000001 /* 000002 ** 2003 October 31 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains the C functions that implement date and time 000013 ** functions for SQLite. 000014 ** 000015 ** There is only one exported symbol in this file - the function 000016 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 000017 ** All other code has file scope. 000018 ** 000019 ** SQLite processes all times and dates as julian day numbers. The 000020 ** dates and times are stored as the number of days since noon 000021 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 000022 ** calendar system. 000023 ** 000024 ** 1970-01-01 00:00:00 is JD 2440587.5 000025 ** 2000-01-01 00:00:00 is JD 2451544.5 000026 ** 000027 ** This implementation requires years to be expressed as a 4-digit number 000028 ** which means that only dates between 0000-01-01 and 9999-12-31 can 000029 ** be represented, even though julian day numbers allow a much wider 000030 ** range of dates. 000031 ** 000032 ** The Gregorian calendar system is used for all dates and times, 000033 ** even those that predate the Gregorian calendar. Historians usually 000034 ** use the julian calendar for dates prior to 1582-10-15 and for some 000035 ** dates afterwards, depending on locale. Beware of this difference. 000036 ** 000037 ** The conversion algorithms are implemented based on descriptions 000038 ** in the following text: 000039 ** 000040 ** Jean Meeus 000041 ** Astronomical Algorithms, 2nd Edition, 1998 000042 ** ISBM 0-943396-61-1 000043 ** Willmann-Bell, Inc 000044 ** Richmond, Virginia (USA) 000045 */ 000046 #include "sqliteInt.h" 000047 #include <stdlib.h> 000048 #include <assert.h> 000049 #include <time.h> 000050 000051 #ifndef SQLITE_OMIT_DATETIME_FUNCS 000052 000053 /* 000054 ** The MSVC CRT on Windows CE may not have a localtime() function. 000055 ** So declare a substitute. The substitute function itself is 000056 ** defined in "os_win.c". 000057 */ 000058 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ 000059 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) 000060 struct tm *__cdecl localtime(const time_t *); 000061 #endif 000062 000063 /* 000064 ** A structure for holding a single date and time. 000065 */ 000066 typedef struct DateTime DateTime; 000067 struct DateTime { 000068 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 000069 int Y, M, D; /* Year, month, and day */ 000070 int h, m; /* Hour and minutes */ 000071 int tz; /* Timezone offset in minutes */ 000072 double s; /* Seconds */ 000073 char validJD; /* True (1) if iJD is valid */ 000074 char rawS; /* Raw numeric value stored in s */ 000075 char validYMD; /* True (1) if Y,M,D are valid */ 000076 char validHMS; /* True (1) if h,m,s are valid */ 000077 char validTZ; /* True (1) if tz is valid */ 000078 char tzSet; /* Timezone was set explicitly */ 000079 char isError; /* An overflow has occurred */ 000080 }; 000081 000082 000083 /* 000084 ** Convert zDate into one or more integers according to the conversion 000085 ** specifier zFormat. 000086 ** 000087 ** zFormat[] contains 4 characters for each integer converted, except for 000088 ** the last integer which is specified by three characters. The meaning 000089 ** of a four-character format specifiers ABCD is: 000090 ** 000091 ** A: number of digits to convert. Always "2" or "4". 000092 ** B: minimum value. Always "0" or "1". 000093 ** C: maximum value, decoded as: 000094 ** a: 12 000095 ** b: 14 000096 ** c: 24 000097 ** d: 31 000098 ** e: 59 000099 ** f: 9999 000100 ** D: the separator character, or \000 to indicate this is the 000101 ** last number to convert. 000102 ** 000103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would 000104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". 000105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates 000106 ** the 2-digit day which is the last integer in the set. 000107 ** 000108 ** The function returns the number of successful conversions. 