000001 /* 000002 ** 000003 ** The author disclaims copyright to this source code. In place of 000004 ** a legal notice, here is a blessing: 000005 ** 000006 ** May you do good and not evil. 000007 ** May you find forgiveness for yourself and forgive others. 000008 ** May you share freely, never taking more than you give. 000009 ** 000010 ************************************************************************* 000011 ** This file contains code used by the compiler to add foreign key 000012 ** support to compiled SQL statements. 000013 */ 000014 #include "sqliteInt.h" 000015 000016 #ifndef SQLITE_OMIT_FOREIGN_KEY 000017 #ifndef SQLITE_OMIT_TRIGGER 000018 000019 /* 000020 ** Deferred and Immediate FKs 000021 ** -------------------------- 000022 ** 000023 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 000024 ** If an immediate foreign key constraint is violated, 000025 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 000026 ** statement transaction rolled back. If a 000027 ** deferred foreign key constraint is violated, no action is taken 000028 ** immediately. However if the application attempts to commit the 000029 ** transaction before fixing the constraint violation, the attempt fails. 000030 ** 000031 ** Deferred constraints are implemented using a simple counter associated 000032 ** with the database handle. The counter is set to zero each time a 000033 ** database transaction is opened. Each time a statement is executed 000034 ** that causes a foreign key violation, the counter is incremented. Each 000035 ** time a statement is executed that removes an existing violation from 000036 ** the database, the counter is decremented. When the transaction is 000037 ** committed, the commit fails if the current value of the counter is 000038 ** greater than zero. This scheme has two big drawbacks: 000039 ** 000040 ** * When a commit fails due to a deferred foreign key constraint, 000041 ** there is no way to tell which foreign constraint is not satisfied, 000042 ** or which row it is not satisfied for. 000043 ** 000044 ** * If the database contains foreign key violations when the 000045 ** transaction is opened, this may cause the mechanism to malfunction. 000046 ** 000047 ** Despite these problems, this approach is adopted as it seems simpler 000048 ** than the alternatives. 000049 ** 000050 ** INSERT operations: 000051 ** 000052 ** I.1) For each FK for which the table is the child table, search 000053 ** the parent table for a match. If none is found increment the 000054 ** constraint counter. 000055 ** 000056 ** I.2) For each FK for which the table is the parent table, 000057 ** search the child table for rows that correspond to the new 000058 ** row in the parent table. Decrement the counter for each row 000059 ** found (as the constraint is now satisfied). 000060 ** 000061 ** DELETE operations: 000062 ** 000063 ** D.1) For each FK for which the table is the child table, 000064 ** search the parent table for a row that corresponds to the 000065 ** deleted row in the child table. If such a row is not found, 000066 ** decrement the counter. 000067 ** 000068 ** D.2) For each FK for which the table is the parent table, search 000069 ** the child table for rows that correspond to the deleted row 000070 ** in the parent table. For each found increment the counter. 000071 ** 000072 ** UPDATE operations: 000073 ** 000074 ** An UPDATE command requires that all 4 steps above are taken, but only 000075 ** for FK constraints for which the affected columns are actually 000076 ** modified (values must be compared at runtime). 000077 ** 000078 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 000079 ** This simplifies the implementation a bit. 000080 ** 000081 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 000082 ** resolution is considered to delete rows before the new row is inserted. 000083 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 000084 ** is thrown, even if the FK constraint would be satisfied after the new 000085 ** row is inserted. 000086 ** 000087 ** Immediate constraints are usually handled similarly. The only difference 000088 ** is that the counter used is stored as part of each individual statement 000089 ** object (struct Vdbe). If, after the statement has run, its immediate 000090 ** constraint counter is greater than zero, 000091 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 000092 ** and the statement transaction is rolled back. An exception is an INSERT 000093 ** statement that inserts a single row only (no triggers). In this case, 000094 ** instead of using a counter, an exception is thrown immediately if the 000095 ** INSERT violates a foreign key constraint. This is necessary as such 000096 ** an INSERT does not open a statement transaction. 000097 ** 000098 ** TODO: How should dropping a table be handled? How should renaming a 000099 ** table be handled? 000100 ** 000101 ** 000102 ** Query API Notes 000103 ** --------------- 000104 ** 000105 ** Before coding an UPDATE or DELETE row operation, the code-generator 000106 ** for those two operations needs to know whether or not the operation 000107 ** requires any FK processing and, if so, which columns of the original 000108 ** row are required by the FK processing VDBE code (i.e. if FKs were 000109 ** implemented using triggers, which of the old.* columns would be 000110 ** accessed). No information is required by the code-generator before 000111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 000112 ** generation code to query for this information are: 000113 ** 000114 ** sqlite3FkRequired() - Test to see if FK processing is required. 000115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 000116 ** 000117 ** 000118 ** Externally accessible module functions 000119 ** -------------------------------------- 000120 ** 000121 ** sqlite3FkCheck() - Check for foreign key violations. 000122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 000123 ** sqlite3FkDelete() - Delete an FKey structure. 000124 */ 000125 000126 /* 000127 ** VDBE Calling Convention 000128 ** ----------------------- 000129 ** 000130 ** Example: 000131 ** 000132 ** For the following INSERT statement: 000133 ** 000134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 000135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 000136 ** 000137 ** Register (x): 2 (type integer) 000138 ** Register (x+1): 1 (type integer) 000139 ** Register (x+2): NULL (type NULL) 000140 ** Register (x+3): 3.1 (type real) 000141 */ 000142 000143 /* 000144 ** A foreign key constraint requires that the key columns in the parent 000145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 000146 ** Given that pParent is the parent table for foreign key constraint pFKey, 000147 ** search the schema for a unique index on the parent key columns. 000148 ** 000149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 000150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 000151 ** is set to point to the unique index. 