2 must be NOT NULL if tab1 is */ 002023 } 002024 /* Default values for second and subsequent columns need to match. */ 002025 if( i>0 ){ 002026 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 002027 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 002028 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 002029 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 002030 pSrcCol->pDflt->u.zToken)!=0) 002031 ){ 002032 return 0; /* Default values must be the same for all columns */ 002033 } 002034 } 002035 } 002036 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 002037 if( IsUniqueIndex(pDestIdx) ){ 002038 destHasUniqueIdx = 1; 002039 } 002040 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 002041 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 002042 } 002043 if( pSrcIdx==0 ){ 002044 return 0; /* pDestIdx has no corresponding index in pSrc */ 002045 } 002046 } 002047 #ifndef SQLITE_OMIT_CHECK 002048 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 002049 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 002050 } 002051 #endif 002052 #ifndef SQLITE_OMIT_FOREIGN_KEY 002053 /* Disallow the transfer optimization if the destination table constains 002054 ** any foreign key constraints. This is more restrictive than necessary. 002055 ** But the main beneficiary of the transfer optimization is the VACUUM 002056 ** command, and the VACUUM command disables foreign key constraints. So 002057 ** the extra complication to make this rule less restrictive is probably 002058 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 002059 */ 002060 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 002061 return 0; 002062 } 002063 #endif 002064 if( (db->flags & SQLITE_CountRows)!=0 ){ 002065 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 002066 } 002067 002068 /* If we get this far, it means that the xfer optimization is at 002069 ** least a possibility, though it might only work if the destination 002070 ** table (tab1) is initially empty. 002071 */ 002072 #ifdef SQLITE_TEST 002073 sqlite3_xferopt_count++; 002074 #endif 002075 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 002076 v = sqlite3GetVdbe(pParse); 002077 sqlite3CodeVerifySchema(pParse, iDbSrc); 002078 iSrc = pParse->nTab++; 002079 iDest = pParse->nTab++; 002080 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 002081 regData = sqlite3GetTempReg(pParse); 002082 regRowid = sqlite3GetTempReg(pParse); 002083 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 002084 assert( HasRowid(pDest) || destHasUniqueIdx ); 002085 if( (db->flags & SQLITE_Vacuum)==0 && ( 002086 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 002087 || destHasUniqueIdx /* (2) */ 002088 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 002089 )){ 002090 /* In some circumstances, we are able to run the xfer optimization 002091 ** only if the destination table is initially empty. Unless the 002092 ** SQLITE_Vacuum flag is set, this block generates code to make 002093 ** that determination. If SQLITE_Vacuum is set, then the destination 002094 ** table is always empty. 002095 ** 002096 ** Conditions under which the destination must be empty: 002097 ** 002098 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 002099 ** (If the destination is not initially empty, the rowid fields 002100 ** of index entries might need to change.) 002101 ** 002102 ** (2) The destination has a unique index. (The xfer optimization 002103 ** is unable to test uniqueness.) 002104 ** 002105 ** (3) onError is something other than OE_Abort and OE_Rollback. 002106 */ 002107 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 002108 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 002109 sqlite3VdbeJumpHere(v, addr1); 002110 } 002111 if( HasRowid(pSrc) ){ 002112 u8 insFlags; 002113 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 002114 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 002115 if( pDest->iPKey>=0 ){ 002116 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 002117 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 002118 VdbeCoverage(v); 002119 sqlite3RowidConstraint(pParse, onError, pDest); 002120 sqlite3VdbeJumpHere(v, addr2); 002121 autoIncStep(pParse, regAutoinc, regRowid); 002122 }else if( pDest->pIndex==0 ){ 002123 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 002124 }else{ 002125 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 002126 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 002127 } 002128 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); 002129 if( db->flags & SQLITE_Vacuum ){ 002130 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); 002131 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 002132 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 002133 }else{ 002134 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 002135 } 002136 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 002137 (char*)pDest, P4_TABLE); 002138 sqlite3VdbeChangeP5(v, insFlags); 002139 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 002140 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 002141 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 002142 }else{ 002143 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 002144 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 002145 } 002146 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 002147 u8 idxInsFlags = 0; 002148 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 002149 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 002150 } 002151 assert( pSrcIdx ); 002152 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 002153 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 002154 VdbeComment((v, "%s", pSrcIdx->zName)); 002155 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 002156 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 002157 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 002158 VdbeComment((v, "%s", pDestIdx->zName)); 002159 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 002160 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); 002161 if( db->flags & SQLITE_Vacuum ){ 002162 /* This INSERT command is part of a VACUUM operation, which guarantees 002163 ** that the destination table is empty. If all indexed columns use 002164 ** collation sequence BINARY, then it can also be assumed that the 002165 ** index will be populated by inserting keys in strictly sorted 002166 ** order. In this case, instead of seeking within the b-tree as part 002167 ** of every OP_IdxInsert opcode, an OP_Last is added before the 002168 ** OP_IdxInsert to seek to the point within the b-tree where each key 002169 ** should be inserted. This is faster. 002170 ** 002171 ** If any of the indexed columns use a collation sequence other than 002172 ** BINARY, this optimization is disabled. This is because the user 002173 ** might change the definition of a collation sequence and then run 002174 ** a VACUUM command. In that case keys may not be written in strictly 002175 ** sorted order. */ 002176 for(i=0; i<pSrcIdx->nColumn; i++){ 002177 const char *zColl = pSrcIdx->azColl[i]; 002178 assert( sqlite3_stricmp(sqlite3StrBINARY, zColl)!=0 002179 || sqlite3StrBINARY==zColl ); 002180 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 002181 } 002182 if( i==pSrcIdx->nColumn ){ 002183 idxInsFlags = OPFLAG_USESEEKRESULT; 002184 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); 002185 } 002186 } 002187 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ 002188 idxInsFlags |= OPFLAG_NCHANGE; 002189 } 002190 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 002191 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 002192 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 002193 sqlite3VdbeJumpHere(v, addr1); 002194 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 002195 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 002196 } 002197 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 002198 sqlite3ReleaseTempReg(pParse, regRowid); 002199 sqlite3ReleaseTempReg(pParse, regData); 002200 if( emptyDestTest ){ 002201 sqlite3AutoincrementEnd(pParse); 002202 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 002203 sqlite3VdbeJumpHere(v, emptyDestTest); 002204 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 002205 return 0; 002206 }else{ 002207 return 1; 002208 } 002209 } 002210 #endif /* SQLITE_OMIT_XFER_OPT */