000109 */ 000110 static int getDigits(const char *zDate, const char *zFormat, ...){ 000111 /* The aMx[] array translates the 3rd character of each format 000112 ** spec into a max size: a b c d e f */ 000113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; 000114 va_list ap; 000115 int cnt = 0; 000116 char nextC; 000117 va_start(ap, zFormat); 000118 do{ 000119 char N = zFormat[0] - '0'; 000120 char min = zFormat[1] - '0'; 000121 int val = 0; 000122 u16 max; 000123 000124 assert( zFormat[2]>='a' && zFormat[2]<='f' ); 000125 max = aMx[zFormat[2] - 'a']; 000126 nextC = zFormat[3]; 000127 val = 0; 000128 while( N-- ){ 000129 if( !sqlite3Isdigit(*zDate) ){ 000130 goto end_getDigits; 000131 } 000132 val = val*10 + *zDate - '0'; 000133 zDate++; 000134 } 000135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ 000136 goto end_getDigits; 000137 } 000138 *va_arg(ap,int*) = val; 000139 zDate++; 000140 cnt++; 000141 zFormat += 4; 000142 }while( nextC ); 000143 end_getDigits: 000144 va_end(ap); 000145 return cnt; 000146 } 000147 000148 /* 000149 ** Parse a timezone extension on the end of a date-time. 000150 ** The extension is of the form: 000151 ** 000152 ** (+/-)HH:MM 000153 ** 000154 ** Or the "zulu" notation: 000155 ** 000156 ** Z 000157 ** 000158 ** If the parse is successful, write the number of minutes 000159 ** of change in p->tz and return 0. If a parser error occurs, 000160 ** return non-zero. 000161 ** 000162 ** A missing specifier is not considered an error. 000163 */ 000164 static int parseTimezone(const char *zDate, DateTime *p){ 000165 int sgn = 0; 000166 int nHr, nMn; 000167 int c; 000168 while( sqlite3Isspace(*zDate) ){ zDate++; } 000169 p->tz = 0; 000170 c = *zDate; 000171 if( c=='-' ){ 000172 sgn = -1; 000173 }else if( c=='+' ){ 000174 sgn = +1; 000175 }else if( c=='Z' || c=='z' ){ 000176 zDate++; 000177 goto zulu_time; 000178 }else{ 000179 return c!=0; 000180 } 000181 zDate++; 000182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ 000183 return 1; 000184 } 000185 zDate += 5; 000186 p->tz = sgn*(nMn + nHr*60); 000187 zulu_time: 000188 while( sqlite3Isspace(*zDate) ){ zDate++; } 000189 p->tzSet = 1; 000190 return *zDate!=0; 000191 } 000192 000193 /* 000194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 000195 ** The HH, MM, and SS must each be exactly 2 digits. The 000196 ** fractional seconds FFFF can be one or more digits. 000197 ** 000198 ** Return 1 if there is a parsing error and 0 on success. 000199 */ 000200 static int parseHhMmSs(const char *zDate, DateTime *p){ 000201 int h, m, s; 000202 double ms = 0.0; 000203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ 000204 return 1; 000205 } 000206 zDate += 5; 000207 if( *zDate==':' ){ 000208 zDate++; 000209 if( getDigits(zDate, "20e", &s)!=1 ){ 000210 return 1; 000211 } 000212 zDate += 2; 000213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 000214 double rScale = 1.0; 000215 zDate++; 000216 while( sqlite3Isdigit(*zDate) ){ 000217 ms = ms*10.0 + *zDate - '0'; 000218 rScale *= 10.0; 000219 zDate++; 000220 } 000221 ms /= rScale; 000222 } 000223 }else{ 000224 s = 0; 000225 } 000226 p->validJD = 0; 000227 p->rawS = 0; 000228 p->validHMS = 1; 000229 p->h = h; 000230 p->m = m; 000231 p->s = s + ms; 000232 if( parseTimezone(zDate, p) ) return 1; 000233 p->validTZ = (p->tz!=0)?1:0; 000234 return 0; 000235 } 000236 000237 /* 000238 ** Put the DateTime object into its error state. 000239 */ 000240 static void datetimeError(DateTime *p){ 000241 memset(p, 0, sizeof(*p)); 000242 p->isError = 1; 000243 } 000244 000245 /* 000246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 000247 ** that the YYYY-MM-DD is according to the Gregorian calendar. 000248 ** 000249 ** Reference: Meeus page 61 000250 */ 000251 static void computeJD(DateTime *p){ 000252 int Y, M, D, A, B, X1, X2; 000253 000254 if( p->validJD ) return; 000255 if( p->validYMD ){ 000256 Y = p->Y; 000257 M = p->M; 000258 D = p->D; 000259 }else{ 000260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 000261 M = 1; 000262 D = 1; 000263 } 000264 if( Y<-4713 || Y>9999 || p->rawS ){ 000265 datetimeError(p); 000266 return; 000267 } 000268 if( M<=2 ){ 000269 Y--; 000270 M += 12; 000271 } 000272 A = Y/100; 000273 B = 2 - A + (A/4); 000274 X1 = 36525*(Y+4716)/100; 000275 X2 = 306001*(M+1)/10000; 000276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 000277 p->validJD = 1; 000278 if( p->validHMS ){ 000279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 000280 if( p->validTZ ){ 000281 p->iJD -= p->tz*60000; 000282 p->validYMD = 0; 000283 p->validHMS = 0; 000284 p->validTZ = 0; 000285 } 000286 } 000287 } 000288 000289 /* 000290 ** Parse dates of the form 000291 ** 000292 ** YYYY-MM-DD HH:MM:SS.FFF 000293 ** YYYY-MM-DD HH:MM:SS 000294 ** YYYY-MM-DD HH:MM 000295 ** YYYY-MM-DD 000296 ** 000297 ** Write the result into the DateTime structure and return 0 000298 ** on success and 1 if the input string is not a well-formed 000299 ** date. 000300 */ 000301 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 000302 int Y, M, D, neg; 000303 000304 if( zDate[0]=='-' ){ 000305 zDate++; 000306 neg = 1; 000307 }else{ 000308 neg = 0; 000309 } 000310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ 000311 return 1; 000312 } 000313 zDate += 10; 000314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 000315 if( parseHhMmSs(zDate, p)==0 ){ 000316 /* We got the time */ 000317 }else if( *zDate==0 ){ 000318 p->validHMS = 0; 000319 }else{ 000320 return 1; 000321 } 000322 p->validJD = 0; 000323 p->validYMD = 1; 000324 p->Y = neg ? -Y : Y; 000325 p->M = M; 000326 p->D = D; 000327 if( p->validTZ ){ 000328 computeJD(p); 000329 } 000330 return 0; 000331 } 000332 000333 /* 000334 ** Set the time to the current time reported by the VFS. 000335 ** 000336 ** Return the number of errors. 