000152 ** 000153 ** If the parent key consists of a single column (the foreign key constraint 000154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 000155 ** Otherwise, it is set to point to an allocated array of size N, where 000156 ** N is the number of columns in the parent key. The first element of the 000157 ** array is the index of the child table column that is mapped by the FK 000158 ** constraint to the parent table column stored in the left-most column 000159 ** of index *ppIdx. The second element of the array is the index of the 000160 ** child table column that corresponds to the second left-most column of 000161 ** *ppIdx, and so on. 000162 ** 000163 ** If the required index cannot be found, either because: 000164 ** 000165 ** 1) The named parent key columns do not exist, or 000166 ** 000167 ** 2) The named parent key columns do exist, but are not subject to a 000168 ** UNIQUE or PRIMARY KEY constraint, or 000169 ** 000170 ** 3) No parent key columns were provided explicitly as part of the 000171 ** foreign key definition, and the parent table does not have a 000172 ** PRIMARY KEY, or 000173 ** 000174 ** 4) No parent key columns were provided explicitly as part of the 000175 ** foreign key definition, and the PRIMARY KEY of the parent table 000176 ** consists of a different number of columns to the child key in 000177 ** the child table. 000178 ** 000179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 000180 ** into pParse. If an OOM error occurs, non-zero is returned and the 000181 ** pParse->db->mallocFailed flag is set. 000182 */ 000183 int sqlite3FkLocateIndex( 000184 Parse *pParse, /* Parse context to store any error in */ 000185 Table *pParent, /* Parent table of FK constraint pFKey */ 000186 FKey *pFKey, /* Foreign key to find index for */ 000187 Index **ppIdx, /* OUT: Unique index on parent table */ 000188 int **paiCol /* OUT: Map of index columns in pFKey */ 000189 ){ 000190 Index *pIdx = 0; /* Value to return via *ppIdx */ 000191 int *aiCol = 0; /* Value to return via *paiCol */ 000192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 000193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 000194 000195 /* The caller is responsible for zeroing output parameters. */ 000196 assert( ppIdx && *ppIdx==0 ); 000197 assert( !paiCol || *paiCol==0 ); 000198 assert( pParse ); 000199 000200 /* If this is a non-composite (single column) foreign key, check if it 000201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 000202 ** and *paiCol set to zero and return early. 000203 ** 000204 ** Otherwise, for a composite foreign key (more than one column), allocate 000205 ** space for the aiCol array (returned via output parameter *paiCol). 000206 ** Non-composite foreign keys do not require the aiCol array. 000207 */ 000208 if( nCol==1 ){ 000209 /* The FK maps to the IPK if any of the following are true: 000210 ** 000211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 000212 ** mapped to the primary key of table pParent, or 000213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 000214 ** PRIMARY KEY. 000215 */ 000216 if( pParent->iPKey>=0 ){ 000217 if( !zKey ) return 0; 000218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; 000219 } 000220 }else if( paiCol ){ 000221 assert( nCol>1 ); 000222 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); 000223 if( !aiCol ) return 1; 000224 *paiCol = aiCol; 000225 } 000226 000227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 000228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){ 000229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 000230 ** of columns. If each indexed column corresponds to a foreign key 000231 ** column of pFKey, then this index is a winner. */ 000232 000233 if( zKey==0 ){ 000234 /* If zKey is NULL, then this foreign key is implicitly mapped to 000235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 000236 ** identified by the test. */ 000237 if( IsPrimaryKeyIndex(pIdx) ){ 000238 if( aiCol ){ 000239 int i; 000240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 000241 } 000242 break; 000243 } 000244 }else{ 000245 /* If zKey is non-NULL, then this foreign key was declared to 000246 ** map to an explicit list of columns in table pParent. Check if this 000247 ** index matches those columns. Also, check that the index uses 000248 ** the default collation sequences for each column. */ 000249 int i, j; 000250 for(i=0; i<nCol; i++){ 000251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 000252 const char *zDfltColl; /* Def. collation for column */ 000253 char *zIdxCol; /* Name of indexed column */ 000254 000255 if( iCol<0 ) break; /* No foreign keys against expression indexes */ 000256 000257 /* If the index uses a collation sequence that is different from 000258 ** the default collation sequence for the column, this index is 000259 ** unusable. Bail out early in this case. */ 000260 zDfltColl = pParent->aCol[iCol].zColl; 000261 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; 000262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 000263 000264 zIdxCol = pParent->aCol[iCol].zName; 000265 for(j=0; j<nCol; j++){ 000266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 000267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 000268 break; 000269 } 000270 } 000271 if( j==nCol ) break; 000272 } 000273 if( i==nCol ) break; /* pIdx is usable */ 000274 } 000275 } 000276 } 000277 000278 if( !pIdx ){ 000279 if( !pParse->disableTriggers ){ 000280 sqlite3ErrorMsg(pParse, 000281 "foreign key mismatch - \"%w\" referencing \"%w\"", 000282 pFKey->pFrom->zName, pFKey->zTo); 000283 } 000284 sqlite3DbFree(pParse->db, aiCol); 000285 return 1; 000286 } 000287 000288 *ppIdx = pIdx; 000289 return 0; 000290 } 000291 000292 /* 000293 ** This function is called when a row is inserted into or deleted from the 000294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 000295 ** on the child table of pFKey, this function is invoked twice for each row 000296 ** affected - once to "delete" the old row, and then again to "insert" the 000297 ** new row. 000298 ** 000299 ** Each time it is called, this function generates VDBE code to locate the 000300 ** row in the parent table that corresponds to the row being inserted into 000301 ** or deleted from the child table. If the parent row can be found, no 000302 ** special action is taken. Otherwise, if the parent row can *not* be 000303 ** found in the parent table: 000304 ** 000305 ** Operation | FK type | Action taken 000306 ** -------------------------------------------------------------------------- 000307 ** INSERT immediate Increment the "immediate constraint counter". 000308 ** 000309 ** DELETE immediate Decrement the "immediate constraint counter". 000310 ** 000311 ** INSERT deferred Increment the "deferred constraint counter". 000312 ** 000313 ** DELETE deferred Decrement the "deferred constraint counter". 000314 ** 000315 ** These operations are identified in the comment at the top of this file 000316 ** (fkey.c) as "I.1" and "D.1". 000317 */ 000318 static void fkLookupParent( 000319 Parse *pParse, /* Parse context */ 000320 int iDb, /* Index of database housing pTab */ 000321 Table *pTab, /* Parent table of FK pFKey */ 000322 Index *pIdx, /* Unique index on parent key columns in pTab */ 000323 FKey *pFKey, /* Foreign key constraint */ 000324 int *aiCol, /* Map from parent key columns to child table columns */ 000325 int regData, /* Address of array containing child table row */ 000326 int nIncr, /* Increment constraint counter by this */ 000327 int isIgnore /* If true, pretend pTab contains all NULL values */ 000328 ){ 000329 int i; /* Iterator variable */ 000330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 000331 int iCur = pParse->nTab - 1; /* Cursor number to use */ 000332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ 000333 000334 /* If nIncr is less than zero, then check at runtime if there are any 000335 ** outstanding constraints to resolve. If there are not, there is no need 000336 ** to check if deleting this row resolves any outstanding violations. 000337 ** 000338 ** Check if any of the key columns in the child table row are NULL. If 000339 ** any are, then the constraint is considered satisfied. No need to 000340 ** search for a matching row in the parent table. */ 000341 if( nIncr<0 ){ 000342 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 000343 VdbeCoverage(v); 000344 } 000345 for(i=0; i<pFKey->nCol; i++){ 000346 int iReg = aiCol[i] + regData + 1; 000347 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 000348 } 000349 000350 if( isIgnore==0 ){ 000351 if( pIdx==0 ){ 000352 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 000353 ** column of the parent table (table pTab). */ 000354 int iMustBeInt; /* Address of MustBeInt instruction */ 000355 int regTemp = sqlite3GetTempReg(pParse); 000356 000357 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 000358 ** apply the affinity of the parent key). If this fails, then there 000359 ** is no matching parent key. Before using MustBeInt, make a copy of 000360 ** the value. Otherwise, the value inserted into the child key column 000361 ** will have INTEGER affinity applied to it, which may not be correct. */ 000362 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); 000363 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 000364 VdbeCoverage(v); 000365 000366 /* If the parent table is the same as the child table, and we are about 000367 ** to increment the constraint-counter (i.e. this is an INSERT operation), 000368 ** then check if the row being inserted matches itself. If so, do not 000369 ** increment the constraint-counter. */ 000370 if( pTab==pFKey->pFrom && nIncr==1 ){ 000371 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 000372 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 000373 } 000374 000375 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 000376 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 000377 sqlite3VdbeGoto(v, iOk); 000378 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 000379 sqlite3VdbeJumpHere(v, iMustBeInt); 000380 sqlite3ReleaseTempReg(pParse, regTemp); 000381 }else{ 000382 int nCol = pFKey->nCol; 000383 int regTemp = sqlite3GetTempRange(pParse, nCol); 000384 int regRec = sqlite3GetTempReg(pParse); 000385 000386 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 000387 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 000388 for(i=0; i<nCol; i++){ 000389 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); 000390 } 000391 000392 /* If the parent table is the same as the child table, and we are about 000393 ** to increment the constraint-counter (i.e. this is an INSERT operation), 000394 ** then check if the row being inserted matches itself. If so, do not 000395 ** increment the constraint-counter. 000396 ** 000397 ** If any of the parent-key values are NULL, then the row cannot match 000398 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 000399 ** of the parent-key values are NULL (at this point it is known that 000400 ** none of the child key values are). 000401 */ 000402 if( pTab==pFKey->pFrom && nIncr==1 ){ 000403 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 000404 for(i=0; i<nCol; i++){ 000405 int iChild = aiCol[i]+1+regData; 000406 int iParent = pIdx->aiColumn[i]+1+regData; 000407 assert( pIdx->aiColumn[i]>=0 ); 000408 assert( aiCol[i]!=pTab->iPKey ); 000409 if( pIdx->aiColumn[i]==pTab->iPKey ){ 000410 /* The parent key is a composite key that includes the IPK column */ 000411 iParent = regData; 000412 } 000413 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 000414 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 000415 } 000416 sqlite3VdbeGoto(v, iOk); 000417 } 000418 000419 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, 000420 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); 000421 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); 000422 000423 sqlite3ReleaseTempReg(pParse, regRec); 000424 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 000425 } 000426 } 000427 000428 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 000429 && !pParse->pToplevel 000430 && !pParse->isMultiWrite 000431 ){ 000432 /* Special case: If this is an INSERT statement that will insert exactly 000433 ** one row into the table, raise a constraint immediately instead of 000434 ** incrementing a counter. This is necessary as the VM code is being 000435 ** generated for will not open a statement transaction. */ 000436 assert( nIncr==1 ); 000437 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 000438 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 000439 }else{ 000440 if( nIncr>0 && pFKey->isDeferred==0 ){ 000441 sqlite3MayAbort(pParse); 000442 } 000443 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 000444 } 000445 000446 sqlite3VdbeResolveLabel(v, iOk); 000447 sqlite3VdbeAddOp1(v, OP_Close, iCur); 000448 } 000449 000450 000451 /* 000452 ** Return an Expr object that refers to a memory register corresponding 000453 ** to column iCol of table pTab. 000454 ** 000455 ** regBase is the first of an array of register that contains the data 000456 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 000457 ** column. regBase+2 holds the second column, and so forth. 000458 */ 000459 static Expr *exprTableRegister( 000460 Parse *pParse, /* Parsing and code generating context */ 000461 Table *pTab, /* The table whose content is at r[regBase]... */ 000462 int regBase, /* Contents of table pTab */ 000463 i16 iCol /* Which column of pTab is desired */ 000464 ){ 000465 Expr *pExpr; 000466 Column *pCol; 000467 const char *zColl; 000468 sqlite3 *db = pParse->db; 000469 000470 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 000471 if( pExpr ){ 000472 if( iCol>=0 && iCol!=pTab->iPKey ){ 000473 pCol = &pTab->aCol[iCol]; 000474 pExpr->iTable = regBase + iCol + 1; 000475 pExpr->affinity = pCol->affinity; 000476 zColl = pCol->zColl; 000477 if( zColl==0 ) zColl = db->pDfltColl->zName; 000478 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 000479 }else{ 000480 pExpr->iTable = regBase; 000481 pExpr->affinity = SQLITE_AFF_INTEGER; 000482 } 000483 } 000484 return pExpr; 000485 } 000486 000487 /* 000488 ** Return an Expr object that refers to column iCol of table pTab which 000489 ** has cursor iCur. 000490 */ 000491 static Expr *exprTableColumn( 000492 sqlite3 *db, /* The database connection */ 000493 Table *pTab, /* The table whose column is desired */ 000494 int iCursor, /* The open cursor on the table */ 000495 i16 iCol /* The column that is wanted */ 000496 ){ 000497 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 000498 if( pExpr ){ 000499 pExpr->pTab = pTab; 000500 pExpr->iTable = iCursor; 000501 pExpr->iColumn = iCol; 000502 } 000503 return pExpr; 000504 } 000505 000506 /* 000507 ** This function is called to generate code executed when a row is deleted 000508 ** from the parent table of foreign key constraint pFKey and, if pFKey is 000509 ** deferred, when a row is inserted into the same table. When generating 000510 ** code for an SQL UPDATE operation, this function may be called twice - 000511 ** once to "delete" the old row and once to "insert" the new row. 000512 ** 000513 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease 000514 ** the number of FK violations in the db) or +1 when deleting one (as this 000515 ** may increase the number of FK constraint problems). 