000337 */ 000338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 000339 p->iJD = sqlite3StmtCurrentTime(context); 000340 if( p->iJD>0 ){ 000341 p->validJD = 1; 000342 return 0; 000343 }else{ 000344 return 1; 000345 } 000346 } 000347 000348 /* 000349 ** Input "r" is a numeric quantity which might be a julian day number, 000350 ** or the number of seconds since 1970. If the value if r is within 000351 ** range of a julian day number, install it as such and set validJD. 000352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. 000353 */ 000354 static void setRawDateNumber(DateTime *p, double r){ 000355 p->s = r; 000356 p->rawS = 1; 000357 if( r>=0.0 && r<5373484.5 ){ 000358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 000359 p->validJD = 1; 000360 } 000361 } 000362 000363 /* 000364 ** Attempt to parse the given string into a julian day number. Return 000365 ** the number of errors. 000366 ** 000367 ** The following are acceptable forms for the input string: 000368 ** 000369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 000370 ** DDDD.DD 000371 ** now 000372 ** 000373 ** In the first form, the +/-HH:MM is always optional. The fractional 000374 ** seconds extension (the ".FFF") is optional. The seconds portion 000375 ** (":SS.FFF") is option. The year and date can be omitted as long 000376 ** as there is a time string. The time string can be omitted as long 000377 ** as there is a year and date. 000378 */ 000379 static int parseDateOrTime( 000380 sqlite3_context *context, 000381 const char *zDate, 000382 DateTime *p 000383 ){ 000384 double r; 000385 if( parseYyyyMmDd(zDate,p)==0 ){ 000386 return 0; 000387 }else if( parseHhMmSs(zDate, p)==0 ){ 000388 return 0; 000389 }else if( sqlite3StrICmp(zDate,"now")==0){ 000390 return setDateTimeToCurrent(context, p); 000391 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ 000392 setRawDateNumber(p, r); 000393 return 0; 000394 } 000395 return 1; 000396 } 000397 000398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. 000399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value 000400 ** for DateTime.iJD. 000401 ** 000402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with 000403 ** such a large integer literal, so we have to encode it. 000404 */ 000405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) 000406 000407 /* 000408 ** Return TRUE if the given julian day number is within range. 000409 ** 000410 ** The input is the JulianDay times 86400000. 000411 */ 000412 static int validJulianDay(sqlite3_int64 iJD){ 000413 return iJD>=0 && iJD<=INT_464269060799999; 000414 } 000415 000416 /* 000417 ** Compute the Year, Month, and Day from the julian day number. 000418 */ 000419 static void computeYMD(DateTime *p){ 000420 int Z, A, B, C, D, E, X1; 000421 if( p->validYMD ) return; 000422 if( !p->validJD ){ 000423 p->Y = 2000; 000424 p->M = 1; 000425 p->D = 1; 000426 }else{ 000427 assert( validJulianDay(p->iJD) ); 000428 Z = (int)((p->iJD + 43200000)/86400000); 000429 A = (int)((Z - 1867216.25)/36524.25); 000430 A = Z + 1 + A - (A/4); 000431 B = A + 1524; 000432 C = (int)((B - 122.1)/365.25); 000433 D = (36525*(C&32767))/100; 000434 E = (int)((B-D)/30.6001); 000435 X1 = (int)(30.6001*E); 000436 p->D = B - D - X1; 000437 p->M = E<14 ? E-1 : E-13; 000438 p->Y = p->M>2 ? C - 4716 : C - 4715; 000439 } 000440 p->validYMD = 1; 000441 } 000442 000443 /* 000444 ** Compute the Hour, Minute, and Seconds from the julian day number. 000445 */ 000446 static void computeHMS(DateTime *p){ 000447 int s; 000448 if( p->validHMS ) return; 000449 computeJD(p); 000450 s = (int)((p->iJD + 43200000) % 86400000); 000451 p->s = s/1000.0; 000452 s = (int)p->s; 000453 p->s -= s; 000454 p->h = s/3600; 000455 s -= p->h*3600; 000456 p->m = s/60; 000457 p->s += s - p->m*60; 000458 p->rawS = 0; 000459 p->validHMS = 1; 000460 } 000461 000462 /* 000463 ** Compute both YMD and HMS 000464 */ 000465 static void computeYMD_HMS(DateTime *p){ 000466 computeYMD(p); 000467 computeHMS(p); 000468 } 000469 000470 /* 000471 ** Clear the YMD and HMS and the TZ 000472 */ 000473 static void clearYMD_HMS_TZ(DateTime *p){ 000474 p->validYMD = 0; 000475 p->validHMS = 0; 000476 p->validTZ = 0; 000477 } 000478 000479 #ifndef SQLITE_OMIT_LOCALTIME 000480 /* 000481 ** On recent Windows platforms, the localtime_s() function is available 000482 ** as part of the "Secure CRT". It is essentially equivalent to 000483 ** localtime_r() available under most POSIX platforms, except that the 000484 ** order of the parameters is reversed. 000485 ** 000486 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 000487 ** 000488 ** If the user has not indicated to use localtime_r() or localtime_s() 000489 ** already, check for an MSVC build environment that provides 000490 ** localtime_s(). 000491 */ 000492 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ 000493 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 000494 #undef HAVE_LOCALTIME_S 000495 #define HAVE_LOCALTIME_S 1 000496 #endif 000497 000498 /* 000499 ** The following routine implements the rough equivalent of localtime_r() 000500 ** using whatever operating-system specific localtime facility that 000501 ** is available. This routine returns 0 on success and 000502 ** non-zero on any kind of error. 000503 ** 000504 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this 000505 ** routine will always fail. 000506 ** 000507 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C 000508 ** library function localtime_r() is used to assist in the calculation of 000509 ** local time. 000510 */ 000511 static int osLocaltime(time_t *t, struct tm *pTm){ 000512 int rc; 000513 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S 000514 struct tm *pX; 000515 #if SQLITE_THREADSAFE>0 000516 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 000517 #endif 000518 sqlite3_mutex_enter(mutex); 000519 pX = localtime(t); 000520 #ifndef SQLITE_UNTESTABLE 000521 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; 000522 #endif 000523 if( pX ) *pTm = *pX; 000524 sqlite3_mutex_leave(mutex); 000525 rc = pX==0; 000526 #else 000527 #ifndef SQLITE_UNTESTABLE 000528 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; 000529 #endif 000530 #if HAVE_LOCALTIME_R 000531 rc = localtime_r(t, pTm)==0; 000532 #else 000533 rc = localtime_s(pTm, t); 000534 #endif /* HAVE_LOCALTIME_R */ 000535 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ 000536 return rc; 000537 } 000538 #endif /* SQLITE_OMIT_LOCALTIME */ 000539 000540 000541 #ifndef SQLITE_OMIT_LOCALTIME 000542 /* 000543 ** Compute the difference (in milliseconds) between localtime and UTC 000544 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, 000545 ** return this value and set *pRc to SQLITE_OK. 000546 ** 000547 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value 000548 ** is undefined in this case. 000549 */ 000550 static sqlite3_int64 localtimeOffset( 000551 DateTime *p, /* Date at which to calculate offset */ 000552 sqlite3_context *pCtx, /* Write error here if one occurs */ 000553 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ 000554 ){ 000555 DateTime x, y; 000556 time_t t; 000557 struct tm sLocal; 000558 000559 /* Initialize the contents of sLocal to avoid a compiler warning. */ 000560 memset(&sLocal, 0, sizeof(sLocal)); 000561 000562 x = *p; 000563 computeYMD_HMS(&x); 000564 if( x.Y<1971 || x.Y>=2038 ){ 000565 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only 000566 ** works for years between 1970 and 2037. For dates outside this range, 000567 ** SQLite attempts to map the year into an equivalent year within this 000568 ** range, do the calculation, then map the year back. 000569 */ 000570 x.Y = 2000; 000571 x.M = 1; 000572 x.D = 1; 000573 x.h = 0; 000574 x.m = 0; 000575 x.s = 0.0; 000576 } else { 000577 int s = (int)(x.s + 0.5); 000578 x.s = s; 000579 } 000580 x.tz = 0; 000581 x.validJD = 0; 000582 computeJD(&x); 000583 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 000584 if( osLocaltime(&t, &sLocal) ){ 000585 sqlite3_result_error(pCtx, "local time unavailable", -1); 000586 *pRc = SQLITE_ERROR; 000587 return 0; 000588 } 000589 y.Y = sLocal.tm_year + 1900; 000590 y.M = sLocal.tm_mon + 1; 000591 y.D = sLocal.tm_mday; 000592 y.h = sLocal.tm_hour; 000593 y.m = sLocal.tm_min; 000594 y.s = sLocal.tm_sec; 000595 y.validYMD = 1; 000596 y.validHMS = 1; 000597 y.validJD = 0; 000598 y.rawS = 0; 000599 y.validTZ = 0; 000600 y.isError = 0; 000601 computeJD(&y); 000602 *pRc = SQLITE_OK; 000603 return y.iJD - x.iJD; 000604 } 000605 #endif /* SQLITE_OMIT_LOCALTIME */ 000606 000607 /* 000608 ** The following table defines various date