000516 ** 000517 ** The code generated by this function scans through the rows in the child 000518 ** table that correspond to the parent table row being deleted or inserted. 000519 ** For each child row found, one of the following actions is taken: 000520 ** 000521 ** Operation | FK type | Action taken 000522 ** -------------------------------------------------------------------------- 000523 ** DELETE immediate Increment the "immediate constraint counter". 000524 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 000525 ** throw a "FOREIGN KEY constraint failed" exception. 000526 ** 000527 ** INSERT immediate Decrement the "immediate constraint counter". 000528 ** 000529 ** DELETE deferred Increment the "deferred constraint counter". 000530 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 000531 ** throw a "FOREIGN KEY constraint failed" exception. 000532 ** 000533 ** INSERT deferred Decrement the "deferred constraint counter". 000534 ** 000535 ** These operations are identified in the comment at the top of this file 000536 ** (fkey.c) as "I.2" and "D.2". 000537 */ 000538 static void fkScanChildren( 000539 Parse *pParse, /* Parse context */ 000540 SrcList *pSrc, /* The child table to be scanned */ 000541 Table *pTab, /* The parent table */ 000542 Index *pIdx, /* Index on parent covering the foreign key */ 000543 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 000544 int *aiCol, /* Map from pIdx cols to child table cols */ 000545 int regData, /* Parent row data starts here */ 000546 int nIncr /* Amount to increment deferred counter by */ 000547 ){ 000548 sqlite3 *db = pParse->db; /* Database handle */ 000549 int i; /* Iterator variable */ 000550 Expr *pWhere = 0; /* WHERE clause to scan with */ 000551 NameContext sNameContext; /* Context used to resolve WHERE clause */ 000552 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 000553 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 000554 Vdbe *v = sqlite3GetVdbe(pParse); 000555 000556 assert( pIdx==0 || pIdx->pTable==pTab ); 000557 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 000558 assert( pIdx!=0 || pFKey->nCol==1 ); 000559 assert( pIdx!=0 || HasRowid(pTab) ); 000560 000561 if( nIncr<0 ){ 000562 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 000563 VdbeCoverage(v); 000564 } 000565 000566 /* Create an Expr object representing an SQL expression like: 000567 ** 000568 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 000569 ** 000570 ** The collation sequence used for the comparison should be that of 000571 ** the parent key columns. The affinity of the parent key column should 000572 ** be applied to each child key value before the comparison takes place. 000573 */ 000574 for(i=0; i<pFKey->nCol; i++){ 000575 Expr *pLeft; /* Value from parent table row */ 000576 Expr *pRight; /* Column ref to child table */ 000577 Expr *pEq; /* Expression (pLeft = pRight) */ 000578 i16 iCol; /* Index of column in child table */ 000579 const char *zCol; /* Name of column in child table */ 000580 000581 iCol = pIdx ? pIdx->aiColumn[i] : -1; 000582 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 000583 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 000584 assert( iCol>=0 ); 000585 zCol = pFKey->pFrom->aCol[iCol].zName; 000586 pRight = sqlite3Expr(db, TK_ID, zCol); 000587 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 000588 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 000589 } 000590 000591 /* If the child table is the same as the parent table, then add terms 000592 ** to the WHERE clause that prevent this entry from being scanned. 000593 ** The added WHERE clause terms are like this: 000594 ** 000595 ** $current_rowid!=rowid 000596 ** NOT( $current_a==a AND $current_b==b AND ... ) 000597 ** 000598 ** The first form is used for rowid tables. The second form is used 000599 ** for WITHOUT ROWID tables. In the second form, the primary key is 000600 ** (a,b,...) 000601 */ 000602 if( pTab==pFKey->pFrom && nIncr>0 ){ 000603 Expr *pNe; /* Expression (pLeft != pRight) */ 000604 Expr *pLeft; /* Value from parent table row */ 000605 Expr *pRight; /* Column ref to child table */ 000606 if( HasRowid(pTab) ){ 000607 pLeft = exprTableRegister(pParse, pTab, regData, -1); 000608 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 000609 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); 000610 }else{ 000611 Expr *pEq, *pAll = 0; 000612 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 000613 assert( pIdx!=0 ); 000614 for(i=0; i<pPk->nKeyCol; i++){ 000615 i16 iCol = pIdx->aiColumn[i]; 000616 assert( iCol>=0 ); 000617 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 000618 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); 000619 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 000620 pAll = sqlite3ExprAnd(db, pAll, pEq); 000621 } 000622 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); 000623 } 000624 pWhere = sqlite3ExprAnd(db, pWhere, pNe); 000625 } 000626 000627 /* Resolve the references in the WHERE clause. */ 000628 memset(&sNameContext, 0, sizeof(NameContext)); 000629 sNameContext.pSrcList = pSrc; 000630 sNameContext.pParse = pParse; 000631 sqlite3ResolveExprNames(&sNameContext, pWhere); 000632 000633 /* Create VDBE to loop through the entries in pSrc that match the WHERE 000634 ** clause. For each row found, increment either the deferred or immediate 000635 ** foreign key constraint counter. */ 000636 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 000637 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 000638 if( pWInfo ){ 000639 sqlite3WhereEnd(pWInfo); 000640 } 000641 000642 /* Clean up the WHERE clause constructed above. */ 000643 sqlite3ExprDelete(db, pWhere); 000644 if( iFkIfZero ){ 000645 sqlite3VdbeJumpHere(v, iFkIfZero); 000646 } 000647 } 000648 000649 /* 000650 ** This function returns a linked list of FKey objects (connected by 000651 ** FKey.pNextTo) holding all children of table pTab. For example, 000652 ** given the following schema: 000653 ** 000654 ** CREATE TABLE t1(a PRIMARY KEY); 000655 ** CREATE TABLE t2(b REFERENCES t1(a); 000656 ** 000657 ** Calling this function with table "t1" as an argument returns a pointer 000658 ** to the FKey structure representing the foreign key constraint on table 000659 ** "t2". Calling this function with "t2" as the argument would return a 000660 ** NULL pointer (as there are no FK constraints for which t2 is the parent 000661 ** table). 000662 */ 000663 FKey *sqlite3FkReferences(Table *pTab){ 000664 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); 000665 } 000666 000667 /* 000668 ** The second argument is a Trigger structure allocated by the 000669 ** fkActionTrigger() routine. This function deletes the Trigger structure 000670 ** and all of its sub-components. 