transformations of the form 000609 ** 000610 ** 'NNN days' 000611 ** 000612 ** Where NNN is an arbitrary floating-point number and "days" can be one 000613 ** of several units of time. 000614 */ 000615 static const struct { 000616 u8 eType; /* Transformation type code */ 000617 u8 nName; /* Length of th name */ 000618 char *zName; /* Name of the transformation */ 000619 double rLimit; /* Maximum NNN value for this transform */ 000620 double rXform; /* Constant used for this transform */ 000621 } aXformType[] = { 000622 { 0, 6, "second", 464269060800.0, 86400000.0/(24.0*60.0*60.0) }, 000623 { 0, 6, "minute", 7737817680.0, 86400000.0/(24.0*60.0) }, 000624 { 0, 4, "hour", 128963628.0, 86400000.0/24.0 }, 000625 { 0, 3, "day", 5373485.0, 86400000.0 }, 000626 { 1, 5, "month", 176546.0, 30.0*86400000.0 }, 000627 { 2, 4, "year", 14713.0, 365.0*86400000.0 }, 000628 }; 000629 000630 /* 000631 ** Process a modifier to a date-time stamp. The modifiers are 000632 ** as follows: 000633 ** 000634 ** NNN days 000635 ** NNN hours 000636 ** NNN minutes 000637 ** NNN.NNNN seconds 000638 ** NNN months 000639 ** NNN years 000640 ** start of month 000641 ** start of year 000642 ** start of week 000643 ** start of day 000644 ** weekday N 000645 ** unixepoch 000646 ** localtime 000647 ** utc 000648 ** 000649 ** Return 0 on success and 1 if there is any kind of error. If the error 000650 ** is in a system call (i.e. localtime()), then an error message is written 000651 ** to context pCtx. If the error is an unrecognized modifier, no error is 000652 ** written to pCtx. 000653 */ 000654 static int parseModifier( 000655 sqlite3_context *pCtx, /* Function context */ 000656 const char *z, /* The text of the modifier */ 000657 int n, /* Length of zMod in bytes */ 000658 DateTime *p /* The date/time value to be modified */ 000659 ){ 000660 int rc = 1; 000661 double r; 000662 switch(sqlite3UpperToLower[(u8)z[0]] ){ 000663 #ifndef SQLITE_OMIT_LOCALTIME 000664 case 'l': { 000665 /* localtime 000666 ** 000667 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 000668 ** show local time. 000669 */ 000670 if( sqlite3_stricmp(z, "localtime")==0 ){ 000671 computeJD(p); 000672 p->iJD += localtimeOffset(p, pCtx, &rc); 000673 clearYMD_HMS_TZ(p); 000674 } 000675 break; 000676 } 000677 #endif 000678 case 'u': { 000679 /* 000680 ** unixepoch 000681 ** 000682 ** Treat the current value of p->s as the number of 000683 ** seconds since 1970. Convert to a real julian day number. 000684 */ 000685 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ 000686 r = p->s*1000.0 + 210866760000000.0; 000687 if( r>=0.0 && r<464269060800000.0 ){ 000688 clearYMD_HMS_TZ(p); 000689 p->iJD = (sqlite3_int64)r; 000690 p->validJD = 1; 000691 p->rawS = 0; 000692 rc = 0; 000693 } 000694 } 000695 #ifndef SQLITE_OMIT_LOCALTIME 000696 else if( sqlite3_stricmp(z, "utc")==0 ){ 000697 if( p->tzSet==0 ){ 000698 sqlite3_int64 c1; 000699 computeJD(p); 000700 c1 = localtimeOffset(p, pCtx, &rc); 000701 if( rc==SQLITE_OK ){ 000702 p->iJD -= c1; 000703 clearYMD_HMS_TZ(p); 000704 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); 000705 } 000706 p->tzSet = 1; 000707 }else{ 000708 rc = SQLITE_OK; 000709 } 000710 } 000711 #endif 000712 break; 000713 } 000714 case 'w': { 000715 /* 000716 ** weekday N 000717 ** 000718 ** Move the date to the same time on the next occurrence of 000719 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 000720 ** date is already on the appropriate weekday, this is a no-op. 000721 */ 000722 if( sqlite3_strnicmp(z, "weekday ", 8)==0 000723 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) 000724 && (n=(int)r)==r && n>=0 && r<7 ){ 000725 sqlite3_int64 Z; 000726 computeYMD_HMS(p); 000727 p->validTZ = 0; 000728 p->validJD = 0; 000729 computeJD(p); 000730 Z = ((p->iJD + 129600000)/86400000) % 7; 000731 if( Z>n ) Z -= 7; 000732 p->iJD += (n - Z)*86400000; 000733 clearYMD_HMS_TZ(p); 000734 rc = 0; 000735 } 000736 break; 000737 } 000738 case 's': { 000739 /* 000740 ** start of TTTTT 000741 ** 000742 ** Move the date backwards to the beginning of the current day, 000743 ** or month or year. 000744 */ 000745 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; 000746 z += 9; 000747 computeYMD(p); 000748 p->validHMS = 1; 000749 p->h = p->m = 0; 000750 p->s = 0.0; 000751 p->validTZ = 0; 000752 p->validJD = 0; 000753 if( sqlite3_stricmp(z,"month")==0 ){ 000754 p->D = 1; 000755 rc = 0; 000756 }else if( sqlite3_stricmp(z,"year")==0 ){ 000757 computeYMD(p); 000758 p->M = 1; 000759 p->D = 1; 000760 rc = 0; 000761 }else if( sqlite3_stricmp(z,"day")==0 ){ 000762 rc = 0; 000763 } 000764 break; 000765 } 000766 case '+': 000767 case '-': 000768 case '0': 000769 case '1': 000770 case '2': 000771 case '3': 000772 case '4': 000773 case '5': 000774 case '6': 000775 case '7': 000776 case '8': 000777 case '9': { 000778 double rRounder; 000779 int i; 000780 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 000781 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ 000782 rc = 1; 000783 break; 000784 } 000785 if( z[n]==':' ){ 000786 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 000787 ** specified number of hours, minutes, seconds, and fractional seconds 000788 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 000789 ** omitted. 000790 */ 000791 const char *z2 = z; 000792 DateTime tx; 000793 sqlite3_int64 day; 000794 if( !sqlite3Isdigit(*z2) ) z2++; 000795 memset(&tx, 0, sizeof(tx)); 000796 if( parseHhMmSs(z2, &tx) ) break; 000797 computeJD(&tx); 000798 tx.iJD -= 43200000; 000799 day = tx.iJD/86400000; 000800 tx.iJD -= day*86400000; 000801 if( z[0]=='-' ) tx.iJD = -tx.iJD; 000802 computeJD(p); 000803 clearYMD_HMS_TZ(p); 000804 p->iJD += tx.iJD; 000805 rc = 0; 000806 break; 000807 } 000808 000809 /* If control reaches this point, it means the transformation is 000810 ** one of the forms like "+NNN days". */ 000811 z += n; 000812 while( sqlite3Isspace(*z) ) z++; 000813 n = sqlite3Strlen30(z); 000814 if( n>10 || n<3 ) break; 000815 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; 000816 computeJD(p); 000817 rc = 1; 000818 rRounder = r<0 ? -0.5 : +0.5; 000819 for(i=0; i<ArraySize(aXformType); i++){ 000820 if( aXformType[i].nName==n 000821 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 000822 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit 000823 ){ 000824 switch( aXformType[i].eType ){ 000825 case 1: { /* Special processing to add months */ 000826 int x; 000827 computeYMD_HMS(p); 000828 p->M += (int)r; 000829 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 000830 p->Y += x; 000831 p->M -= x*12; 000832 p->validJD = 0; 000833 r -= (int)r; 000834 break; 000835 } 000836 case 2: { /* Special processing to add years */ 000837 int y = (int)r; 000838 computeYMD_HMS(p); 000839 p->Y += y; 000840 p->validJD = 0; 000841 r -= (int)r; 000842 break; 000843 } 000844 } 000845 computeJD(p); 000846 p->iJD += (sqlite3_int64)(r*aXformType[i].rXform + rRounder); 000847 rc = 0; 000848 break; 000849 } 000850 } 000851 clearYMD_HMS_TZ(p); 000852 break; 000853 } 000854 default: { 000855 break; 000856 } 000857 } 000858 return rc; 000859 } 000860 000861 /* 000862 ** Process time function arguments. argv[0] is a date-time stamp. 000863 ** argv[1] and following are modifiers. Parse them all and write 000864 ** the resulting time into the DateTime structure p. Return 0 000865 ** on success and 1 if there are any errors. 000866 ** 000867 ** If there are zero parameters (if even argv[0] is undefined) 000868 ** then assume a default value of "now" for argv[0]. 000869 */ 000870 static int isDate( 000871 sqlite3_context *context, 000872 int argc, 000873 sqlite3_value **argv, 000874 DateTime *p 000875 ){ 000876 int i, n; 000877 const unsigned char *z; 000878 int eType; 000879 memset(p, 0, sizeof(*p)); 000880 if( argc==0 ){ 000881 return setDateTimeToCurrent(context, p); 000882 } 000883 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 000884 || eType==SQLITE_INTEGER ){ 000885 setRawDateNumber(p, sqlite3_value_double(argv[0])); 000886 }else{ 000887 z = sqlite3_value_text(argv[0]); 000888 if( !z || parseDateOrTime(context, (char*)z, p) ){ 000889 return 1; 000890 } 000891 } 000892 for(i=1; i<argc; i++){ 000893 z = sqlite3_value_text(argv[i]); 000894 n = sqlite3_value_bytes(argv[i]); 000895 if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1; 000896 } 000897 computeJD(p); 000898 if( p->isError || !validJulianDay(p->iJD) ) return 1; 000899 return 0; 000900 } 000901 000902 000903 /* 000904 ** The following routines implement the various date and time functions 000905 ** of SQLite. 000906 */ 000907 000908 /* 000909 ** julianday( TIMESTRING, MOD, MOD, ...) 000910 ** 000911 ** Return the julian day number of the date specified in the arguments 000912 */ 000913 static void juliandayFunc( 000914 sqlite3_context *context, 000915 int argc, 000916 sqlite3_value **argv 000917 ){ 000918 DateTime x; 000919 if( isDate(context, argc, argv, &x)==0 ){ 000920 computeJD(&x); 000921 sqlite3_result_double(context, x.iJD/86400000.0); 000922 } 000923 } 000924 000925 /* 000926 ** datetime( TIMESTRING, MOD, MOD, ...) 000927 ** 000928 ** Return YYYY-MM-DD HH:MM:SS 000929 */ 000930 static void datetimeFunc( 000931 sqlite3_context *context, 000932 int argc, 000933 sqlite3_value **argv 000934 ){ 000935 DateTime x; 000936 if( isDate(context, argc, argv, &x)==0 ){ 000937 char zBuf[100]; 000938 computeYMD_HMS(&x); 000939 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 000940 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 000941 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 000942 } 000943 } 000944 000945 /* 000946 ** time( TIMESTRING, MOD, MOD, ...) 000947 ** 000948 ** Return HH:MM:SS 000949 */ 000950 static void timeFunc( 000951 sqlite3_context *context, 000952 int argc, 000953 sqlite3_value **argv 000954 ){ 000955 DateTime x; 000956 if( isDate(context, argc, argv, &x)==0 ){ 000957 char zBuf[100]; 000958 computeHMS(&x); 000959 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 000960 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 000961 } 000962 } 000963 000964 /* 000965 ** date( TIMESTRING, MOD, MOD, ...) 000966 ** 000967 ** Return YYYY-MM-DD 000968 */ 000969 static void dateFunc( 000970 sqlite3_context *context, 000971 int argc, 000972 sqlite3_value **argv 000973 ){ 000974 DateTime x; 000975 if( isDate(context, argc, argv, &x)==0 ){ 000976 char zBuf[100]; 000977 computeYMD(&x); 000978 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 000979 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 000980 } 000981 } 000982 000983 /* 000984 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 000985 ** 000986 ** Return a string described by FORMAT. Conversions as follows: 000987 ** 000988 ** %d day of month 000989 ** %f ** fractional seconds SS.SSS 000990 ** %H hour 00-24 000991 ** %j day of year 000-366 000992 ** %J ** julian day number 000993 ** %m month 01-12 000994 ** %M minute 00-59 000995 ** %s seconds since 1970-01-01 000996 ** %S seconds 00-59 000997 ** %w day of week 0-6 sunday==0 000998 ** %W week of year 00-53 000999 ** %Y year 0000-9999 001000 ** %% % 001001 */ 001002 static void strftimeFunc( 001003 sqlite3_context *context, 001004 int argc, 001005 sqlite3_value **argv 001006 ){ 001007 DateTime x; 001008 u64 n; 001009 size_t i,j; 001010 char *z; 001011 sqlite3 *db; 001012 const char *zFmt; 001013 char zBuf[100]; 001014 if( argc==0 ) return; 001015 zFmt = (const char*)sqlite3_value_text(argv[0]); 001016 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 001017 db = sqlite3_context_db_handle(context); 001018 for(i=0, n=1; zFmt[i]; i++, n++){ 001019 if( zFmt[i]=='%' ){ 001020 switch( zFmt[i+1] ){ 001021 case 'd': 001022 case 'H': 001023 case 'm': 001024 case 'M': 001025 case 'S': 001026 case 'W': 001027 n++; 001028 /* fall thru */ 001029 case 'w': 001030 case '%': 001031 break; 001032 case 'f': 001033 n += 8; 001034 break; 001035 case 'j': 001036 n += 3; 001037 break; 001038 case 'Y': 001039 n += 8; 001040 break; 001041 case 's': 001042 case 'J': 001043 n += 50; 001044 break; 001045 default: 001046 return; /* ERROR. return a NULL */ 001047 } 001048 i++; 001049 } 001050 } 001051 testcase( n==sizeof(zBuf)-1 ); 001052 testcase( n==sizeof(zBuf) ); 001053 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 001054 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); 001055 if( n<sizeof(zBuf) ){ 001056 z = zBuf; 001057 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 001058 sqlite3_result_error_toobig(context); 001059 return; 001060 }else{ 001061 z = sqlite3DbMallocRawNN(db, (int)n); 001062 if( z==0 ){ 001063 sqlite3_result_error_nomem(context); 001064 return; 001065 } 001066 } 001067 computeJD(&x); 001068 computeYMD_HMS(&x); 001069 for(i=j=0; zFmt[i]; i++){ 001070 if( zFmt[i]!='%' ){ 001071 z[j++] = zFmt[i]; 001072 }else{ 001073 i++; 001074 switch( zFmt[i] ){ 001075 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; 001076 case 'f': { 001077 double s = x.s; 001078 if( s>59.999 ) s = 59.999; 001079 sqlite3_snprintf(7, &z[j],"%06.3f", s); 001080 j += sqlite3Strlen30(&z[j]); 001081 break; 001082 } 001083 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; 001084 case 'W': /* Fall thru */ 001085 case 'j': { 001086 int nDay; /* Number of days since 1st day of year */ 001087 DateTime y = x; 001088 y.validJD = 0; 001089 y.M = 1; 001090 y.D = 1; 001091 computeJD(&y); 001092 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 001093 if( zFmt[i]=='W' ){ 001094 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 001095 wd = (int)(((x.iJD+43200000)/86400000)%7); 001096 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); 001097 j += 2; 001098 }else{ 001099 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); 001100 j += 3; 001101 } 001102 break; 001103 } 001104 case 'J': { 001105 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); 001106 j+=sqlite3Strlen30(&z[j]); 001107 break; 001108 } 001109 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; 001110 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; 001111 case 's': { 001112 sqlite3_snprintf(30,&z[j],"%lld", 001113 (i64)(x.iJD/1000 - 21086676*(i64)10000)); 001114 j += sqlite3Strlen30(&z[j]); 001115 break; 001116 } 001117 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; 001118 case 'w': { 001119 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; 001120 break; 001121 } 001122 case 'Y': { 001123 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); 001124 break; 001125 } 001126 default: z[j++] = '%'; break; 001127 } 001128 } 001129 } 001130 z[j] = 0; 001131 sqlite3_result_text(context, z, -1, 001132 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); 001133 } 001134 001135 /* 001136 ** current_time() 001137 ** 001138 ** This function returns the same value as time('now'). 001139 */ 001140 static void ctimeFunc( 001141 sqlite3_context *context, 001142 int NotUsed, 001143 sqlite3_value **NotUsed2 001144 ){ 001145 UNUSED_PARAMETER2(NotUsed, NotUsed2); 001146 timeFunc(context, 0, 0); 001147 } 001148 001149 /* 001150 ** current_date() 001151 ** 001152 ** This function returns the same value as date('now'). 001153 */ 001154 static void cdateFunc( 001155 sqlite3_context *context, 001156 int NotUsed, 001157 sqlite3_value **NotUsed2 001158 ){ 001159 UNUSED_PARAMETER2(NotUsed, NotUsed2); 001160 dateFunc(context, 0, 0); 001161 } 001162 001163 /* 001164 ** current_timestamp() 001165 ** 001166 ** This function returns the same value as datetime('now'). 001167 */ 001168 static void ctimestampFunc( 001169 sqlite3_context *context, 001170 int NotUsed, 001171 sqlite3_value **NotUsed2 001172 ){ 001173 UNUSED_PARAMETER2(NotUsed, NotUsed2); 001174 datetimeFunc(context, 0, 0); 001175 } 001176 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 001177 001178 #ifdef SQLITE_OMIT_DATETIME_FUNCS 001179 /* 001180 ** If the library is compiled to omit the full-scale date and time 001181 ** handling (to get a smaller binary), the following minimal version 001182 ** of the functions current_time(), current_date() and current_timestamp() 001183 ** are included instead. This is to support column declarations that 001184 ** include "DEFAULT CURRENT_TIME" etc. 001185 ** 001186 ** This function uses the C-library functions time(), gmtime() 001187 ** and strftime(). The format string to pass to strftime() is supplied 001188 ** as the user-data for the function. 001189 */ 001190 static void currentTimeFunc( 001191 sqlite3_context *context, 001192 int argc, 001193 sqlite3_value **argv 001194 ){ 001195 time_t t; 001196 char *zFormat = (char *)sqlite3_user_data(context); 001197 sqlite3_int64 iT; 001198 struct tm *pTm; 001199 struct tm sNow; 001200 char zBuf[20]; 001201 001202 UNUSED_PARAMETER(argc); 001203 UNUSED_PARAMETER(argv); 001204 001205 iT = sqlite3StmtCurrentTime(context); 001206 if( iT<=0 ) return; 001207 t = iT/1000 - 10000*(sqlite3_int64)21086676; 001208 #if HAVE_GMTIME_R 001209 pTm = gmtime_r(&t, &sNow); 001210 #else 001211 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 001212 pTm = gmtime(&t); 001213 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); 001214 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 001215 #endif 001216 if( pTm ){ 001217 strftime(zBuf, 20, zFormat, &sNow); 001218 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 001219 } 001220 } 001221 #endif 001222 001223 /* 001224 ** This function registered all of the above C functions as SQL 001225 ** functions. This should be the only routine in this file with 001226 ** external linkage. 001227 */ 001228 void sqlite3RegisterDateTimeFunctions(void){ 001229 static FuncDef aDateTimeFuncs[] = { 001230 #ifndef SQLITE_OMIT_DATETIME_FUNCS 001231 DFUNCTION(julianday, -1, 0, 0, juliandayFunc ), 001232 DFUNCTION(date, -1, 0, 0, dateFunc ), 001233 DFUNCTION(time, -1, 0, 0, timeFunc ), 001234 DFUNCTION(datetime, -1, 0, 0, datetimeFunc ), 001235 DFUNCTION(strftime, -1, 0, 0, strftimeFunc ), 001236 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), 001237 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 001238 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), 001239 #else 001240 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 001241 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 001242 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 001243 #endif 001244 }; 001245 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); 001246 }