000671 ** 000672 ** The Trigger structure or any of its sub-components may be allocated from 000673 ** the lookaside buffer belonging to database handle dbMem. 000674 */ 000675 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 000676 if( p ){ 000677 TriggerStep *pStep = p->step_list; 000678 sqlite3ExprDelete(dbMem, pStep->pWhere); 000679 sqlite3ExprListDelete(dbMem, pStep->pExprList); 000680 sqlite3SelectDelete(dbMem, pStep->pSelect); 000681 sqlite3ExprDelete(dbMem, p->pWhen); 000682 sqlite3DbFree(dbMem, p); 000683 } 000684 } 000685 000686 /* 000687 ** This function is called to generate code that runs when table pTab is 000688 ** being dropped from the database. The SrcList passed as the second argument 000689 ** to this function contains a single entry guaranteed to resolve to 000690 ** table pTab. 000691 ** 000692 ** Normally, no code is required. However, if either 000693 ** 000694 ** (a) The table is the parent table of a FK constraint, or 000695 ** (b) The table is the child table of a deferred FK constraint and it is 000696 ** determined at runtime that there are outstanding deferred FK 000697 ** constraint violations in the database, 000698 ** 000699 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 000700 ** the table from the database. Triggers are disabled while running this 000701 ** DELETE, but foreign key actions are not. 000702 */ 000703 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 000704 sqlite3 *db = pParse->db; 000705 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ 000706 int iSkip = 0; 000707 Vdbe *v = sqlite3GetVdbe(pParse); 000708 000709 assert( v ); /* VDBE has already been allocated */ 000710 if( sqlite3FkReferences(pTab)==0 ){ 000711 /* Search for a deferred foreign key constraint for which this table 000712 ** is the child table. If one cannot be found, return without 000713 ** generating any VDBE code. If one can be found, then jump over 000714 ** the entire DELETE if there are no outstanding deferred constraints 000715 ** when this statement is run. */ 000716 FKey *p; 000717 for(p=pTab->pFKey; p; p=p->pNextFrom){ 000718 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 000719 } 000720 if( !p ) return; 000721 iSkip = sqlite3VdbeMakeLabel(v); 000722 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 000723 } 000724 000725 pParse->disableTriggers = 1; 000726 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); 000727 pParse->disableTriggers = 0; 000728 000729 /* If the DELETE has generated immediate foreign key constraint 000730 ** violations, halt the VDBE and return an error at this point, before 000731 ** any modifications to the schema are made. This is because statement 000732 ** transactions are not able to rollback schema changes. 000733 ** 000734 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 000735 ** the statement transaction will not be rolled back even if FK 000736 ** constraints are violated. 000737 */ 000738 if( (db->flags & SQLITE_DeferFKs)==0 ){ 000739 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 000740 VdbeCoverage(v); 000741 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 000742 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 000743 } 000744 000745 if( iSkip ){ 000746 sqlite3VdbeResolveLabel(v, iSkip); 000747 } 000748 } 000749 } 000750 000751 000752 /* 000753 ** The second argument points to an FKey object representing a foreign key 000754 ** for which pTab is the child table. An UPDATE statement against pTab 000755 ** is currently being processed. For each column of the table that is 000756 ** actually updated, the corresponding element in the aChange[] array 000757 ** is zero or greater (if a column is unmodified the corresponding element 000758 ** is set to -1). If the rowid column is modified by the UPDATE statement 000759 ** the bChngRowid argument is non-zero. 000760 ** 000761 ** This function returns true if any of the columns that are part of the 000762 ** child key for FK constraint *p are modified. 000763 */ 000764 static int fkChildIsModified( 000765 Table *pTab, /* Table being updated */ 000766 FKey *p, /* Foreign key for which pTab is the child */ 000767 int *aChange, /* Array indicating modified columns */ 000768 int bChngRowid /* True if rowid is modified by this update */ 000769 ){ 000770 int i; 000771 for(i=0; i<p->nCol; i++){ 000772 int iChildKey = p->aCol[i].iFrom; 000773 if( aChange[iChildKey]>=0 ) return 1; 000774 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 000775 } 000776 return 0; 000777 } 000778 000779 /* 000780 ** The second argument points to an FKey object representing a foreign key 000781 ** for which pTab is the parent table. An UPDATE statement against pTab 000782 ** is currently being processed. For each column of the table that is 000783 ** actually updated, the corresponding element in the aChange[] array 000784 ** is zero or greater (if a column is unmodified the corresponding element 000785 ** is set to -1). If the rowid column is modified by the UPDATE statement 000786 ** the bChngRowid argument is non-zero. 000787 ** 000788 ** This function returns true if any of the columns that are part of the 000789 ** parent key for FK constraint *p are modified. 000790 */ 000791 static int fkParentIsModified( 000792 Table *pTab, 000793 FKey *p, 000794 int *aChange, 000795 int bChngRowid 000796 ){ 000797 int i; 000798 for(i=0; i<p->nCol; i++){ 000799 char *zKey = p->aCol[i].zCol; 000800 int iKey; 000801 for(iKey=0; iKey<pTab->nCol; iKey++){ 000802 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 000803 Column *pCol = &pTab->aCol[iKey]; 000804 if( zKey ){ 000805 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1; 000806 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 000807 return 1; 000808 } 000809 } 000810 } 000811 } 000812 return 0; 000813 } 000814 000815 /* 000816 ** Return true if the parser passed as the first argument is being 000817 ** used to code a trigger that is really a "SET NULL" action belonging 000818 ** to trigger pFKey. 000819 */ 000820 static int isSetNullAction(Parse *pParse, FKey *pFKey){ 000821 Parse *pTop = sqlite3ParseToplevel(pParse); 000822 if( pTop->pTriggerPrg ){ 000823 Trigger *p = pTop->pTriggerPrg->pTrigger; 000824 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) 000825 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) 000826 ){ 000827 return 1; 000828 } 000829 } 000830 return 0; 000831 } 000832 000833 /* 000834 ** This function is called when inserting, deleting or updating a row of 000835 ** table pTab to generate VDBE code to perform foreign key constraint 000836 ** processing for the operation. 000837 ** 000838 ** For a DELETE operation, parameter regOld is passed the index of the 000839 ** first register in an array of (pTab->nCol+1) registers containing the 000840 ** rowid of the row being deleted, followed by each of the column values 000841 ** of the row being deleted, from left to right. Parameter regNew is passed 000842 ** zero in this case. 000843 ** 000844 ** For an INSERT operation, regOld is passed zero and regNew is passed the 000845 ** first register of an array of (pTab->nCol+1) registers containing the new 000846 ** row data. 000847 ** 000848 ** For an UPDATE operation, this function is called twice. Once before 000849 ** the original record is deleted from the table using the calling convention 000850 ** described for DELETE. Then again after the original record is deleted 000851 ** but before the new record is inserted using the INSERT convention. 000852 */ 000853 void sqlite3FkCheck( 000854 Parse *pParse, /* Parse context */ 000855 Table *pTab, /* Row is being deleted from this table */ 000856 int regOld, /* Previous row data is stored here */ 000857 int regNew, /* New row data is stored here */ 000858 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 000859 int bChngRowid /* True if rowid is UPDATEd */ 000860 ){ 000861 sqlite3 *db = pParse->db; /* Database handle */ 000862 FKey *pFKey; /* Used to iterate through FKs */ 000863 int iDb; /* Index of database containing pTab */ 000864 const char *zDb; /* Name of database containing pTab */ 000865 int isIgnoreErrors = pParse->disableTriggers; 000866 000867 /* Exactly one of regOld and regNew should be non-zero. */ 000868 assert( (regOld==0)!=(regNew==0) ); 000869 000870 /* If foreign-keys are disabled, this function is a no-op. */ 000871 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 000872 000873 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 000874 zDb = db->aDb[iDb].zDbSName; 000875 000876 /* Loop through all the foreign key constraints for which pTab is the 000877 ** child table (the table that the foreign key definition is part of). */ 000878 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 000879 Table *pTo; /* Parent table of foreign key pFKey */ 000880 Index *pIdx = 0; /* Index on key columns in pTo */ 000881 int *aiFree = 0; 000882 int *aiCol; 000883 int iCol; 000884 int i; 000885 int bIgnore = 0; 000886 000887 if( aChange 000888 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 000889 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 000890 ){ 000891 continue; 000892 } 000893 000894 /* Find the parent table of this foreign key. Also find a unique index 000895 ** on the parent key columns in the parent table. If either of these 000896 ** schema items cannot be located, set an error in pParse and return 000897 ** early. */ 000898 if( pParse->disableTriggers ){ 000899 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 000900 }else{ 000901 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 000902 } 000903 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 000904 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 000905 if( !isIgnoreErrors || db->mallocFailed ) return; 000906 if( pTo==0 ){ 000907 /* If isIgnoreErrors is true, then a table is being dropped. In this 000908 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 000909 ** before actually dropping it in order to check FK constraints. 000910 ** If the parent table of an FK constraint on the current table is 000911 ** missing, behave as if it is empty. i.e. decrement the relevant 000912 ** FK counter for each row of the current table with non-NULL keys. 000913 */ 000914 Vdbe *v = sqlite3GetVdbe(pParse); 000915 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 000916 for(i=0; i<pFKey->nCol; i++){ 000917 int iReg = pFKey->aCol[i].iFrom + regOld + 1; 000918 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 000919 } 000920 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 000921 } 000922 continue; 000923 } 000924 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 000925 000926 if( aiFree ){ 000927 aiCol = aiFree; 000928 }else{ 000929 iCol = pFKey->aCol[0].iFrom; 000930 aiCol = &iCol; 000931 } 000932 for(i=0; i<pFKey->nCol; i++){ 000933 if( aiCol[i]==pTab->iPKey ){ 000934 aiCol[i] = -1; 000935 } 000936 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 000937 #ifndef SQLITE_OMIT_AUTHORIZATION 000938 /* Request permission to read the parent key columns. If the 000939 ** authorization callback returns SQLITE_IGNORE, behave as if any 000940 ** values read from the parent table are NULL. */ 000941 if( db->xAuth ){ 000942 int rcauth; 000943 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; 000944 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 000945 bIgnore = (rcauth==SQLITE_IGNORE); 000946 } 000947 #endif 000948 } 000949 000950 /* Take a shared-cache advisory read-lock on the parent table. Allocate 000951 ** a cursor to use to search the unique index on the parent key columns 000952 ** in the parent table. */ 000953 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 000954 pParse->nTab++; 000955 000956 if( regOld!=0 ){ 000957 /* A row is being removed from the child table. Search for the parent. 000958 ** If the parent does not exist, removing the child row resolves an 000959 ** outstanding foreign key constraint violation. */ 000960 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); 000961 } 000962 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ 000963 /* A row is being added to the child table. If a parent row cannot 000964 ** be found, adding the child row has violated the FK constraint. 000965 ** 000966 ** If this operation is being performed as part of a trigger program 000967 ** that is actually a "SET NULL" action belonging to this very 000968 ** foreign key, then omit this scan altogether. As all child key 000969 ** values are guaranteed to be NULL, it is not possible for adding 000970 ** this row to cause an FK violation. */ 000971 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); 000972 } 000973 000974 sqlite3DbFree(db, aiFree); 000975 } 000976 000977 /* Loop through all the foreign key constraints that refer to this table. 000978 ** (the "child" constraints) */ 000979 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 000980 Index *pIdx = 0; /* Foreign key index for pFKey */ 000981 SrcList *pSrc; 000982 int *aiCol = 0; 000983 000984 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 000985 continue; 000986 } 000987 000988 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 000989 && !pParse->pToplevel && !pParse->isMultiWrite 000990 ){ 000991 assert( regOld==0 && regNew!=0 ); 000992 /* Inserting a single row into a parent table cannot cause (or fix) 000993 ** an immediate foreign key violation. So do nothing in this case. */ 000994 continue; 000995 } 000996 000997 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 000998 if( !isIgnoreErrors || db->mallocFailed ) return; 000999 continue; 001000 } 001001 assert( aiCol || pFKey->nCol==1 ); 001002 001003 /* Create a SrcList structure containing the child table. We need the 001004 ** child table as a SrcList for sqlite3WhereBegin() */ 001005 pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 001006 if( pSrc ){ 001007 struct SrcList_item *pItem = pSrc->a; 001008 pItem->pTab = pFKey->pFrom; 001009 pItem->zName = pFKey->pFrom->zName; 001010 pItem->pTab->nTabRef++; 001011 pItem->iCursor = pParse->nTab++; 001012 001013 if( regNew!=0 ){ 001014 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 001015 } 001016 if( regOld!=0 ){ 001017 int eAction = pFKey->aAction[aChange!=0]; 001018 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 001019 /* If this is a deferred FK constraint, or a CASCADE or SET NULL 001020 ** action applies, then any foreign key violations caused by 001021 ** removing the parent key will be rectified by the action trigger. 001022 ** So do not set the "may-abort" flag in this case. 001023 ** 001024 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the 001025 ** may-abort flag will eventually be set on this statement anyway 001026 ** (when this function is called as part of processing the UPDATE 001027 ** within the action trigger). 001028 ** 001029 ** Note 2: At first glance it may seem like SQLite could simply omit 001030 ** all OP_FkCounter related scans when either CASCADE or SET NULL 001031 ** applies. The trouble starts if the CASCADE or SET NULL action 001032 ** trigger causes other triggers or action rules attached to the 001033 ** child table to fire. In these cases the fk constraint counters 001034 ** might be set incorrectly if any OP_FkCounter related scans are 001035 ** omitted. */ 001036 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ 001037 sqlite3MayAbort(pParse); 001038 } 001039 } 001040 pItem->zName = 0; 001041 sqlite3SrcListDelete(db, pSrc); 001042 } 001043 sqlite3DbFree(db, aiCol); 001044 } 001045 } 001046 001047 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 001048 001049 /* 001050 ** This function is called before generating code to update or delete a 001051 ** row contained in table pTab. 001052 */ 001053 u32 sqlite3FkOldmask( 001054 Parse *pParse, /* Parse context */ 001055 Table *pTab /* Table being modified */ 001056 ){ 001057 u32 mask = 0; 001058 if( pParse->db->flags&SQLITE_ForeignKeys ){ 001059 FKey *p; 001060 int i; 001061 for(p=pTab->pFKey; p; p=p->pNextFrom){ 001062 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 001063 } 001064 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 001065 Index *pIdx = 0; 001066 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 001067 if( pIdx ){ 001068 for(i=0; i<pIdx->nKeyCol; i++){ 001069 assert( pIdx->aiColumn[i]>=0 ); 001070 mask |= COLUMN_MASK(pIdx->aiColumn[i]); 001071 } 001072 } 001073 } 001074 } 001075 return mask; 001076 } 001077 001078 001079 /* 001080 ** This function is called before generating code to update or delete a 001081 ** row contained in table pTab. If the operation is a DELETE, then 001082 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 001083 ** to an array of size N, where N is the number of columns in table pTab. 001084 ** If the i'th column is not modified by the UPDATE, then the corresponding 001085 ** entry in the aChange[] array is set to -1. If the column is modified, 001086 ** the value is 0 or greater. Parameter chngRowid is set to true if the 001087 ** UPDATE statement modifies the rowid fields of the table. 001088 ** 001089 ** If any foreign key processing will be required, this function returns 001090 ** true. If there is no foreign key related processing, this function 001091 ** returns false. 001092 */ 001093 int sqlite3FkRequired( 001094 Parse *pParse, /* Parse context */ 001095 Table *pTab, /* Table being modified */ 001096 int *aChange, /* Non-NULL for UPDATE operations */ 001097 int chngRowid /* True for UPDATE that affects rowid */ 001098 ){ 001099 if( pParse->db->flags&SQLITE_ForeignKeys ){ 001100 if( !aChange ){ 001101 /* A DELETE operation. Foreign key processing is required if the 001102 ** table in question is either the child or parent table for any 001103 ** foreign key constraint. */ 001104 return (sqlite3FkReferences(pTab) || pTab->pFKey); 001105 }else{ 001106 /* This is an UPDATE. Foreign key processing is only required if the 001107 ** operation modifies one or more child or parent key columns. */ 001108 FKey *p; 001109 001110 /* Check if any child key columns are being modified. */ 001111 for(p=pTab->pFKey; p; p=p->pNextFrom){ 001112 if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1; 001113 } 001114 001115 /* Check if any parent key columns are being modified. */ 001116 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 001117 if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1; 001118 } 001119 } 001120 } 001121 return 0; 001122 } 001123 001124 /* 001125 ** This function is called when an UPDATE or DELETE operation is being 001126 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 001127 ** If the current operation is an UPDATE, then the pChanges parameter is 001128 ** passed a pointer to the list of columns being modified. If it is a 001129 ** DELETE, pChanges is passed a NULL pointer. 001130 ** 001131 ** It returns a pointer to a Trigger structure containing a trigger 001132 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 001133 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 001134 ** returned (these actions require no special handling by the triggers 001135 ** sub-system, code for them is created by fkScanChildren()). 001136 ** 001137 ** For example, if pFKey is the foreign key and pTab is table "p" in 001138 ** the following schema: 001139 ** 001140 ** CREATE TABLE p(pk PRIMARY KEY); 001141 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 001142 ** 001143 ** then the returned trigger structure is equivalent to: 001144 ** 001145 ** CREATE TRIGGER ... DELETE ON p BEGIN 001146 ** DELETE FROM c WHERE ck = old.pk; 001147 ** END; 001148 ** 001149 ** The returned pointer is cached as part of the foreign key object. It 001150 ** is eventually freed along with the rest of the foreign key object by 001151 ** sqlite3FkDelete(). 001152 */ 001153 static Trigger *fkActionTrigger( 001154 Parse *pParse, /* Parse context */ 001155 Table *pTab, /* Table being updated or deleted from */ 001156 FKey *pFKey, /* Foreign key to get action for */ 001157 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 001158 ){ 001159 sqlite3 *db = pParse->db; /* Database handle */ 001160 int action; /* One of OE_None, OE_Cascade etc. */ 001161 Trigger *pTrigger; /* Trigger definition to return */ 001162 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 001163 001164 action = pFKey->aAction[iAction]; 001165 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ 001166 return 0; 001167 } 001168 pTrigger = pFKey->apTrigger[iAction]; 001169 001170 if( action!=OE_None && !pTrigger ){ 001171 char const *zFrom; /* Name of child table */ 001172 int nFrom; /* Length in bytes of zFrom */ 001173 Index *pIdx = 0; /* Parent key index for this FK */ 001174 int *aiCol = 0; /* child table cols -> parent key cols */ 001175 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 001176 Expr *pWhere = 0; /* WHERE clause of trigger step */ 001177 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 001178 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 001179 int i; /* Iterator variable */ 001180 Expr *pWhen = 0; /* WHEN clause for the trigger */ 001181 001182 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 001183 assert( aiCol || pFKey->nCol==1 ); 001184 001185 for(i=0; i<pFKey->nCol; i++){ 001186 Token tOld = { "old", 3 }; /* Literal "old" token */ 001187 Token tNew = { "new", 3 }; /* Literal "new" token */ 001188 Token tFromCol; /* Name of column in child table */ 001189 Token tToCol; /* Name of column in parent table */ 001190 int iFromCol; /* Idx of column in child table */ 001191 Expr *pEq; /* tFromCol = OLD.tToCol */ 001192 001193 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 001194 assert( iFromCol>=0 ); 001195 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); 001196 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 001197 sqlite3TokenInit(&tToCol, 001198 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName); 001199 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName); 001200 001201 /* Create the expression "OLD.zToCol = zFromCol". It is important 001202 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 001203 ** that the affinity and collation sequence associated with the 001204 ** parent table are used for the comparison. */ 001205 pEq = sqlite3PExpr(pParse, TK_EQ, 001206 sqlite3PExpr(pParse, TK_DOT, 001207 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 001208 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 001209 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) 001210 ); 001211 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 001212 001213 /* For ON UPDATE, construct the next term of the WHEN clause. 001214 ** The final WHEN clause will be like this: 001215 ** 001216 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 001217 */ 001218 if( pChanges ){ 001219 pEq = sqlite3PExpr(pParse, TK_IS, 001220 sqlite3PExpr(pParse, TK_DOT, 001221 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 001222 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 001223 sqlite3PExpr(pParse, TK_DOT, 001224 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 001225 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) 001226 ); 001227 pWhen = sqlite3ExprAnd(db, pWhen, pEq); 001228 } 001229 001230 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 001231 Expr *pNew; 001232 if( action==OE_Cascade ){ 001233 pNew = sqlite3PExpr(pParse, TK_DOT, 001234 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 001235 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); 001236 }else if( action==OE_SetDflt ){ 001237 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; 001238 if( pDflt ){ 001239 pNew = sqlite3ExprDup(db, pDflt, 0); 001240 }else{ 001241 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 001242 } 001243 }else{ 001244 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 001245 } 001246 pList = sqlite3ExprListAppend(pParse, pList, pNew); 001247 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 001248 } 001249 } 001250 sqlite3DbFree(db, aiCol); 001251 001252 zFrom = pFKey->pFrom->zName; 001253 nFrom = sqlite3Strlen30(zFrom); 001254 001255 if( action==OE_Restrict ){ 001256 Token tFrom; 001257 Expr *pRaise; 001258 001259 tFrom.z = zFrom; 001260 tFrom.n = nFrom; 001261 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 001262 if( pRaise ){ 001263 pRaise->affinity = OE_Abort; 001264 } 001265 pSelect = sqlite3SelectNew(pParse, 001266 sqlite3ExprListAppend(pParse, 0, pRaise), 001267 sqlite3SrcListAppend(db, 0, &tFrom, 0), 001268 pWhere, 001269 0, 0, 0, 0, 0, 0 001270 ); 001271 pWhere = 0; 001272 } 001273 001274 /* Disable lookaside memory allocation */ 001275 db->lookaside.bDisable++; 001276 001277 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 001278 sizeof(Trigger) + /* struct Trigger */ 001279 sizeof(TriggerStep) + /* Single step in trigger program */ 001280 nFrom + 1 /* Space for pStep->zTarget */ 001281 ); 001282 if( pTrigger ){ 001283 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 001284 pStep->zTarget = (char *)&pStep[1]; 001285 memcpy((char *)pStep->zTarget, zFrom, nFrom); 001286 001287 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 001288 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 001289 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 001290 if( pWhen ){ 001291 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); 001292 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 001293 } 001294 } 001295 001296 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 001297 db->lookaside.bDisable--; 001298 001299 sqlite3ExprDelete(db, pWhere); 001300 sqlite3ExprDelete(db, pWhen); 001301 sqlite3ExprListDelete(db, pList); 001302 sqlite3SelectDelete(db, pSelect); 001303 if( db->mallocFailed==1 ){ 001304 fkTriggerDelete(db, pTrigger); 001305 return 0; 001306 } 001307 assert( pStep!=0 ); 001308 001309 switch( action ){ 001310 case OE_Restrict: 001311 pStep->op = TK_SELECT; 001312 break; 001313 case OE_Cascade: 001314 if( !pChanges ){ 001315 pStep->op = TK_DELETE; 001316 break; 001317 } 001318 default: 001319 pStep->op = TK_UPDATE; 001320 } 001321 pStep->pTrig = pTrigger; 001322 pTrigger->pSchema = pTab->pSchema; 001323 pTrigger->pTabSchema = pTab->pSchema; 001324 pFKey->apTrigger[iAction] = pTrigger; 001325 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 001326 } 001327 001328 return pTrigger; 001329 } 001330 001331 /* 001332 ** This function is called when deleting or updating a row to implement 001333 ** any required CASCADE, SET NULL or SET DEFAULT actions. 001334 */ 001335 void sqlite3FkActions( 001336 Parse *pParse, /* Parse context */ 001337 Table *pTab, /* Table being updated or deleted from */ 001338 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 001339 int regOld, /* Address of array containing old row */ 001340 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 001341 int bChngRowid /* True if rowid is UPDATEd */ 001342 ){ 001343 /* If foreign-key support is enabled, iterate through all FKs that 001344 ** refer to table pTab. If there is an action associated with the FK 001345 ** for this operation (either update or delete), invoke the associated 001346 ** trigger sub-program. */ 001347 if( pParse->db->flags&SQLITE_ForeignKeys ){ 001348 FKey *pFKey; /* Iterator variable */ 001349 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 001350 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 001351 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 001352 if( pAct ){ 001353 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 001354 } 001355 } 001356 } 001357 } 001358 } 001359 001360 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 001361 001362 /* 001363 ** Free all memory associated with foreign key definitions attached to 001364 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 001365 ** hash table. 001366 */ 001367 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 001368 FKey *pFKey; /* Iterator variable */ 001369 FKey *pNext; /* Copy of pFKey->pNextFrom */ 001370 001371 assert( db==0 || IsVirtual(pTab) 001372 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 001373 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ 001374 001375 /* Remove the FK from the fkeyHash hash table. */ 001376 if( !db || db->pnBytesFreed==0 ){ 001377 if( pFKey->pPrevTo ){ 001378 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 001379 }else{ 001380 void *p = (void *)pFKey->pNextTo; 001381 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 001382 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); 001383 } 001384 if( pFKey->pNextTo ){ 001385 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 001386 } 001387 } 001388 001389 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 001390 ** classified as either immediate or deferred. 001391 */ 001392 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 001393 001394 /* Delete any triggers created to implement actions for this FK. */ 001395 #ifndef SQLITE_OMIT_TRIGGER 001396 fkTriggerDelete(db, pFKey->apTrigger[0]); 001397 fkTriggerDelete(db, pFKey->apTrigger[1]); 001398 #endif 001399 001400 pNext = pFKey->pNextFrom; 001401 sqlite3DbFree(db, pFKey); 001402 } 001403 } 001404 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */