000001 /* 000002 ** 2004 April 6 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file implements an external (disk-based) database using BTrees. 000013 ** See the header comment on "btreeInt.h" for additional information. 000014 ** Including a description of file format and an overview of operation. 000015 */ 000016 #include "btreeInt.h" 000017 000018 /* 000019 ** The header string that appears at the beginning of every 000020 ** SQLite database. 000021 */ 000022 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 000023 000024 /* 000025 ** Set this global variable to 1 to enable tracing using the TRACE 000026 ** macro. 000027 */ 000028 #if 0 000029 int sqlite3BtreeTrace=1; /* True to enable tracing */ 000030 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 000031 #else 000032 # define TRACE(X) 000033 #endif 000034 000035 /* 000036 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 000037 ** But if the value is zero, make it 65536. 000038 ** 000039 ** This routine is used to extract the "offset to cell content area" value 000040 ** from the header of a btree page. If the page size is 65536 and the page 000041 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 000042 ** This routine makes the necessary adjustment to 65536. 000043 */ 000044 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 000045 000046 /* 000047 ** Values passed as the 5th argument to allocateBtreePage() 000048 */ 000049 #define BTALLOC_ANY 0 /* Allocate any page */ 000050 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 000051 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 000052 000053 /* 000054 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 000055 ** defined, or 0 if it is. For example: 000056 ** 000057 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 000058 */ 000059 #ifndef SQLITE_OMIT_AUTOVACUUM 000060 #define IfNotOmitAV(expr) (expr) 000061 #else 000062 #define IfNotOmitAV(expr) 0 000063 #endif 000064 000065 #ifndef SQLITE_OMIT_SHARED_CACHE 000066 /* 000067 ** A list of BtShared objects that are eligible for participation 000068 ** in shared cache. This variable has file scope during normal builds, 000069 ** but the test harness needs to access it so we make it global for 000070 ** test builds. 000071 ** 000072 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. 000073 */ 000074 #ifdef SQLITE_TEST 000075 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 000076 #else 000077 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 000078 #endif 000079 #endif /* SQLITE_OMIT_SHARED_CACHE */ 000080 000081 #ifndef SQLITE_OMIT_SHARED_CACHE 000082 /* 000083 ** Enable or disable the shared pager and schema features. 000084 ** 000085 ** This routine has no effect on existing database connections. 000086 ** The shared cache setting effects only future calls to 000087 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 000088 */ 000089 int sqlite3_enable_shared_cache(int enable){ 000090 sqlite3GlobalConfig.sharedCacheEnabled = enable; 000091 return SQLITE_OK; 000092 } 000093 #endif 000094 000095 000096 000097 #ifdef SQLITE_OMIT_SHARED_CACHE 000098 /* 000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 000100 ** and clearAllSharedCacheTableLocks() 000101 ** manipulate entries in the BtShared.pLock linked list used to store 000102 ** shared-cache table level locks. If the library is compiled with the 000103 ** shared-cache feature disabled, then there is only ever one user 000104 ** of each BtShared structure and so this locking is not necessary. 000105 ** So define the lock related functions as no-ops. 000106 */ 000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 000108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 000109 #define clearAllSharedCacheTableLocks(a) 000110 #define downgradeAllSharedCacheTableLocks(a) 000111 #define hasSharedCacheTableLock(a,b,c,d) 1 000112 #define hasReadConflicts(a, b) 0 000113 #endif 000114 000115 #ifndef SQLITE_OMIT_SHARED_CACHE 000116 000117 #ifdef SQLITE_DEBUG 000118 /* 000119 **** This function is only used as part of an assert() statement. *** 000120 ** 000121 ** Check to see if pBtree holds the required locks to read or write to the 000122 ** table with root page iRoot. Return 1 if it does and 0 if not. 000123 ** 000124 ** For example, when writing to a table with root-page iRoot via 000125 ** Btree connection pBtree: 000126 ** 000127 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 000128 ** 000129 ** When writing to an index that resides in a sharable database, the 000130 ** caller should have first obtained a lock specifying the root page of 000131 ** the corresponding table. This makes things a bit more complicated, 000132 ** as this module treats each table as a separate structure. To determine 000133 ** the table corresponding to the index being written, this 000134 ** function has to search through the database schema. 000135 ** 000136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 000137 ** hold a write-lock on the schema table (root page 1). This is also 000138 ** acceptable. 000139 */ 000140 static int hasSharedCacheTableLock( 000141 Btree *pBtree, /* Handle that must hold lock */ 000142 Pgno iRoot, /* Root page of b-tree */ 000143 int isIndex, /* True if iRoot is the root of an index b-tree */ 000144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 000145 ){ 000146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 000147 Pgno iTab = 0; 000148 BtLock *pLock; 000149 000150 /* If this database is not shareable, or if the client is reading 000151 ** and has the read-uncommitted flag set, then no lock is required. 000152 ** Return true immediately. 000153 */ 000154 if( (pBtree->sharable==0) 000155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted)) 000156 ){ 000157 return 1; 000158 } 000159 000160 /* If the client is reading or writing an index and the schema is 000161 ** not loaded, then it is too difficult to actually check to see if 000162 ** the correct locks are held. So do not bother - just return true. 000163 ** This case does not come up very often anyhow. 000164 */ 000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 000166 return 1; 000167 } 000168 000169 /* Figure out the root-page that the lock should be held on. For table 000170 ** b-trees, this is just the root page of the b-tree being read or 000171 ** written. For index b-trees, it is the root page of the associated 000172 ** table. */ 000173 if( isIndex ){ 000174 HashElem *p; 000175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 000176 Index *pIdx = (Index *)sqliteHashData(p); 000177 if( pIdx->tnum==(int)iRoot ){ 000178 if( iTab ){ 000179 /* Two or more indexes share the same root page. There must 000180 ** be imposter tables. So just return true. The assert is not 000181 ** useful in that case. */ 000182 return 1; 000183 } 000184 iTab = pIdx->pTable->tnum; 000185 } 000186 } 000187 }else{ 000188 iTab = iRoot; 000189 } 000190 000191 /* Search for the required lock. Either a write-lock on root-page iTab, a 000192 ** write-lock on the schema table, or (if the client is reading) a 000193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 000194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 000195 if( pLock->pBtree==pBtree 000196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 000197 && pLock->eLock>=eLockType 000198 ){ 000199 return 1; 000200 } 000201 } 000202 000203 /* Failed to find the required lock. */ 000204 return 0; 000205 } 000206 #endif /* SQLITE_DEBUG */ 000207 000208 #ifdef SQLITE_DEBUG 000209 /* 000210 **** This function may be used as part of assert() statements only. **** 000211 ** 000212 ** Return true if it would be illegal for pBtree to write into the 000213 ** table or index rooted at iRoot because other shared connections are 000214 ** simultaneously reading that same table or index. 000215 ** 000216 ** It is illegal for pBtree to write if some other Btree object that 000217 ** shares the same BtShared object is currently reading or writing 000218 ** the iRoot table. Except, if the other Btree object has the 000219 ** read-uncommitted flag set, then it is OK for the other object to 000220 ** have a read cursor. 000221 ** 000222 ** For example, before writing to any part of the table or index 000223 ** rooted at page iRoot, one should call: 000224 ** 000225 ** assert( !hasReadConflicts(pBtree, iRoot) ); 000226 */ 000227 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 000228 BtCursor *p; 000229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 000230 if( p->pgnoRoot==iRoot 000231 && p->pBtree!=pBtree 000232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted) 000233 ){ 000234 return 1; 000235 } 000236 } 000237 return 0; 000238 } 000239 #endif /* #ifdef SQLITE_DEBUG */ 000240 000241 /* 000242 ** Query to see if Btree handle p may obtain a lock of type eLock 000243 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 000244 ** SQLITE_OK if the lock may be obtained (by calling 000245 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 000246 */ 000247 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 000248 BtShared *pBt = p->pBt; 000249 BtLock *pIter; 000250 000251 assert( sqlite3BtreeHoldsMutex(p) ); 000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 000253 assert( p->db!=0 ); 000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 ); 000255 000256 /* If requesting a write-lock, then the Btree must have an open write 000257 ** transaction on this file. And, obviously, for this to be so there 000258 ** must be an open write transaction on the file itself. 000259 */ 000260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 000261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 000262 000263 /* This routine is a no-op if the shared-cache is not enabled */ 000264 if( !p->sharable ){ 000265 return SQLITE_OK; 000266 } 000267 000268 /* If some other connection is holding an exclusive lock, the 000269 ** requested lock may not be obtained. 000270 */ 000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 000273 return SQLITE_LOCKED_SHAREDCACHE; 000274 } 000275 000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 000277 /* The condition (pIter->eLock!=eLock) in the following if(...) 000278 ** statement is a simplification of: 000279 ** 000280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 000281 ** 000282 ** since we know that if eLock==WRITE_LOCK, then no other connection 000283 ** may hold a WRITE_LOCK on any table in this file (since there can 000284 ** only be a single writer). 000285 */ 000286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 000287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 000288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 000289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 000290 if( eLock==WRITE_LOCK ){ 000291 assert( p==pBt->pWriter ); 000292 pBt->btsFlags |= BTS_PENDING; 000293 } 000294 return SQLITE_LOCKED_SHAREDCACHE; 000295 } 000296 } 000297 return SQLITE_OK; 000298 } 000299 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 000300 000301 #ifndef SQLITE_OMIT_SHARED_CACHE 000302 /* 000303 ** Add a lock on the table with root-page iTable to the shared-btree used 000304 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 000305 ** WRITE_LOCK. 000306 ** 000307 ** This function assumes the following: 000308 ** 000309 ** (a) The specified Btree object p is connected to a sharable 000310 ** database (one with the BtShared.sharable flag set), and 000311 ** 000312 ** (b) No other Btree objects hold a lock that conflicts 000313 ** with the requested lock (i.e. querySharedCacheTableLock() has 000314 ** already been called and returned SQLITE_OK). 000315 ** 000316 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 000317 ** is returned if a malloc attempt fails. 000318 */ 000319 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 000320 BtShared *pBt = p->pBt; 000321 BtLock *pLock = 0; 000322 BtLock *pIter; 000323 000324 assert( sqlite3BtreeHoldsMutex(p) ); 000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 000326 assert( p->db!=0 ); 000327 000328 /* A connection with the read-uncommitted flag set will never try to 000329 ** obtain a read-lock using this function. The only read-lock obtained 000330 ** by a connection in read-uncommitted mode is on the sqlite_master 000331 ** table, and that lock is obtained in BtreeBeginTrans(). */ 000332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK ); 000333 000334 /* This function should only be called on a sharable b-tree after it 000335 ** has been determined that no other b-tree holds a conflicting lock. */ 000336 assert( p->sharable ); 000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 000338 000339 /* First search the list for an existing lock on this table. */ 000340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 000341 if( pIter->iTable==iTable && pIter->pBtree==p ){ 000342 pLock = pIter; 000343 break; 000344 } 000345 } 000346 000347 /* If the above search did not find a BtLock struct associating Btree p 000348 ** with table iTable, allocate one and link it into the list. 000349 */ 000350 if( !pLock ){ 000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 000352 if( !pLock ){ 000353 return SQLITE_NOMEM_BKPT; 000354 } 000355 pLock->iTable = iTable; 000356 pLock->pBtree = p; 000357 pLock->pNext = pBt->pLock; 000358 pBt->pLock = pLock; 000359 } 000360 000361 /* Set the BtLock.eLock variable to the maximum of the current lock 000362 ** and the requested lock. This means if a write-lock was already held 000363 ** and a read-lock requested, we don't incorrectly downgrade the lock. 000364 */ 000365 assert( WRITE_LOCK>READ_LOCK ); 000366 if( eLock>pLock->eLock ){ 000367 pLock->eLock = eLock; 000368 } 000369 000370 return SQLITE_OK; 000371 } 000372 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 000373 000374 #ifndef SQLITE_OMIT_SHARED_CACHE 000375 /* 000376 ** Release all the table locks (locks obtained via calls to 000377 ** the setSharedCacheTableLock() procedure) held by Btree object p. 000378 ** 000379 ** This function assumes that Btree p has an open read or write 000380 ** transaction. If it does not, then the BTS_PENDING flag 000381 ** may be incorrectly cleared. 000382 */ 000383 static void clearAllSharedCacheTableLocks(Btree *p){ 000384 BtShared *pBt = p->pBt; 000385 BtLock **ppIter = &pBt->pLock; 000386 000387 assert( sqlite3BtreeHoldsMutex(p) ); 000388 assert( p->sharable || 0==*ppIter ); 000389 assert( p->inTrans>0 ); 000390 000391 while( *ppIter ){ 000392 BtLock *pLock = *ppIter; 000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 000394 assert( pLock->pBtree->inTrans>=pLock->eLock ); 000395 if( pLock->pBtree==p ){ 000396 *ppIter = pLock->pNext; 000397 assert( pLock->iTable!=1 || pLock==&p->lock ); 000398 if( pLock->iTable!=1 ){ 000399 sqlite3_free(pLock); 000400 } 000401 }else{ 000402 ppIter = &pLock->pNext; 000403 } 000404 } 000405 000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 000407 if( pBt->pWriter==p ){ 000408 pBt->pWriter = 0; 000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 000410 }else if( pBt->nTransaction==2 ){ 000411 /* This function is called when Btree p is concluding its 000412 ** transaction. If there currently exists a writer, and p is not 000413 ** that writer, then the number of locks held by connections other 000414 ** than the writer must be about to drop to zero. In this case 000415 ** set the BTS_PENDING flag to 0. 000416 ** 000417 ** If there is not currently a writer, then BTS_PENDING must 000418 ** be zero already. So this next line is harmless in that case. 000419 */ 000420 pBt->btsFlags &= ~BTS_PENDING; 000421 } 000422 } 000423 000424 /* 000425 ** This function changes all write-locks held by Btree p into read-locks. 000426 */ 000427 static void downgradeAllSharedCacheTableLocks(Btree *p){ 000428 BtShared *pBt = p->pBt; 000429 if( pBt->pWriter==p ){ 000430 BtLock *pLock; 000431 pBt->pWriter = 0; 000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 000434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 000435 pLock->eLock = READ_LOCK; 000436 } 000437 } 000438 } 000439 000440 #endif /* SQLITE_OMIT_SHARED_CACHE */ 000441 000442 static void releasePage(MemPage *pPage); /* Forward reference */ 000443 000444 /* 000445 ***** This routine is used inside of assert() only **** 000446 ** 000447 ** Verify that the cursor holds the mutex on its BtShared 000448 */ 000449 #ifdef SQLITE_DEBUG 000450 static int cursorHoldsMutex(BtCursor *p){ 000451 return sqlite3_mutex_held(p->pBt->mutex); 000452 } 000453 000454 /* Verify that the cursor and the BtShared agree about what is the current 000455 ** database connetion. This is important in shared-cache mode. If the database 000456 ** connection pointers get out-of-sync, it is possible for routines like 000457 ** btreeInitPage() to reference an stale connection pointer that references a 000458 ** a connection that has already closed. This routine is used inside assert() 000459 ** statements only and for the purpose of double-checking that the btree code 000460 ** does keep the database connection pointers up-to-date. 000461 */ 000462 static int cursorOwnsBtShared(BtCursor *p){ 000463 assert( cursorHoldsMutex(p) ); 000464 return (p->pBtree->db==p->pBt->db); 000465 } 000466 #endif 000467 000468 /* 000469 ** Invalidate the overflow cache of the cursor passed as the first argument. 000470 ** on the shared btree structure pBt. 000471 */ 000472 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 000473 000474 /* 000475 ** Invalidate the overflow page-list cache for all cursors opened 000476 ** on the shared btree structure pBt. 000477 */ 000478 static void invalidateAllOverflowCache(BtShared *pBt){ 000479 BtCursor *p; 000480 assert( sqlite3_mutex_held(pBt->mutex) ); 000481 for(p=pBt->pCursor; p; p=p->pNext){ 000482 invalidateOverflowCache(p); 000483 } 000484 } 000485 000486 #ifndef SQLITE_OMIT_INCRBLOB 000487 /* 000488 ** This function is called before modifying the contents of a table 000489 ** to invalidate any incrblob cursors that are open on the 000490 ** row or one of the rows being modified. 000491 ** 000492 ** If argument isClearTable is true, then the entire contents of the 000493 ** table is about to be deleted. In this case invalidate all incrblob 000494 ** cursors open on any row within the table with root-page pgnoRoot. 000495 ** 000496 ** Otherwise, if argument isClearTable is false, then the row with 000497 ** rowid iRow is being replaced or deleted. In this case invalidate 000498 ** only those incrblob cursors open on that specific row. 000499 */ 000500 static void invalidateIncrblobCursors( 000501 Btree *pBtree, /* The database file to check */ 000502 i64 iRow, /* The rowid that might be changing */ 000503 int isClearTable /* True if all rows are being deleted */ 000504 ){ 000505 BtCursor *p; 000506 if( pBtree->hasIncrblobCur==0 ) return; 000507 assert( sqlite3BtreeHoldsMutex(pBtree) ); 000508 pBtree->hasIncrblobCur = 0; 000509 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 000510 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 000511 pBtree->hasIncrblobCur = 1; 000512 if( isClearTable || p->info.nKey==iRow ){ 000513 p->eState = CURSOR_INVALID; 000514 } 000515 } 000516 } 000517 } 000518 000519 #else 000520 /* Stub function when INCRBLOB is omitted */ 000521 #define invalidateIncrblobCursors(x,y,z) 000522 #endif /* SQLITE_OMIT_INCRBLOB */ 000523 000524 /* 000525 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 000526 ** when a page that previously contained data becomes a free-list leaf 000527 ** page. 000528 ** 000529 ** The BtShared.pHasContent bitvec exists to work around an obscure 000530 ** bug caused by the interaction of two useful IO optimizations surrounding 000531 ** free-list leaf pages: 000532 ** 000533 ** 1) When all data is deleted from a page and the page becomes 000534 ** a free-list leaf page, the page is not written to the database 000535 ** (as free-list leaf pages contain no meaningful data). Sometimes 000536 ** such a page is not even journalled (as it will not be modified, 000537 ** why bother journalling it?). 000538 ** 000539 ** 2) When a free-list leaf page is reused, its content is not read 000540 ** from the database or written to the journal file (why should it 000541 ** be, if it is not at all meaningful?). 000542 ** 000543 ** By themselves, these optimizations work fine and provide a handy 000544 ** performance boost to bulk delete or insert operations. However, if 000545 ** a page is moved to the free-list and then reused within the same 000546 ** transaction, a problem comes up. If the page is not journalled when 000547 ** it is moved to the free-list and it is also not journalled when it 000548 ** is extracted from the free-list and reused, then the original data 000549 ** may be lost. In the event of a rollback, it may not be possible 000550 ** to restore the database to its original configuration. 000551 ** 000552 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 000553 ** moved to become a free-list leaf page, the corresponding bit is 000554 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 000555 ** optimization 2 above is omitted if the corresponding bit is already 000556 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 000557 ** at the end of every transaction. 000558 */ 000559 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 000560 int rc = SQLITE_OK; 000561 if( !pBt->pHasContent ){ 000562 assert( pgno<=pBt->nPage ); 000563 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 000564 if( !pBt->pHasContent ){ 000565 rc = SQLITE_NOMEM_BKPT; 000566 } 000567 } 000568 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 000569 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 000570 } 000571 return rc; 000572 } 000573 000574 /* 000575 ** Query the BtShared.pHasContent vector. 000576 ** 000577 ** This function is called when a free-list leaf page is removed from the 000578 ** free-list for reuse. It returns false if it is safe to retrieve the 000579 ** page from the pager layer with the 'no-content' flag set. True otherwise. 000580 */ 000581 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 000582 Bitvec *p = pBt->pHasContent; 000583 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); 000584 } 000585 000586 /* 000587 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 000588 ** invoked at the conclusion of each write-transaction. 000589 */ 000590 static void btreeClearHasContent(BtShared *pBt){ 000591 sqlite3BitvecDestroy(pBt->pHasContent); 000592 pBt->pHasContent = 0; 000593 } 000594 000595 /* 000596 ** Release all of the apPage[] pages for a cursor. 000597 */ 000598 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 000599 int i; 000600 for(i=0; i<=pCur->iPage; i++){ 000601 releasePage(pCur->apPage[i]); 000602 pCur->apPage[i] = 0; 000603 } 000604 pCur->iPage = -1; 000605 } 000606 000607 /* 000608 ** The cursor passed as the only argument must point to a valid entry 000609 ** when this function is called (i.e. have eState==CURSOR_VALID). This 000610 ** function saves the current cursor key in variables pCur->nKey and 000611 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 000612 ** code otherwise. 000613 ** 000614 ** If the cursor is open on an intkey table, then the integer key 000615 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 000616 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 000617 ** set to point to a malloced buffer pCur->nKey bytes in size containing 000618 ** the key. 000619 */ 000620 static int saveCursorKey(BtCursor *pCur){ 000621 int rc = SQLITE_OK; 000622 assert( CURSOR_VALID==pCur->eState ); 000623 assert( 0==pCur->pKey ); 000624 assert( cursorHoldsMutex(pCur) ); 000625 000626 if( pCur->curIntKey ){ 000627 /* Only the rowid is required for a table btree */ 000628 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 000629 }else{ 000630 /* For an index btree, save the complete key content */ 000631 void *pKey; 000632 pCur->nKey = sqlite3BtreePayloadSize(pCur); 000633 pKey = sqlite3Malloc( pCur->nKey ); 000634 if( pKey ){ 000635 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 000636 if( rc==SQLITE_OK ){ 000637 pCur->pKey = pKey; 000638 }else{ 000639 sqlite3_free(pKey); 000640 } 000641 }else{ 000642 rc = SQLITE_NOMEM_BKPT; 000643 } 000644 } 000645 assert( !pCur->curIntKey || !pCur->pKey ); 000646 return rc; 000647 } 000648 000649 /* 000650 ** Save the current cursor position in the variables BtCursor.nKey 000651 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 000652 ** 000653 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 000654 ** prior to calling this routine. 000655 */ 000656 static int saveCursorPosition(BtCursor *pCur){ 000657 int rc; 000658 000659 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 000660 assert( 0==pCur->pKey ); 000661 assert( cursorHoldsMutex(pCur) ); 000662 000663 if( pCur->eState==CURSOR_SKIPNEXT ){ 000664 pCur->eState = CURSOR_VALID; 000665 }else{ 000666 pCur->skipNext = 0; 000667 } 000668 000669 rc = saveCursorKey(pCur); 000670 if( rc==SQLITE_OK ){ 000671 btreeReleaseAllCursorPages(pCur); 000672 pCur->eState = CURSOR_REQUIRESEEK; 000673 } 000674 000675 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 000676 return rc; 000677 } 000678 000679 /* Forward reference */ 000680 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 000681 000682 /* 000683 ** Save the positions of all cursors (except pExcept) that are open on 000684 ** the table with root-page iRoot. "Saving the cursor position" means that 000685 ** the location in the btree is remembered in such a way that it can be 000686 ** moved back to the same spot after the btree has been modified. This 000687 ** routine is called just before cursor pExcept is used to modify the 000688 ** table, for example in BtreeDelete() or BtreeInsert(). 000689 ** 000690 ** If there are two or more cursors on the same btree, then all such 000691 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 000692 ** routine enforces that rule. This routine only needs to be called in 000693 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 000694 ** 000695 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 000696 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 000697 ** pointless call to this routine. 000698 ** 000699 ** Implementation note: This routine merely checks to see if any cursors 000700 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 000701 ** event that cursors are in need to being saved. 000702 */ 000703 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 000704 BtCursor *p; 000705 assert( sqlite3_mutex_held(pBt->mutex) ); 000706 assert( pExcept==0 || pExcept->pBt==pBt ); 000707 for(p=pBt->pCursor; p; p=p->pNext){ 000708 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 000709 } 000710 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 000711 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 000712 return SQLITE_OK; 000713 } 000714 000715 /* This helper routine to saveAllCursors does the actual work of saving 000716 ** the cursors if and when a cursor is found that actually requires saving. 000717 ** The common case is that no cursors need to be saved, so this routine is 000718 ** broken out from its caller to avoid unnecessary stack pointer movement. 000719 */ 000720 static int SQLITE_NOINLINE saveCursorsOnList( 000721 BtCursor *p, /* The first cursor that needs saving */ 000722 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 000723 BtCursor *pExcept /* Do not save this cursor */ 000724 ){ 000725 do{ 000726 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 000727 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 000728 int rc = saveCursorPosition(p); 000729 if( SQLITE_OK!=rc ){ 000730 return rc; 000731 } 000732 }else{ 000733 testcase( p->iPage>0 ); 000734 btreeReleaseAllCursorPages(p); 000735 } 000736 } 000737 p = p->pNext; 000738 }while( p ); 000739 return SQLITE_OK; 000740 } 000741 000742 /* 000743 ** Clear the current cursor position. 000744 */ 000745 void sqlite3BtreeClearCursor(BtCursor *pCur){ 000746 assert( cursorHoldsMutex(pCur) ); 000747 sqlite3_free(pCur->pKey); 000748 pCur->pKey = 0; 000749 pCur->eState = CURSOR_INVALID; 000750 } 000751 000752 /* 000753 ** In this version of BtreeMoveto, pKey is a packed index record 000754 ** such as is generated by the OP_MakeRecord opcode. Unpack the 000755 ** record and then call BtreeMovetoUnpacked() to do the work. 000756 */ 000757 static int btreeMoveto( 000758 BtCursor *pCur, /* Cursor open on the btree to be searched */ 000759 const void *pKey, /* Packed key if the btree is an index */ 000760 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 000761 int bias, /* Bias search to the high end */ 000762 int *pRes /* Write search results here */ 000763 ){ 000764 int rc; /* Status code */ 000765 UnpackedRecord *pIdxKey; /* Unpacked index key */ 000766 000767 if( pKey ){ 000768 assert( nKey==(i64)(int)nKey ); 000769 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo); 000770 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 000771 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); 000772 if( pIdxKey->nField==0 ){ 000773 rc = SQLITE_CORRUPT_BKPT; 000774 goto moveto_done; 000775 } 000776 }else{ 000777 pIdxKey = 0; 000778 } 000779 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); 000780 moveto_done: 000781 if( pIdxKey ){ 000782 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 000783 } 000784 return rc; 000785 } 000786 000787 /* 000788 ** Restore the cursor to the position it was in (or as close to as possible) 000789 ** when saveCursorPosition() was called. Note that this call deletes the 000790 ** saved position info stored by saveCursorPosition(), so there can be 000791 ** at most one effective restoreCursorPosition() call after each 000792 ** saveCursorPosition(). 000793 */ 000794 static int btreeRestoreCursorPosition(BtCursor *pCur){ 000795 int rc; 000796 int skipNext; 000797 assert( cursorOwnsBtShared(pCur) ); 000798 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 000799 if( pCur->eState==CURSOR_FAULT ){ 000800 return pCur->skipNext; 000801 } 000802 pCur->eState = CURSOR_INVALID; 000803 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 000804 if( rc==SQLITE_OK ){ 000805 sqlite3_free(pCur->pKey); 000806 pCur->pKey = 0; 000807 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 000808 pCur->skipNext |= skipNext; 000809 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 000810 pCur->eState = CURSOR_SKIPNEXT; 000811 } 000812 } 000813 return rc; 000814 } 000815 000816 #define restoreCursorPosition(p) \ 000817 (p->eState>=CURSOR_REQUIRESEEK ? \ 000818 btreeRestoreCursorPosition(p) : \ 000819 SQLITE_OK) 000820 000821 /* 000822 ** Determine whether or not a cursor has moved from the position where 000823 ** it was last placed, or has been invalidated for any other reason. 000824 ** Cursors can move when the row they are pointing at is deleted out 000825 ** from under them, for example. Cursor might also move if a btree 000826 ** is rebalanced. 000827 ** 000828 ** Calling this routine with a NULL cursor pointer returns false. 000829 ** 000830 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 000831 ** back to where it ought to be if this routine returns true. 000832 */ 000833 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 000834 return pCur->eState!=CURSOR_VALID; 000835 } 000836 000837 /* 000838 ** This routine restores a cursor back to its original position after it 000839 ** has been moved by some outside activity (such as a btree rebalance or 000840 ** a row having been deleted out from under the cursor). 000841 ** 000842 ** On success, the *pDifferentRow parameter is false if the cursor is left 000843 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 000844 ** was pointing to has been deleted, forcing the cursor to point to some 000845 ** nearby row. 000846 ** 000847 ** This routine should only be called for a cursor that just returned 000848 ** TRUE from sqlite3BtreeCursorHasMoved(). 000849 */ 000850 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 000851 int rc; 000852 000853 assert( pCur!=0 ); 000854 assert( pCur->eState!=CURSOR_VALID ); 000855 rc = restoreCursorPosition(pCur); 000856 if( rc ){ 000857 *pDifferentRow = 1; 000858 return rc; 000859 } 000860 if( pCur->eState!=CURSOR_VALID ){ 000861 *pDifferentRow = 1; 000862 }else{ 000863 assert( pCur->skipNext==0 ); 000864 *pDifferentRow = 0; 000865 } 000866 return SQLITE_OK; 000867 } 000868 000869 #ifdef SQLITE_ENABLE_CURSOR_HINTS 000870 /* 000871 ** Provide hints to the cursor. The particular hint given (and the type 000872 ** and number of the varargs parameters) is determined by the eHintType 000873 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 000874 */ 000875 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 000876 /* Used only by system that substitute their own storage engine */ 000877 } 000878 #endif 000879 000880 /* 000881 ** Provide flag hints to the cursor. 000882 */ 000883 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 000884 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 000885 pCur->hints = x; 000886 } 000887 000888 000889 #ifndef SQLITE_OMIT_AUTOVACUUM 000890 /* 000891 ** Given a page number of a regular database page, return the page 000892 ** number for the pointer-map page that contains the entry for the 000893 ** input page number. 000894 ** 000895 ** Return 0 (not a valid page) for pgno==1 since there is 000896 ** no pointer map associated with page 1. The integrity_check logic 000897 ** requires that ptrmapPageno(*,1)!=1. 000898 */ 000899 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 000900 int nPagesPerMapPage; 000901 Pgno iPtrMap, ret; 000902 assert( sqlite3_mutex_held(pBt->mutex) ); 000903 if( pgno<2 ) return 0; 000904 nPagesPerMapPage = (pBt->usableSize/5)+1; 000905 iPtrMap = (pgno-2)/nPagesPerMapPage; 000906 ret = (iPtrMap*nPagesPerMapPage) + 2; 000907 if( ret==PENDING_BYTE_PAGE(pBt) ){ 000908 ret++; 000909 } 000910 return ret; 000911 } 000912 000913 /* 000914 ** Write an entry into the pointer map. 000915 ** 000916 ** This routine updates the pointer map entry for page number 'key' 000917 ** so that it maps to type 'eType' and parent page number 'pgno'. 000918 ** 000919 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 000920 ** a no-op. If an error occurs, the appropriate error code is written 000921 ** into *pRC. 000922 */ 000923 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 000924 DbPage *pDbPage; /* The pointer map page */ 000925 u8 *pPtrmap; /* The pointer map data */ 000926 Pgno iPtrmap; /* The pointer map page number */ 000927 int offset; /* Offset in pointer map page */ 000928 int rc; /* Return code from subfunctions */ 000929 000930 if( *pRC ) return; 000931 000932 assert( sqlite3_mutex_held(pBt->mutex) ); 000933 /* The master-journal page number must never be used as a pointer map page */ 000934 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 000935 000936 assert( pBt->autoVacuum ); 000937 if( key==0 ){ 000938 *pRC = SQLITE_CORRUPT_BKPT; 000939 return; 000940 } 000941 iPtrmap = PTRMAP_PAGENO(pBt, key); 000942 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 000943 if( rc!=SQLITE_OK ){ 000944 *pRC = rc; 000945 return; 000946 } 000947 offset = PTRMAP_PTROFFSET(iPtrmap, key); 000948 if( offset<0 ){ 000949 *pRC = SQLITE_CORRUPT_BKPT; 000950 goto ptrmap_exit; 000951 } 000952 assert( offset <= (int)pBt->usableSize-5 ); 000953 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 000954 000955 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 000956 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 000957 *pRC= rc = sqlite3PagerWrite(pDbPage); 000958 if( rc==SQLITE_OK ){ 000959 pPtrmap[offset] = eType; 000960 put4byte(&pPtrmap[offset+1], parent); 000961 } 000962 } 000963 000964 ptrmap_exit: 000965 sqlite3PagerUnref(pDbPage); 000966 } 000967 000968 /* 000969 ** Read an entry from the pointer map. 000970 ** 000971 ** This routine retrieves the pointer map entry for page 'key', writing 000972 ** the type and parent page number to *pEType and *pPgno respectively. 000973 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 000974 */ 000975 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 000976 DbPage *pDbPage; /* The pointer map page */ 000977 int iPtrmap; /* Pointer map page index */ 000978 u8 *pPtrmap; /* Pointer map page data */ 000979 int offset; /* Offset of entry in pointer map */ 000980 int rc; 000981 000982 assert( sqlite3_mutex_held(pBt->mutex) ); 000983 000984 iPtrmap = PTRMAP_PAGENO(pBt, key); 000985 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 000986 if( rc!=0 ){ 000987 return rc; 000988 } 000989 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 000990 000991 offset = PTRMAP_PTROFFSET(iPtrmap, key); 000992 if( offset<0 ){ 000993 sqlite3PagerUnref(pDbPage); 000994 return SQLITE_CORRUPT_BKPT; 000995 } 000996 assert( offset <= (int)pBt->usableSize-5 ); 000997 assert( pEType!=0 ); 000998 *pEType = pPtrmap[offset]; 000999 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 001000 001001 sqlite3PagerUnref(pDbPage); 001002 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; 001003 return SQLITE_OK; 001004 } 001005 001006 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 001007 #define ptrmapPut(w,x,y,z,rc) 001008 #define ptrmapGet(w,x,y,z) SQLITE_OK 001009 #define ptrmapPutOvflPtr(x, y, rc) 001010 #endif 001011 001012 /* 001013 ** Given a btree page and a cell index (0 means the first cell on 001014 ** the page, 1 means the second cell, and so forth) return a pointer 001015 ** to the cell content. 001016 ** 001017 ** findCellPastPtr() does the same except it skips past the initial 001018 ** 4-byte child pointer found on interior pages, if there is one. 001019 ** 001020 ** This routine works only for pages that do not contain overflow cells. 001021 */ 001022 #define findCell(P,I) \ 001023 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 001024 #define findCellPastPtr(P,I) \ 001025 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 001026 001027 001028 /* 001029 ** This is common tail processing for btreeParseCellPtr() and 001030 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 001031 ** on a single B-tree page. Make necessary adjustments to the CellInfo 001032 ** structure. 001033 */ 001034 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 001035 MemPage *pPage, /* Page containing the cell */ 001036 u8 *pCell, /* Pointer to the cell text. */ 001037 CellInfo *pInfo /* Fill in this structure */ 001038 ){ 001039 /* If the payload will not fit completely on the local page, we have 001040 ** to decide how much to store locally and how much to spill onto 001041 ** overflow pages. The strategy is to minimize the amount of unused 001042 ** space on overflow pages while keeping the amount of local storage 001043 ** in between minLocal and maxLocal. 001044 ** 001045 ** Warning: changing the way overflow payload is distributed in any 001046 ** way will result in an incompatible file format. 001047 */ 001048 int minLocal; /* Minimum amount of payload held locally */ 001049 int maxLocal; /* Maximum amount of payload held locally */ 001050 int surplus; /* Overflow payload available for local storage */ 001051 001052 minLocal = pPage->minLocal; 001053 maxLocal = pPage->maxLocal; 001054 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 001055 testcase( surplus==maxLocal ); 001056 testcase( surplus==maxLocal+1 ); 001057 if( surplus <= maxLocal ){ 001058 pInfo->nLocal = (u16)surplus; 001059 }else{ 001060 pInfo->nLocal = (u16)minLocal; 001061 } 001062 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 001063 } 001064 001065 /* 001066 ** The following routines are implementations of the MemPage.xParseCell() 001067 ** method. 001068 ** 001069 ** Parse a cell content block and fill in the CellInfo structure. 001070 ** 001071 ** btreeParseCellPtr() => table btree leaf nodes 001072 ** btreeParseCellNoPayload() => table btree internal nodes 001073 ** btreeParseCellPtrIndex() => index btree nodes 001074 ** 001075 ** There is also a wrapper function btreeParseCell() that works for 001076 ** all MemPage types and that references the cell by index rather than 001077 ** by pointer. 001078 */ 001079 static void btreeParseCellPtrNoPayload( 001080 MemPage *pPage, /* Page containing the cell */ 001081 u8 *pCell, /* Pointer to the cell text. */ 001082 CellInfo *pInfo /* Fill in this structure */ 001083 ){ 001084 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 001085 assert( pPage->leaf==0 ); 001086 assert( pPage->childPtrSize==4 ); 001087 #ifndef SQLITE_DEBUG 001088 UNUSED_PARAMETER(pPage); 001089 #endif 001090 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 001091 pInfo->nPayload = 0; 001092 pInfo->nLocal = 0; 001093 pInfo->pPayload = 0; 001094 return; 001095 } 001096 static void btreeParseCellPtr( 001097 MemPage *pPage, /* Page containing the cell */ 001098 u8 *pCell, /* Pointer to the cell text. */ 001099 CellInfo *pInfo /* Fill in this structure */ 001100 ){ 001101 u8 *pIter; /* For scanning through pCell */ 001102 u32 nPayload; /* Number of bytes of cell payload */ 001103 u64 iKey; /* Extracted Key value */ 001104 001105 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 001106 assert( pPage->leaf==0 || pPage->leaf==1 ); 001107 assert( pPage->intKeyLeaf ); 001108 assert( pPage->childPtrSize==0 ); 001109 pIter = pCell; 001110 001111 /* The next block of code is equivalent to: 001112 ** 001113 ** pIter += getVarint32(pIter, nPayload); 001114 ** 001115 ** The code is inlined to avoid a function call. 001116 */ 001117 nPayload = *pIter; 001118 if( nPayload>=0x80 ){ 001119 u8 *pEnd = &pIter[8]; 001120 nPayload &= 0x7f; 001121 do{ 001122 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 001123 }while( (*pIter)>=0x80 && pIter<pEnd ); 001124 } 001125 pIter++; 001126 001127 /* The next block of code is equivalent to: 001128 ** 001129 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 001130 ** 001131 ** The code is inlined to avoid a function call. 001132 */ 001133 iKey = *pIter; 001134 if( iKey>=0x80 ){ 001135 u8 *pEnd = &pIter[7]; 001136 iKey &= 0x7f; 001137 while(1){ 001138 iKey = (iKey<<7) | (*++pIter & 0x7f); 001139 if( (*pIter)<0x80 ) break; 001140 if( pIter>=pEnd ){ 001141 iKey = (iKey<<8) | *++pIter; 001142 break; 001143 } 001144 } 001145 } 001146 pIter++; 001147 001148 pInfo->nKey = *(i64*)&iKey; 001149 pInfo->nPayload = nPayload; 001150 pInfo->pPayload = pIter; 001151 testcase( nPayload==pPage->maxLocal ); 001152 testcase( nPayload==pPage->maxLocal+1 ); 001153 if( nPayload<=pPage->maxLocal ){ 001154 /* This is the (easy) common case where the entire payload fits 001155 ** on the local page. No overflow is required. 001156 */ 001157 pInfo->nSize = nPayload + (u16)(pIter - pCell); 001158 if( pInfo->nSize<4 ) pInfo->nSize = 4; 001159 pInfo->nLocal = (u16)nPayload; 001160 }else{ 001161 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 001162 } 001163 } 001164 static void btreeParseCellPtrIndex( 001165 MemPage *pPage, /* Page containing the cell */ 001166 u8 *pCell, /* Pointer to the cell text. */ 001167 CellInfo *pInfo /* Fill in this structure */ 001168 ){ 001169 u8 *pIter; /* For scanning through pCell */ 001170 u32 nPayload; /* Number of bytes of cell payload */ 001171 001172 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 001173 assert( pPage->leaf==0 || pPage->leaf==1 ); 001174 assert( pPage->intKeyLeaf==0 ); 001175 pIter = pCell + pPage->childPtrSize; 001176 nPayload = *pIter; 001177 if( nPayload>=0x80 ){ 001178 u8 *pEnd = &pIter[8]; 001179 nPayload &= 0x7f; 001180 do{ 001181 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 001182 }while( *(pIter)>=0x80 && pIter<pEnd ); 001183 } 001184 pIter++; 001185 pInfo->nKey = nPayload; 001186 pInfo->nPayload = nPayload; 001187 pInfo->pPayload = pIter; 001188 testcase( nPayload==pPage->maxLocal ); 001189 testcase( nPayload==pPage->maxLocal+1 ); 001190 if( nPayload<=pPage->maxLocal ){ 001191 /* This is the (easy) common case where the entire payload fits 001192 ** on the local page. No overflow is required. 001193 */ 001194 pInfo->nSize = nPayload + (u16)(pIter - pCell); 001195 if( pInfo->nSize<4 ) pInfo->nSize = 4; 001196 pInfo->nLocal = (u16)nPayload; 001197 }else{ 001198 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 001199 } 001200 } 001201 static void btreeParseCell( 001202 MemPage *pPage, /* Page containing the cell */ 001203 int iCell, /* The cell index. First cell is 0 */ 001204 CellInfo *pInfo /* Fill in this structure */ 001205 ){ 001206 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 001207 } 001208 001209 /* 001210 ** The following routines are implementations of the MemPage.xCellSize 001211 ** method. 001212 ** 001213 ** Compute the total number of bytes that a Cell needs in the cell 001214 ** data area of the btree-page. The return number includes the cell 001215 ** data header and the local payload, but not any overflow page or 001216 ** the space used by the cell pointer. 001217 ** 001218 ** cellSizePtrNoPayload() => table internal nodes 001219 ** cellSizePtr() => all index nodes & table leaf nodes 001220 */ 001221 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 001222 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 001223 u8 *pEnd; /* End mark for a varint */ 001224 u32 nSize; /* Size value to return */ 001225 001226 #ifdef SQLITE_DEBUG 001227 /* The value returned by this function should always be the same as 001228 ** the (CellInfo.nSize) value found by doing a full parse of the 001229 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 001230 ** this function verifies that this invariant is not violated. */ 001231 CellInfo debuginfo; 001232 pPage->xParseCell(pPage, pCell, &debuginfo); 001233 #endif 001234 001235 nSize = *pIter; 001236 if( nSize>=0x80 ){ 001237 pEnd = &pIter[8]; 001238 nSize &= 0x7f; 001239 do{ 001240 nSize = (nSize<<7) | (*++pIter & 0x7f); 001241 }while( *(pIter)>=0x80 && pIter<pEnd ); 001242 } 001243 pIter++; 001244 if( pPage->intKey ){ 001245 /* pIter now points at the 64-bit integer key value, a variable length 001246 ** integer. The following block moves pIter to point at the first byte 001247 ** past the end of the key value. */ 001248 pEnd = &pIter[9]; 001249 while( (*pIter++)&0x80 && pIter<pEnd ); 001250 } 001251 testcase( nSize==pPage->maxLocal ); 001252 testcase( nSize==pPage->maxLocal+1 ); 001253 if( nSize<=pPage->maxLocal ){ 001254 nSize += (u32)(pIter - pCell); 001255 if( nSize<4 ) nSize = 4; 001256 }else{ 001257 int minLocal = pPage->minLocal; 001258 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 001259 testcase( nSize==pPage->maxLocal ); 001260 testcase( nSize==pPage->maxLocal+1 ); 001261 if( nSize>pPage->maxLocal ){ 001262 nSize = minLocal; 001263 } 001264 nSize += 4 + (u16)(pIter - pCell); 001265 } 001266 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 001267 return (u16)nSize; 001268 } 001269 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 001270 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 001271 u8 *pEnd; /* End mark for a varint */ 001272 001273 #ifdef SQLITE_DEBUG 001274 /* The value returned by this function should always be the same as 001275 ** the (CellInfo.nSize) value found by doing a full parse of the 001276 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 001277 ** this function verifies that this invariant is not violated. */ 001278 CellInfo debuginfo; 001279 pPage->xParseCell(pPage, pCell, &debuginfo); 001280 #else 001281 UNUSED_PARAMETER(pPage); 001282 #endif 001283 001284 assert( pPage->childPtrSize==4 ); 001285 pEnd = pIter + 9; 001286 while( (*pIter++)&0x80 && pIter<pEnd ); 001287 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 001288 return (u16)(pIter - pCell); 001289 } 001290 001291 001292 #ifdef SQLITE_DEBUG 001293 /* This variation on cellSizePtr() is used inside of assert() statements 001294 ** only. */ 001295 static u16 cellSize(MemPage *pPage, int iCell){ 001296 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 001297 } 001298 #endif 001299 001300 #ifndef SQLITE_OMIT_AUTOVACUUM 001301 /* 001302 ** If the cell pCell, part of page pPage contains a pointer 001303 ** to an overflow page, insert an entry into the pointer-map 001304 ** for the overflow page. 001305 */ 001306 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ 001307 CellInfo info; 001308 if( *pRC ) return; 001309 assert( pCell!=0 ); 001310 pPage->xParseCell(pPage, pCell, &info); 001311 if( info.nLocal<info.nPayload ){ 001312 Pgno ovfl = get4byte(&pCell[info.nSize-4]); 001313 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 001314 } 001315 } 001316 #endif 001317 001318 001319 /* 001320 ** Defragment the page given. All Cells are moved to the 001321 ** end of the page and all free space is collected into one 001322 ** big FreeBlk that occurs in between the header and cell 001323 ** pointer array and the cell content area. 001324 ** 001325 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 001326 ** b-tree page so that there are no freeblocks or fragment bytes, all 001327 ** unused bytes are contained in the unallocated space region, and all 001328 ** cells are packed tightly at the end of the page. 001329 */ 001330 static int defragmentPage(MemPage *pPage){ 001331 int i; /* Loop counter */ 001332 int pc; /* Address of the i-th cell */ 001333 int hdr; /* Offset to the page header */ 001334 int size; /* Size of a cell */ 001335 int usableSize; /* Number of usable bytes on a page */ 001336 int cellOffset; /* Offset to the cell pointer array */ 001337 int cbrk; /* Offset to the cell content area */ 001338 int nCell; /* Number of cells on the page */ 001339 unsigned char *data; /* The page data */ 001340 unsigned char *temp; /* Temp area for cell content */ 001341 unsigned char *src; /* Source of content */ 001342 int iCellFirst; /* First allowable cell index */ 001343 int iCellLast; /* Last possible cell index */ 001344 001345 001346 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 001347 assert( pPage->pBt!=0 ); 001348 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 001349 assert( pPage->nOverflow==0 ); 001350 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 001351 temp = 0; 001352 src = data = pPage->aData; 001353 hdr = pPage->hdrOffset; 001354 cellOffset = pPage->cellOffset; 001355 nCell = pPage->nCell; 001356 assert( nCell==get2byte(&data[hdr+3]) ); 001357 usableSize = pPage->pBt->usableSize; 001358 cbrk = usableSize; 001359 iCellFirst = cellOffset + 2*nCell; 001360 iCellLast = usableSize - 4; 001361 for(i=0; i<nCell; i++){ 001362 u8 *pAddr; /* The i-th cell pointer */ 001363 pAddr = &data[cellOffset + i*2]; 001364 pc = get2byte(pAddr); 001365 testcase( pc==iCellFirst ); 001366 testcase( pc==iCellLast ); 001367 /* These conditions have already been verified in btreeInitPage() 001368 ** if PRAGMA cell_size_check=ON. 001369 */ 001370 if( pc<iCellFirst || pc>iCellLast ){ 001371 return SQLITE_CORRUPT_BKPT; 001372 } 001373 assert( pc>=iCellFirst && pc<=iCellLast ); 001374 size = pPage->xCellSize(pPage, &src[pc]); 001375 cbrk -= size; 001376 if( cbrk<iCellFirst || pc+size>usableSize ){ 001377 return SQLITE_CORRUPT_BKPT; 001378 } 001379 assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); 001380 testcase( cbrk+size==usableSize ); 001381 testcase( pc+size==usableSize ); 001382 put2byte(pAddr, cbrk); 001383 if( temp==0 ){ 001384 int x; 001385 if( cbrk==pc ) continue; 001386 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 001387 x = get2byte(&data[hdr+5]); 001388 memcpy(&temp[x], &data[x], (cbrk+size) - x); 001389 src = temp; 001390 } 001391 memcpy(&data[cbrk], &src[pc], size); 001392 } 001393 assert( cbrk>=iCellFirst ); 001394 put2byte(&data[hdr+5], cbrk); 001395 data[hdr+1] = 0; 001396 data[hdr+2] = 0; 001397 data[hdr+7] = 0; 001398 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 001399 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 001400 if( cbrk-iCellFirst!=pPage->nFree ){ 001401 return SQLITE_CORRUPT_BKPT; 001402 } 001403 return SQLITE_OK; 001404 } 001405 001406 /* 001407 ** Search the free-list on page pPg for space to store a cell nByte bytes in 001408 ** size. If one can be found, return a pointer to the space and remove it 001409 ** from the free-list. 001410 ** 001411 ** If no suitable space can be found on the free-list, return NULL. 001412 ** 001413 ** This function may detect corruption within pPg. If corruption is 001414 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 001415 ** 001416 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 001417 ** will be ignored if adding the extra space to the fragmentation count 001418 ** causes the fragmentation count to exceed 60. 001419 */ 001420 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 001421 const int hdr = pPg->hdrOffset; 001422 u8 * const aData = pPg->aData; 001423 int iAddr = hdr + 1; 001424 int pc = get2byte(&aData[iAddr]); 001425 int x; 001426 int usableSize = pPg->pBt->usableSize; 001427 001428 assert( pc>0 ); 001429 do{ 001430 int size; /* Size of the free slot */ 001431 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 001432 ** increasing offset. */ 001433 if( pc>usableSize-4 || pc<iAddr+4 ){ 001434 *pRc = SQLITE_CORRUPT_BKPT; 001435 return 0; 001436 } 001437 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 001438 ** freeblock form a big-endian integer which is the size of the freeblock 001439 ** in bytes, including the 4-byte header. */ 001440 size = get2byte(&aData[pc+2]); 001441 if( (x = size - nByte)>=0 ){ 001442 testcase( x==4 ); 001443 testcase( x==3 ); 001444 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){ 001445 *pRc = SQLITE_CORRUPT_BKPT; 001446 return 0; 001447 }else if( x<4 ){ 001448 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 001449 ** number of bytes in fragments may not exceed 60. */ 001450 if( aData[hdr+7]>57 ) return 0; 001451 001452 /* Remove the slot from the free-list. Update the number of 001453 ** fragmented bytes within the page. */ 001454 memcpy(&aData[iAddr], &aData[pc], 2); 001455 aData[hdr+7] += (u8)x; 001456 }else{ 001457 /* The slot remains on the free-list. Reduce its size to account 001458 ** for the portion used by the new allocation. */ 001459 put2byte(&aData[pc+2], x); 001460 } 001461 return &aData[pc + x]; 001462 } 001463 iAddr = pc; 001464 pc = get2byte(&aData[pc]); 001465 }while( pc ); 001466 001467 return 0; 001468 } 001469 001470 /* 001471 ** Allocate nByte bytes of space from within the B-Tree page passed 001472 ** as the first argument. Write into *pIdx the index into pPage->aData[] 001473 ** of the first byte of allocated space. Return either SQLITE_OK or 001474 ** an error code (usually SQLITE_CORRUPT). 001475 ** 001476 ** The caller guarantees that there is sufficient space to make the 001477 ** allocation. This routine might need to defragment in order to bring 001478 ** all the space together, however. This routine will avoid using 001479 ** the first two bytes past the cell pointer area since presumably this 001480 ** allocation is being made in order to insert a new cell, so we will 001481 ** also end up needing a new cell pointer. 001482 */ 001483 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 001484 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 001485 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 001486 int top; /* First byte of cell content area */ 001487 int rc = SQLITE_OK; /* Integer return code */ 001488 int gap; /* First byte of gap between cell pointers and cell content */ 001489 001490 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 001491 assert( pPage->pBt ); 001492 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 001493 assert( nByte>=0 ); /* Minimum cell size is 4 */ 001494 assert( pPage->nFree>=nByte ); 001495 assert( pPage->nOverflow==0 ); 001496 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 001497 001498 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 001499 gap = pPage->cellOffset + 2*pPage->nCell; 001500 assert( gap<=65536 ); 001501 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 001502 ** and the reserved space is zero (the usual value for reserved space) 001503 ** then the cell content offset of an empty page wants to be 65536. 001504 ** However, that integer is too large to be stored in a 2-byte unsigned 001505 ** integer, so a value of 0 is used in its place. */ 001506 top = get2byte(&data[hdr+5]); 001507 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */ 001508 if( gap>top ){ 001509 if( top==0 && pPage->pBt->usableSize==65536 ){ 001510 top = 65536; 001511 }else{ 001512 return SQLITE_CORRUPT_BKPT; 001513 } 001514 } 001515 001516 /* If there is enough space between gap and top for one more cell pointer 001517 ** array entry offset, and if the freelist is not empty, then search the 001518 ** freelist looking for a free slot big enough to satisfy the request. 001519 */ 001520 testcase( gap+2==top ); 001521 testcase( gap+1==top ); 001522 testcase( gap==top ); 001523 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 001524 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 001525 if( pSpace ){ 001526 assert( pSpace>=data && (pSpace - data)<65536 ); 001527 *pIdx = (int)(pSpace - data); 001528 return SQLITE_OK; 001529 }else if( rc ){ 001530 return rc; 001531 } 001532 } 001533 001534 /* The request could not be fulfilled using a freelist slot. Check 001535 ** to see if defragmentation is necessary. 001536 */ 001537 testcase( gap+2+nByte==top ); 001538 if( gap+2+nByte>top ){ 001539 assert( pPage->nCell>0 || CORRUPT_DB ); 001540 rc = defragmentPage(pPage); 001541 if( rc ) return rc; 001542 top = get2byteNotZero(&data[hdr+5]); 001543 assert( gap+nByte<=top ); 001544 } 001545 001546 001547 /* Allocate memory from the gap in between the cell pointer array 001548 ** and the cell content area. The btreeInitPage() call has already 001549 ** validated the freelist. Given that the freelist is valid, there 001550 ** is no way that the allocation can extend off the end of the page. 001551 ** The assert() below verifies the previous sentence. 001552 */ 001553 top -= nByte; 001554 put2byte(&data[hdr+5], top); 001555 assert( top+nByte <= (int)pPage->pBt->usableSize ); 001556 *pIdx = top; 001557 return SQLITE_OK; 001558 } 001559 001560 /* 001561 ** Return a section of the pPage->aData to the freelist. 001562 ** The first byte of the new free block is pPage->aData[iStart] 001563 ** and the size of the block is iSize bytes. 001564 ** 001565 ** Adjacent freeblocks are coalesced. 001566 ** 001567 ** Note that even though the freeblock list was checked by btreeInitPage(), 001568 ** that routine will not detect overlap between cells or freeblocks. Nor 001569 ** does it detect cells or freeblocks that encrouch into the reserved bytes 001570 ** at the end of the page. So do additional corruption checks inside this 001571 ** routine and return SQLITE_CORRUPT if any problems are found. 001572 */ 001573 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 001574 u16 iPtr; /* Address of ptr to next freeblock */ 001575 u16 iFreeBlk; /* Address of the next freeblock */ 001576 u8 hdr; /* Page header size. 0 or 100 */ 001577 u8 nFrag = 0; /* Reduction in fragmentation */ 001578 u16 iOrigSize = iSize; /* Original value of iSize */ 001579 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */ 001580 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 001581 unsigned char *data = pPage->aData; /* Page content */ 001582 001583 assert( pPage->pBt!=0 ); 001584 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 001585 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 001586 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 001587 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 001588 assert( iSize>=4 ); /* Minimum cell size is 4 */ 001589 assert( iStart<=iLast ); 001590 001591 /* Overwrite deleted information with zeros when the secure_delete 001592 ** option is enabled */ 001593 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){ 001594 memset(&data[iStart], 0, iSize); 001595 } 001596 001597 /* The list of freeblocks must be in ascending order. Find the 001598 ** spot on the list where iStart should be inserted. 001599 */ 001600 hdr = pPage->hdrOffset; 001601 iPtr = hdr + 1; 001602 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 001603 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 001604 }else{ 001605 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 001606 if( iFreeBlk<iPtr+4 ){ 001607 if( iFreeBlk==0 ) break; 001608 return SQLITE_CORRUPT_BKPT; 001609 } 001610 iPtr = iFreeBlk; 001611 } 001612 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT; 001613 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 001614 001615 /* At this point: 001616 ** iFreeBlk: First freeblock after iStart, or zero if none 001617 ** iPtr: The address of a pointer to iFreeBlk 001618 ** 001619 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 001620 */ 001621 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 001622 nFrag = iFreeBlk - iEnd; 001623 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT; 001624 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 001625 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT; 001626 iSize = iEnd - iStart; 001627 iFreeBlk = get2byte(&data[iFreeBlk]); 001628 } 001629 001630 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 001631 ** pointer in the page header) then check to see if iStart should be 001632 ** coalesced onto the end of iPtr. 001633 */ 001634 if( iPtr>hdr+1 ){ 001635 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 001636 if( iPtrEnd+3>=iStart ){ 001637 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT; 001638 nFrag += iStart - iPtrEnd; 001639 iSize = iEnd - iPtr; 001640 iStart = iPtr; 001641 } 001642 } 001643 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT; 001644 data[hdr+7] -= nFrag; 001645 } 001646 if( iStart==get2byte(&data[hdr+5]) ){ 001647 /* The new freeblock is at the beginning of the cell content area, 001648 ** so just extend the cell content area rather than create another 001649 ** freelist entry */ 001650 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT; 001651 put2byte(&data[hdr+1], iFreeBlk); 001652 put2byte(&data[hdr+5], iEnd); 001653 }else{ 001654 /* Insert the new freeblock into the freelist */ 001655 put2byte(&data[iPtr], iStart); 001656 put2byte(&data[iStart], iFreeBlk); 001657 put2byte(&data[iStart+2], iSize); 001658 } 001659 pPage->nFree += iOrigSize; 001660 return SQLITE_OK; 001661 } 001662 001663 /* 001664 ** Decode the flags byte (the first byte of the header) for a page 001665 ** and initialize fields of the MemPage structure accordingly. 001666 ** 001667 ** Only the following combinations are supported. Anything different 001668 ** indicates a corrupt database files: 001669 ** 001670 ** PTF_ZERODATA 001671 ** PTF_ZERODATA | PTF_LEAF 001672 ** PTF_LEAFDATA | PTF_INTKEY 001673 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 001674 */ 001675 static int decodeFlags(MemPage *pPage, int flagByte){ 001676 BtShared *pBt; /* A copy of pPage->pBt */ 001677 001678 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 001679 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 001680 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 001681 flagByte &= ~PTF_LEAF; 001682 pPage->childPtrSize = 4-4*pPage->leaf; 001683 pPage->xCellSize = cellSizePtr; 001684 pBt = pPage->pBt; 001685 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 001686 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 001687 ** interior table b-tree page. */ 001688 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 001689 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 001690 ** leaf table b-tree page. */ 001691 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 001692 pPage->intKey = 1; 001693 if( pPage->leaf ){ 001694 pPage->intKeyLeaf = 1; 001695 pPage->xParseCell = btreeParseCellPtr; 001696 }else{ 001697 pPage->intKeyLeaf = 0; 001698 pPage->xCellSize = cellSizePtrNoPayload; 001699 pPage->xParseCell = btreeParseCellPtrNoPayload; 001700 } 001701 pPage->maxLocal = pBt->maxLeaf; 001702 pPage->minLocal = pBt->minLeaf; 001703 }else if( flagByte==PTF_ZERODATA ){ 001704 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 001705 ** interior index b-tree page. */ 001706 assert( (PTF_ZERODATA)==2 ); 001707 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 001708 ** leaf index b-tree page. */ 001709 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 001710 pPage->intKey = 0; 001711 pPage->intKeyLeaf = 0; 001712 pPage->xParseCell = btreeParseCellPtrIndex; 001713 pPage->maxLocal = pBt->maxLocal; 001714 pPage->minLocal = pBt->minLocal; 001715 }else{ 001716 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 001717 ** an error. */ 001718 return SQLITE_CORRUPT_BKPT; 001719 } 001720 pPage->max1bytePayload = pBt->max1bytePayload; 001721 return SQLITE_OK; 001722 } 001723 001724 /* 001725 ** Initialize the auxiliary information for a disk block. 001726 ** 001727 ** Return SQLITE_OK on success. If we see that the page does 001728 ** not contain a well-formed database page, then return 001729 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 001730 ** guarantee that the page is well-formed. It only shows that 001731 ** we failed to detect any corruption. 001732 */ 001733 static int btreeInitPage(MemPage *pPage){ 001734 001735 assert( pPage->pBt!=0 ); 001736 assert( pPage->pBt->db!=0 ); 001737 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 001738 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 001739 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 001740 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 001741 001742 if( !pPage->isInit ){ 001743 int pc; /* Address of a freeblock within pPage->aData[] */ 001744 u8 hdr; /* Offset to beginning of page header */ 001745 u8 *data; /* Equal to pPage->aData */ 001746 BtShared *pBt; /* The main btree structure */ 001747 int usableSize; /* Amount of usable space on each page */ 001748 u16 cellOffset; /* Offset from start of page to first cell pointer */ 001749 int nFree; /* Number of unused bytes on the page */ 001750 int top; /* First byte of the cell content area */ 001751 int iCellFirst; /* First allowable cell or freeblock offset */ 001752 int iCellLast; /* Last possible cell or freeblock offset */ 001753 001754 pBt = pPage->pBt; 001755 001756 hdr = pPage->hdrOffset; 001757 data = pPage->aData; 001758 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 001759 ** the b-tree page type. */ 001760 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; 001761 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 001762 pPage->maskPage = (u16)(pBt->pageSize - 1); 001763 pPage->nOverflow = 0; 001764 usableSize = pBt->usableSize; 001765 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; 001766 pPage->aDataEnd = &data[usableSize]; 001767 pPage->aCellIdx = &data[cellOffset]; 001768 pPage->aDataOfst = &data[pPage->childPtrSize]; 001769 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 001770 ** the start of the cell content area. A zero value for this integer is 001771 ** interpreted as 65536. */ 001772 top = get2byteNotZero(&data[hdr+5]); 001773 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 001774 ** number of cells on the page. */ 001775 pPage->nCell = get2byte(&data[hdr+3]); 001776 if( pPage->nCell>MX_CELL(pBt) ){ 001777 /* To many cells for a single page. The page must be corrupt */ 001778 return SQLITE_CORRUPT_BKPT; 001779 } 001780 testcase( pPage->nCell==MX_CELL(pBt) ); 001781 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 001782 ** possible for a root page of a table that contains no rows) then the 001783 ** offset to the cell content area will equal the page size minus the 001784 ** bytes of reserved space. */ 001785 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB ); 001786 001787 /* A malformed database page might cause us to read past the end 001788 ** of page when parsing a cell. 001789 ** 001790 ** The following block of code checks early to see if a cell extends 001791 ** past the end of a page boundary and causes SQLITE_CORRUPT to be 001792 ** returned if it does. 001793 */ 001794 iCellFirst = cellOffset + 2*pPage->nCell; 001795 iCellLast = usableSize - 4; 001796 if( pBt->db->flags & SQLITE_CellSizeCk ){ 001797 int i; /* Index into the cell pointer array */ 001798 int sz; /* Size of a cell */ 001799 001800 if( !pPage->leaf ) iCellLast--; 001801 for(i=0; i<pPage->nCell; i++){ 001802 pc = get2byteAligned(&data[cellOffset+i*2]); 001803 testcase( pc==iCellFirst ); 001804 testcase( pc==iCellLast ); 001805 if( pc<iCellFirst || pc>iCellLast ){ 001806 return SQLITE_CORRUPT_BKPT; 001807 } 001808 sz = pPage->xCellSize(pPage, &data[pc]); 001809 testcase( pc+sz==usableSize ); 001810 if( pc+sz>usableSize ){ 001811 return SQLITE_CORRUPT_BKPT; 001812 } 001813 } 001814 if( !pPage->leaf ) iCellLast++; 001815 } 001816 001817 /* Compute the total free space on the page 001818 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 001819 ** start of the first freeblock on the page, or is zero if there are no 001820 ** freeblocks. */ 001821 pc = get2byte(&data[hdr+1]); 001822 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 001823 if( pc>0 ){ 001824 u32 next, size; 001825 if( pc<iCellFirst ){ 001826 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 001827 ** always be at least one cell before the first freeblock. 001828 */ 001829 return SQLITE_CORRUPT_BKPT; 001830 } 001831 while( 1 ){ 001832 if( pc>iCellLast ){ 001833 return SQLITE_CORRUPT_BKPT; /* Freeblock off the end of the page */ 001834 } 001835 next = get2byte(&data[pc]); 001836 size = get2byte(&data[pc+2]); 001837 nFree = nFree + size; 001838 if( next<=pc+size+3 ) break; 001839 pc = next; 001840 } 001841 if( next>0 ){ 001842 return SQLITE_CORRUPT_BKPT; /* Freeblock not in ascending order */ 001843 } 001844 if( pc+size>(unsigned int)usableSize ){ 001845 return SQLITE_CORRUPT_BKPT; /* Last freeblock extends past page end */ 001846 } 001847 } 001848 001849 /* At this point, nFree contains the sum of the offset to the start 001850 ** of the cell-content area plus the number of free bytes within 001851 ** the cell-content area. If this is greater than the usable-size 001852 ** of the page, then the page must be corrupted. This check also 001853 ** serves to verify that the offset to the start of the cell-content 001854 ** area, according to the page header, lies within the page. 001855 */ 001856 if( nFree>usableSize ){ 001857 return SQLITE_CORRUPT_BKPT; 001858 } 001859 pPage->nFree = (u16)(nFree - iCellFirst); 001860 pPage->isInit = 1; 001861 } 001862 return SQLITE_OK; 001863 } 001864 001865 /* 001866 ** Set up a raw page so that it looks like a database page holding 001867 ** no entries. 001868 */ 001869 static void zeroPage(MemPage *pPage, int flags){ 001870 unsigned char *data = pPage->aData; 001871 BtShared *pBt = pPage->pBt; 001872 u8 hdr = pPage->hdrOffset; 001873 u16 first; 001874 001875 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 001876 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 001877 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 001878 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 001879 assert( sqlite3_mutex_held(pBt->mutex) ); 001880 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 001881 memset(&data[hdr], 0, pBt->usableSize - hdr); 001882 } 001883 data[hdr] = (char)flags; 001884 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 001885 memset(&data[hdr+1], 0, 4); 001886 data[hdr+7] = 0; 001887 put2byte(&data[hdr+5], pBt->usableSize); 001888 pPage->nFree = (u16)(pBt->usableSize - first); 001889 decodeFlags(pPage, flags); 001890 pPage->cellOffset = first; 001891 pPage->aDataEnd = &data[pBt->usableSize]; 001892 pPage->aCellIdx = &data[first]; 001893 pPage->aDataOfst = &data[pPage->childPtrSize]; 001894 pPage->nOverflow = 0; 001895 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 001896 pPage->maskPage = (u16)(pBt->pageSize - 1); 001897 pPage->nCell = 0; 001898 pPage->isInit = 1; 001899 } 001900 001901 001902 /* 001903 ** Convert a DbPage obtained from the pager into a MemPage used by 001904 ** the btree layer. 001905 */ 001906 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 001907 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 001908 if( pgno!=pPage->pgno ){ 001909 pPage->aData = sqlite3PagerGetData(pDbPage); 001910 pPage->pDbPage = pDbPage; 001911 pPage->pBt = pBt; 001912 pPage->pgno = pgno; 001913 pPage->hdrOffset = pgno==1 ? 100 : 0; 001914 } 001915 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 001916 return pPage; 001917 } 001918 001919 /* 001920 ** Get a page from the pager. Initialize the MemPage.pBt and 001921 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 001922 ** 001923 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 001924 ** about the content of the page at this time. So do not go to the disk 001925 ** to fetch the content. Just fill in the content with zeros for now. 001926 ** If in the future we call sqlite3PagerWrite() on this page, that 001927 ** means we have started to be concerned about content and the disk 001928 ** read should occur at that point. 001929 */ 001930 static int btreeGetPage( 001931 BtShared *pBt, /* The btree */ 001932 Pgno pgno, /* Number of the page to fetch */ 001933 MemPage **ppPage, /* Return the page in this parameter */ 001934 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 001935 ){ 001936 int rc; 001937 DbPage *pDbPage; 001938 001939 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 001940 assert( sqlite3_mutex_held(pBt->mutex) ); 001941 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 001942 if( rc ) return rc; 001943 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 001944 return SQLITE_OK; 001945 } 001946 001947 /* 001948 ** Retrieve a page from the pager cache. If the requested page is not 001949 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 001950 ** MemPage.aData elements if needed. 001951 */ 001952 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 001953 DbPage *pDbPage; 001954 assert( sqlite3_mutex_held(pBt->mutex) ); 001955 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 001956 if( pDbPage ){ 001957 return btreePageFromDbPage(pDbPage, pgno, pBt); 001958 } 001959 return 0; 001960 } 001961 001962 /* 001963 ** Return the size of the database file in pages. If there is any kind of 001964 ** error, return ((unsigned int)-1). 001965 */ 001966 static Pgno btreePagecount(BtShared *pBt){ 001967 return pBt->nPage; 001968 } 001969 u32 sqlite3BtreeLastPage(Btree *p){ 001970 assert( sqlite3BtreeHoldsMutex(p) ); 001971 assert( ((p->pBt->nPage)&0x8000000)==0 ); 001972 return btreePagecount(p->pBt); 001973 } 001974 001975 /* 001976 ** Get a page from the pager and initialize it. 001977 ** 001978 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 001979 ** call. Do additional sanity checking on the page in this case. 001980 ** And if the fetch fails, this routine must decrement pCur->iPage. 001981 ** 001982 ** The page is fetched as read-write unless pCur is not NULL and is 001983 ** a read-only cursor. 001984 ** 001985 ** If an error occurs, then *ppPage is undefined. It 001986 ** may remain unchanged, or it may be set to an invalid value. 001987 */ 001988 static int getAndInitPage( 001989 BtShared *pBt, /* The database file */ 001990 Pgno pgno, /* Number of the page to get */ 001991 MemPage **ppPage, /* Write the page pointer here */ 001992 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 001993 int bReadOnly /* True for a read-only page */ 001994 ){ 001995 int rc; 001996 DbPage *pDbPage; 001997 assert( sqlite3_mutex_held(pBt->mutex) ); 001998 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] ); 001999 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 002000 assert( pCur==0 || pCur->iPage>0 ); 002001 002002 if( pgno>btreePagecount(pBt) ){ 002003 rc = SQLITE_CORRUPT_BKPT; 002004 goto getAndInitPage_error; 002005 } 002006 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 002007 if( rc ){ 002008 goto getAndInitPage_error; 002009 } 002010 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 002011 if( (*ppPage)->isInit==0 ){ 002012 btreePageFromDbPage(pDbPage, pgno, pBt); 002013 rc = btreeInitPage(*ppPage); 002014 if( rc!=SQLITE_OK ){ 002015 releasePage(*ppPage); 002016 goto getAndInitPage_error; 002017 } 002018 } 002019 assert( (*ppPage)->pgno==pgno ); 002020 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 002021 002022 /* If obtaining a child page for a cursor, we must verify that the page is 002023 ** compatible with the root page. */ 002024 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 002025 rc = SQLITE_CORRUPT_BKPT; 002026 releasePage(*ppPage); 002027 goto getAndInitPage_error; 002028 } 002029 return SQLITE_OK; 002030 002031 getAndInitPage_error: 002032 if( pCur ) pCur->iPage--; 002033 testcase( pgno==0 ); 002034 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 002035 return rc; 002036 } 002037 002038 /* 002039 ** Release a MemPage. This should be called once for each prior 002040 ** call to btreeGetPage. 002041 */ 002042 static void releasePageNotNull(MemPage *pPage){ 002043 assert( pPage->aData ); 002044 assert( pPage->pBt ); 002045 assert( pPage->pDbPage!=0 ); 002046 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 002047 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 002048 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 002049 sqlite3PagerUnrefNotNull(pPage->pDbPage); 002050 } 002051 static void releasePage(MemPage *pPage){ 002052 if( pPage ) releasePageNotNull(pPage); 002053 } 002054 002055 /* 002056 ** Get an unused page. 002057 ** 002058 ** This works just like btreeGetPage() with the addition: 002059 ** 002060 ** * If the page is already in use for some other purpose, immediately 002061 ** release it and return an SQLITE_CURRUPT error. 002062 ** * Make sure the isInit flag is clear 002063 */ 002064 static int btreeGetUnusedPage( 002065 BtShared *pBt, /* The btree */ 002066 Pgno pgno, /* Number of the page to fetch */ 002067 MemPage **ppPage, /* Return the page in this parameter */ 002068 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 002069 ){ 002070 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 002071 if( rc==SQLITE_OK ){ 002072 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 002073 releasePage(*ppPage); 002074 *ppPage = 0; 002075 return SQLITE_CORRUPT_BKPT; 002076 } 002077 (*ppPage)->isInit = 0; 002078 }else{ 002079 *ppPage = 0; 002080 } 002081 return rc; 002082 } 002083 002084 002085 /* 002086 ** During a rollback, when the pager reloads information into the cache 002087 ** so that the cache is restored to its original state at the start of 002088 ** the transaction, for each page restored this routine is called. 002089 ** 002090 ** This routine needs to reset the extra data section at the end of the 002091 ** page to agree with the restored data. 002092 */ 002093 static void pageReinit(DbPage *pData){ 002094 MemPage *pPage; 002095 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 002096 assert( sqlite3PagerPageRefcount(pData)>0 ); 002097 if( pPage->isInit ){ 002098 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 002099 pPage->isInit = 0; 002100 if( sqlite3PagerPageRefcount(pData)>1 ){ 002101 /* pPage might not be a btree page; it might be an overflow page 002102 ** or ptrmap page or a free page. In those cases, the following 002103 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 002104 ** But no harm is done by this. And it is very important that 002105 ** btreeInitPage() be called on every btree page so we make 002106 ** the call for every page that comes in for re-initing. */ 002107 btreeInitPage(pPage); 002108 } 002109 } 002110 } 002111 002112 /* 002113 ** Invoke the busy handler for a btree. 002114 */ 002115 static int btreeInvokeBusyHandler(void *pArg){ 002116 BtShared *pBt = (BtShared*)pArg; 002117 assert( pBt->db ); 002118 assert( sqlite3_mutex_held(pBt->db->mutex) ); 002119 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 002120 } 002121 002122 /* 002123 ** Open a database file. 002124 ** 002125 ** zFilename is the name of the database file. If zFilename is NULL 002126 ** then an ephemeral database is created. The ephemeral database might 002127 ** be exclusively in memory, or it might use a disk-based memory cache. 002128 ** Either way, the ephemeral database will be automatically deleted 002129 ** when sqlite3BtreeClose() is called. 002130 ** 002131 ** If zFilename is ":memory:" then an in-memory database is created 002132 ** that is automatically destroyed when it is closed. 002133 ** 002134 ** The "flags" parameter is a bitmask that might contain bits like 002135 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 002136 ** 002137 ** If the database is already opened in the same database connection 002138 ** and we are in shared cache mode, then the open will fail with an 002139 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 002140 ** objects in the same database connection since doing so will lead 002141 ** to problems with locking. 002142 */ 002143 int sqlite3BtreeOpen( 002144 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 002145 const char *zFilename, /* Name of the file containing the BTree database */ 002146 sqlite3 *db, /* Associated database handle */ 002147 Btree **ppBtree, /* Pointer to new Btree object written here */ 002148 int flags, /* Options */ 002149 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 002150 ){ 002151 BtShared *pBt = 0; /* Shared part of btree structure */ 002152 Btree *p; /* Handle to return */ 002153 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 002154 int rc = SQLITE_OK; /* Result code from this function */ 002155 u8 nReserve; /* Byte of unused space on each page */ 002156 unsigned char zDbHeader[100]; /* Database header content */ 002157 002158 /* True if opening an ephemeral, temporary database */ 002159 const int isTempDb = zFilename==0 || zFilename[0]==0; 002160 002161 /* Set the variable isMemdb to true for an in-memory database, or 002162 ** false for a file-based database. 002163 */ 002164 #ifdef SQLITE_OMIT_MEMORYDB 002165 const int isMemdb = 0; 002166 #else 002167 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 002168 || (isTempDb && sqlite3TempInMemory(db)) 002169 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 002170 #endif 002171 002172 assert( db!=0 ); 002173 assert( pVfs!=0 ); 002174 assert( sqlite3_mutex_held(db->mutex) ); 002175 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 002176 002177 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 002178 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 002179 002180 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 002181 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 002182 002183 if( isMemdb ){ 002184 flags |= BTREE_MEMORY; 002185 } 002186 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 002187 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 002188 } 002189 p = sqlite3MallocZero(sizeof(Btree)); 002190 if( !p ){ 002191 return SQLITE_NOMEM_BKPT; 002192 } 002193 p->inTrans = TRANS_NONE; 002194 p->db = db; 002195 #ifndef SQLITE_OMIT_SHARED_CACHE 002196 p->lock.pBtree = p; 002197 p->lock.iTable = 1; 002198 #endif 002199 002200 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 002201 /* 002202 ** If this Btree is a candidate for shared cache, try to find an 002203 ** existing BtShared object that we can share with 002204 */ 002205 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 002206 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 002207 int nFilename = sqlite3Strlen30(zFilename)+1; 002208 int nFullPathname = pVfs->mxPathname+1; 002209 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 002210 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 002211 002212 p->sharable = 1; 002213 if( !zFullPathname ){ 002214 sqlite3_free(p); 002215 return SQLITE_NOMEM_BKPT; 002216 } 002217 if( isMemdb ){ 002218 memcpy(zFullPathname, zFilename, nFilename); 002219 }else{ 002220 rc = sqlite3OsFullPathname(pVfs, zFilename, 002221 nFullPathname, zFullPathname); 002222 if( rc ){ 002223 sqlite3_free(zFullPathname); 002224 sqlite3_free(p); 002225 return rc; 002226 } 002227 } 002228 #if SQLITE_THREADSAFE 002229 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 002230 sqlite3_mutex_enter(mutexOpen); 002231 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 002232 sqlite3_mutex_enter(mutexShared); 002233 #endif 002234 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 002235 assert( pBt->nRef>0 ); 002236 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 002237 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 002238 int iDb; 002239 for(iDb=db->nDb-1; iDb>=0; iDb--){ 002240 Btree *pExisting = db->aDb[iDb].pBt; 002241 if( pExisting && pExisting->pBt==pBt ){ 002242 sqlite3_mutex_leave(mutexShared); 002243 sqlite3_mutex_leave(mutexOpen); 002244 sqlite3_free(zFullPathname); 002245 sqlite3_free(p); 002246 return SQLITE_CONSTRAINT; 002247 } 002248 } 002249 p->pBt = pBt; 002250 pBt->nRef++; 002251 break; 002252 } 002253 } 002254 sqlite3_mutex_leave(mutexShared); 002255 sqlite3_free(zFullPathname); 002256 } 002257 #ifdef SQLITE_DEBUG 002258 else{ 002259 /* In debug mode, we mark all persistent databases as sharable 002260 ** even when they are not. This exercises the locking code and 002261 ** gives more opportunity for asserts(sqlite3_mutex_held()) 002262 ** statements to find locking problems. 002263 */ 002264 p->sharable = 1; 002265 } 002266 #endif 002267 } 002268 #endif 002269 if( pBt==0 ){ 002270 /* 002271 ** The following asserts make sure that structures used by the btree are 002272 ** the right size. This is to guard against size changes that result 002273 ** when compiling on a different architecture. 002274 */ 002275 assert( sizeof(i64)==8 ); 002276 assert( sizeof(u64)==8 ); 002277 assert( sizeof(u32)==4 ); 002278 assert( sizeof(u16)==2 ); 002279 assert( sizeof(Pgno)==4 ); 002280 002281 pBt = sqlite3MallocZero( sizeof(*pBt) ); 002282 if( pBt==0 ){ 002283 rc = SQLITE_NOMEM_BKPT; 002284 goto btree_open_out; 002285 } 002286 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 002287 sizeof(MemPage), flags, vfsFlags, pageReinit); 002288 if( rc==SQLITE_OK ){ 002289 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 002290 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 002291 } 002292 if( rc!=SQLITE_OK ){ 002293 goto btree_open_out; 002294 } 002295 pBt->openFlags = (u8)flags; 002296 pBt->db = db; 002297 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 002298 p->pBt = pBt; 002299 002300 pBt->pCursor = 0; 002301 pBt->pPage1 = 0; 002302 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 002303 #ifdef SQLITE_SECURE_DELETE 002304 pBt->btsFlags |= BTS_SECURE_DELETE; 002305 #endif 002306 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 002307 ** determined by the 2-byte integer located at an offset of 16 bytes from 002308 ** the beginning of the database file. */ 002309 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 002310 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 002311 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 002312 pBt->pageSize = 0; 002313 #ifndef SQLITE_OMIT_AUTOVACUUM 002314 /* If the magic name ":memory:" will create an in-memory database, then 002315 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 002316 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 002317 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 002318 ** regular file-name. In this case the auto-vacuum applies as per normal. 002319 */ 002320 if( zFilename && !isMemdb ){ 002321 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 002322 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 002323 } 002324 #endif 002325 nReserve = 0; 002326 }else{ 002327 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 002328 ** determined by the one-byte unsigned integer found at an offset of 20 002329 ** into the database file header. */ 002330 nReserve = zDbHeader[20]; 002331 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 002332 #ifndef SQLITE_OMIT_AUTOVACUUM 002333 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 002334 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 002335 #endif 002336 } 002337 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 002338 if( rc ) goto btree_open_out; 002339 pBt->usableSize = pBt->pageSize - nReserve; 002340 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 002341 002342 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 002343 /* Add the new BtShared object to the linked list sharable BtShareds. 002344 */ 002345 pBt->nRef = 1; 002346 if( p->sharable ){ 002347 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 002348 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) 002349 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 002350 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 002351 if( pBt->mutex==0 ){ 002352 rc = SQLITE_NOMEM_BKPT; 002353 goto btree_open_out; 002354 } 002355 } 002356 sqlite3_mutex_enter(mutexShared); 002357 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 002358 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 002359 sqlite3_mutex_leave(mutexShared); 002360 } 002361 #endif 002362 } 002363 002364 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 002365 /* If the new Btree uses a sharable pBtShared, then link the new 002366 ** Btree into the list of all sharable Btrees for the same connection. 002367 ** The list is kept in ascending order by pBt address. 002368 */ 002369 if( p->sharable ){ 002370 int i; 002371 Btree *pSib; 002372 for(i=0; i<db->nDb; i++){ 002373 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 002374 while( pSib->pPrev ){ pSib = pSib->pPrev; } 002375 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 002376 p->pNext = pSib; 002377 p->pPrev = 0; 002378 pSib->pPrev = p; 002379 }else{ 002380 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 002381 pSib = pSib->pNext; 002382 } 002383 p->pNext = pSib->pNext; 002384 p->pPrev = pSib; 002385 if( p->pNext ){ 002386 p->pNext->pPrev = p; 002387 } 002388 pSib->pNext = p; 002389 } 002390 break; 002391 } 002392 } 002393 } 002394 #endif 002395 *ppBtree = p; 002396 002397 btree_open_out: 002398 if( rc!=SQLITE_OK ){ 002399 if( pBt && pBt->pPager ){ 002400 sqlite3PagerClose(pBt->pPager, 0); 002401 } 002402 sqlite3_free(pBt); 002403 sqlite3_free(p); 002404 *ppBtree = 0; 002405 }else{ 002406 sqlite3_file *pFile; 002407 002408 /* If the B-Tree was successfully opened, set the pager-cache size to the 002409 ** default value. Except, when opening on an existing shared pager-cache, 002410 ** do not change the pager-cache size. 002411 */ 002412 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 002413 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); 002414 } 002415 002416 pFile = sqlite3PagerFile(pBt->pPager); 002417 if( pFile->pMethods ){ 002418 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 002419 } 002420 } 002421 if( mutexOpen ){ 002422 assert( sqlite3_mutex_held(mutexOpen) ); 002423 sqlite3_mutex_leave(mutexOpen); 002424 } 002425 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 002426 return rc; 002427 } 002428 002429 /* 002430 ** Decrement the BtShared.nRef counter. When it reaches zero, 002431 ** remove the BtShared structure from the sharing list. Return 002432 ** true if the BtShared.nRef counter reaches zero and return 002433 ** false if it is still positive. 002434 */ 002435 static int removeFromSharingList(BtShared *pBt){ 002436 #ifndef SQLITE_OMIT_SHARED_CACHE 002437 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) 002438 BtShared *pList; 002439 int removed = 0; 002440 002441 assert( sqlite3_mutex_notheld(pBt->mutex) ); 002442 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 002443 sqlite3_mutex_enter(pMaster); 002444 pBt->nRef--; 002445 if( pBt->nRef<=0 ){ 002446 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 002447 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 002448 }else{ 002449 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 002450 while( ALWAYS(pList) && pList->pNext!=pBt ){ 002451 pList=pList->pNext; 002452 } 002453 if( ALWAYS(pList) ){ 002454 pList->pNext = pBt->pNext; 002455 } 002456 } 002457 if( SQLITE_THREADSAFE ){ 002458 sqlite3_mutex_free(pBt->mutex); 002459 } 002460 removed = 1; 002461 } 002462 sqlite3_mutex_leave(pMaster); 002463 return removed; 002464 #else 002465 return 1; 002466 #endif 002467 } 002468 002469 /* 002470 ** Make sure pBt->pTmpSpace points to an allocation of 002471 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 002472 ** pointer. 002473 */ 002474 static void allocateTempSpace(BtShared *pBt){ 002475 if( !pBt->pTmpSpace ){ 002476 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 002477 002478 /* One of the uses of pBt->pTmpSpace is to format cells before 002479 ** inserting them into a leaf page (function fillInCell()). If 002480 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 002481 ** by the various routines that manipulate binary cells. Which 002482 ** can mean that fillInCell() only initializes the first 2 or 3 002483 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 002484 ** it into a database page. This is not actually a problem, but it 002485 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 002486 ** data is passed to system call write(). So to avoid this error, 002487 ** zero the first 4 bytes of temp space here. 002488 ** 002489 ** Also: Provide four bytes of initialized space before the 002490 ** beginning of pTmpSpace as an area available to prepend the 002491 ** left-child pointer to the beginning of a cell. 002492 */ 002493 if( pBt->pTmpSpace ){ 002494 memset(pBt->pTmpSpace, 0, 8); 002495 pBt->pTmpSpace += 4; 002496 } 002497 } 002498 } 002499 002500 /* 002501 ** Free the pBt->pTmpSpace allocation 002502 */ 002503 static void freeTempSpace(BtShared *pBt){ 002504 if( pBt->pTmpSpace ){ 002505 pBt->pTmpSpace -= 4; 002506 sqlite3PageFree(pBt->pTmpSpace); 002507 pBt->pTmpSpace = 0; 002508 } 002509 } 002510 002511 /* 002512 ** Close an open database and invalidate all cursors. 002513 */ 002514 int sqlite3BtreeClose(Btree *p){ 002515 BtShared *pBt = p->pBt; 002516 BtCursor *pCur; 002517 002518 /* Close all cursors opened via this handle. */ 002519 assert( sqlite3_mutex_held(p->db->mutex) ); 002520 sqlite3BtreeEnter(p); 002521 pCur = pBt->pCursor; 002522 while( pCur ){ 002523 BtCursor *pTmp = pCur; 002524 pCur = pCur->pNext; 002525 if( pTmp->pBtree==p ){ 002526 sqlite3BtreeCloseCursor(pTmp); 002527 } 002528 } 002529 002530 /* Rollback any active transaction and free the handle structure. 002531 ** The call to sqlite3BtreeRollback() drops any table-locks held by 002532 ** this handle. 002533 */ 002534 sqlite3BtreeRollback(p, SQLITE_OK, 0); 002535 sqlite3BtreeLeave(p); 002536 002537 /* If there are still other outstanding references to the shared-btree 002538 ** structure, return now. The remainder of this procedure cleans 002539 ** up the shared-btree. 002540 */ 002541 assert( p->wantToLock==0 && p->locked==0 ); 002542 if( !p->sharable || removeFromSharingList(pBt) ){ 002543 /* The pBt is no longer on the sharing list, so we can access 002544 ** it without having to hold the mutex. 002545 ** 002546 ** Clean out and delete the BtShared object. 002547 */ 002548 assert( !pBt->pCursor ); 002549 sqlite3PagerClose(pBt->pPager, p->db); 002550 if( pBt->xFreeSchema && pBt->pSchema ){ 002551 pBt->xFreeSchema(pBt->pSchema); 002552 } 002553 sqlite3DbFree(0, pBt->pSchema); 002554 freeTempSpace(pBt); 002555 sqlite3_free(pBt); 002556 } 002557 002558 #ifndef SQLITE_OMIT_SHARED_CACHE 002559 assert( p->wantToLock==0 ); 002560 assert( p->locked==0 ); 002561 if( p->pPrev ) p->pPrev->pNext = p->pNext; 002562 if( p->pNext ) p->pNext->pPrev = p->pPrev; 002563 #endif 002564 002565 sqlite3_free(p); 002566 return SQLITE_OK; 002567 } 002568 002569 /* 002570 ** Change the "soft" limit on the number of pages in the cache. 002571 ** Unused and unmodified pages will be recycled when the number of 002572 ** pages in the cache exceeds this soft limit. But the size of the 002573 ** cache is allowed to grow larger than this limit if it contains 002574 ** dirty pages or pages still in active use. 002575 */ 002576 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 002577 BtShared *pBt = p->pBt; 002578 assert( sqlite3_mutex_held(p->db->mutex) ); 002579 sqlite3BtreeEnter(p); 002580 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 002581 sqlite3BtreeLeave(p); 002582 return SQLITE_OK; 002583 } 002584 002585 /* 002586 ** Change the "spill" limit on the number of pages in the cache. 002587 ** If the number of pages exceeds this limit during a write transaction, 002588 ** the pager might attempt to "spill" pages to the journal early in 002589 ** order to free up memory. 002590 ** 002591 ** The value returned is the current spill size. If zero is passed 002592 ** as an argument, no changes are made to the spill size setting, so 002593 ** using mxPage of 0 is a way to query the current spill size. 002594 */ 002595 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 002596 BtShared *pBt = p->pBt; 002597 int res; 002598 assert( sqlite3_mutex_held(p->db->mutex) ); 002599 sqlite3BtreeEnter(p); 002600 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 002601 sqlite3BtreeLeave(p); 002602 return res; 002603 } 002604 002605 #if SQLITE_MAX_MMAP_SIZE>0 002606 /* 002607 ** Change the limit on the amount of the database file that may be 002608 ** memory mapped. 002609 */ 002610 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 002611 BtShared *pBt = p->pBt; 002612 assert( sqlite3_mutex_held(p->db->mutex) ); 002613 sqlite3BtreeEnter(p); 002614 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 002615 sqlite3BtreeLeave(p); 002616 return SQLITE_OK; 002617 } 002618 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 002619 002620 /* 002621 ** Change the way data is synced to disk in order to increase or decrease 002622 ** how well the database resists damage due to OS crashes and power 002623 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 002624 ** there is a high probability of damage) Level 2 is the default. There 002625 ** is a very low but non-zero probability of damage. Level 3 reduces the 002626 ** probability of damage to near zero but with a write performance reduction. 002627 */ 002628 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 002629 int sqlite3BtreeSetPagerFlags( 002630 Btree *p, /* The btree to set the safety level on */ 002631 unsigned pgFlags /* Various PAGER_* flags */ 002632 ){ 002633 BtShared *pBt = p->pBt; 002634 assert( sqlite3_mutex_held(p->db->mutex) ); 002635 sqlite3BtreeEnter(p); 002636 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 002637 sqlite3BtreeLeave(p); 002638 return SQLITE_OK; 002639 } 002640 #endif 002641 002642 /* 002643 ** Change the default pages size and the number of reserved bytes per page. 002644 ** Or, if the page size has already been fixed, return SQLITE_READONLY 002645 ** without changing anything. 002646 ** 002647 ** The page size must be a power of 2 between 512 and 65536. If the page 002648 ** size supplied does not meet this constraint then the page size is not 002649 ** changed. 002650 ** 002651 ** Page sizes are constrained to be a power of two so that the region 002652 ** of the database file used for locking (beginning at PENDING_BYTE, 002653 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 002654 ** at the beginning of a page. 002655 ** 002656 ** If parameter nReserve is less than zero, then the number of reserved 002657 ** bytes per page is left unchanged. 002658 ** 002659 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 002660 ** and autovacuum mode can no longer be changed. 002661 */ 002662 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 002663 int rc = SQLITE_OK; 002664 BtShared *pBt = p->pBt; 002665 assert( nReserve>=-1 && nReserve<=255 ); 002666 sqlite3BtreeEnter(p); 002667 #if SQLITE_HAS_CODEC 002668 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve; 002669 #endif 002670 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 002671 sqlite3BtreeLeave(p); 002672 return SQLITE_READONLY; 002673 } 002674 if( nReserve<0 ){ 002675 nReserve = pBt->pageSize - pBt->usableSize; 002676 } 002677 assert( nReserve>=0 && nReserve<=255 ); 002678 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 002679 ((pageSize-1)&pageSize)==0 ){ 002680 assert( (pageSize & 7)==0 ); 002681 assert( !pBt->pCursor ); 002682 pBt->pageSize = (u32)pageSize; 002683 freeTempSpace(pBt); 002684 } 002685 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 002686 pBt->usableSize = pBt->pageSize - (u16)nReserve; 002687 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 002688 sqlite3BtreeLeave(p); 002689 return rc; 002690 } 002691 002692 /* 002693 ** Return the currently defined page size 002694 */ 002695 int sqlite3BtreeGetPageSize(Btree *p){ 002696 return p->pBt->pageSize; 002697 } 002698 002699 /* 002700 ** This function is similar to sqlite3BtreeGetReserve(), except that it 002701 ** may only be called if it is guaranteed that the b-tree mutex is already 002702 ** held. 002703 ** 002704 ** This is useful in one special case in the backup API code where it is 002705 ** known that the shared b-tree mutex is held, but the mutex on the 002706 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 002707 ** were to be called, it might collide with some other operation on the 002708 ** database handle that owns *p, causing undefined behavior. 002709 */ 002710 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 002711 int n; 002712 assert( sqlite3_mutex_held(p->pBt->mutex) ); 002713 n = p->pBt->pageSize - p->pBt->usableSize; 002714 return n; 002715 } 002716 002717 /* 002718 ** Return the number of bytes of space at the end of every page that 002719 ** are intentually left unused. This is the "reserved" space that is 002720 ** sometimes used by extensions. 002721 ** 002722 ** If SQLITE_HAS_MUTEX is defined then the number returned is the 002723 ** greater of the current reserved space and the maximum requested 002724 ** reserve space. 002725 */ 002726 int sqlite3BtreeGetOptimalReserve(Btree *p){ 002727 int n; 002728 sqlite3BtreeEnter(p); 002729 n = sqlite3BtreeGetReserveNoMutex(p); 002730 #ifdef SQLITE_HAS_CODEC 002731 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve; 002732 #endif 002733 sqlite3BtreeLeave(p); 002734 return n; 002735 } 002736 002737 002738 /* 002739 ** Set the maximum page count for a database if mxPage is positive. 002740 ** No changes are made if mxPage is 0 or negative. 002741 ** Regardless of the value of mxPage, return the maximum page count. 002742 */ 002743 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ 002744 int n; 002745 sqlite3BtreeEnter(p); 002746 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 002747 sqlite3BtreeLeave(p); 002748 return n; 002749 } 002750 002751 /* 002752 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1, 002753 ** then make no changes. Always return the value of the BTS_SECURE_DELETE 002754 ** setting after the change. 002755 */ 002756 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 002757 int b; 002758 if( p==0 ) return 0; 002759 sqlite3BtreeEnter(p); 002760 if( newFlag>=0 ){ 002761 p->pBt->btsFlags &= ~BTS_SECURE_DELETE; 002762 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE; 002763 } 002764 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0; 002765 sqlite3BtreeLeave(p); 002766 return b; 002767 } 002768 002769 /* 002770 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 002771 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 002772 ** is disabled. The default value for the auto-vacuum property is 002773 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 002774 */ 002775 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 002776 #ifdef SQLITE_OMIT_AUTOVACUUM 002777 return SQLITE_READONLY; 002778 #else 002779 BtShared *pBt = p->pBt; 002780 int rc = SQLITE_OK; 002781 u8 av = (u8)autoVacuum; 002782 002783 sqlite3BtreeEnter(p); 002784 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 002785 rc = SQLITE_READONLY; 002786 }else{ 002787 pBt->autoVacuum = av ?1:0; 002788 pBt->incrVacuum = av==2 ?1:0; 002789 } 002790 sqlite3BtreeLeave(p); 002791 return rc; 002792 #endif 002793 } 002794 002795 /* 002796 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 002797 ** enabled 1 is returned. Otherwise 0. 002798 */ 002799 int sqlite3BtreeGetAutoVacuum(Btree *p){ 002800 #ifdef SQLITE_OMIT_AUTOVACUUM 002801 return BTREE_AUTOVACUUM_NONE; 002802 #else 002803 int rc; 002804 sqlite3BtreeEnter(p); 002805 rc = ( 002806 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 002807 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 002808 BTREE_AUTOVACUUM_INCR 002809 ); 002810 sqlite3BtreeLeave(p); 002811 return rc; 002812 #endif 002813 } 002814 002815 002816 /* 002817 ** Get a reference to pPage1 of the database file. This will 002818 ** also acquire a readlock on that file. 002819 ** 002820 ** SQLITE_OK is returned on success. If the file is not a 002821 ** well-formed database file, then SQLITE_CORRUPT is returned. 002822 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 002823 ** is returned if we run out of memory. 002824 */ 002825 static int lockBtree(BtShared *pBt){ 002826 int rc; /* Result code from subfunctions */ 002827 MemPage *pPage1; /* Page 1 of the database file */ 002828 int nPage; /* Number of pages in the database */ 002829 int nPageFile = 0; /* Number of pages in the database file */ 002830 int nPageHeader; /* Number of pages in the database according to hdr */ 002831 002832 assert( sqlite3_mutex_held(pBt->mutex) ); 002833 assert( pBt->pPage1==0 ); 002834 rc = sqlite3PagerSharedLock(pBt->pPager); 002835 if( rc!=SQLITE_OK ) return rc; 002836 rc = btreeGetPage(pBt, 1, &pPage1, 0); 002837 if( rc!=SQLITE_OK ) return rc; 002838 002839 /* Do some checking to help insure the file we opened really is 002840 ** a valid database file. 002841 */ 002842 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); 002843 sqlite3PagerPagecount(pBt->pPager, &nPageFile); 002844 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 002845 nPage = nPageFile; 002846 } 002847 if( nPage>0 ){ 002848 u32 pageSize; 002849 u32 usableSize; 002850 u8 *page1 = pPage1->aData; 002851 rc = SQLITE_NOTADB; 002852 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 002853 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 002854 ** 61 74 20 33 00. */ 002855 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 002856 goto page1_init_failed; 002857 } 002858 002859 #ifdef SQLITE_OMIT_WAL 002860 if( page1[18]>1 ){ 002861 pBt->btsFlags |= BTS_READ_ONLY; 002862 } 002863 if( page1[19]>1 ){ 002864 goto page1_init_failed; 002865 } 002866 #else 002867 if( page1[18]>2 ){ 002868 pBt->btsFlags |= BTS_READ_ONLY; 002869 } 002870 if( page1[19]>2 ){ 002871 goto page1_init_failed; 002872 } 002873 002874 /* If the write version is set to 2, this database should be accessed 002875 ** in WAL mode. If the log is not already open, open it now. Then 002876 ** return SQLITE_OK and return without populating BtShared.pPage1. 002877 ** The caller detects this and calls this function again. This is 002878 ** required as the version of page 1 currently in the page1 buffer 002879 ** may not be the latest version - there may be a newer one in the log 002880 ** file. 002881 */ 002882 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 002883 int isOpen = 0; 002884 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 002885 if( rc!=SQLITE_OK ){ 002886 goto page1_init_failed; 002887 }else{ 002888 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS 002889 sqlite3 *db; 002890 Db *pDb; 002891 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 002892 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 002893 if( pDb->bSyncSet==0 002894 && pDb->safety_level==SQLITE_DEFAULT_SYNCHRONOUS+1 002895 ){ 002896 pDb->safety_level = SQLITE_DEFAULT_WAL_SYNCHRONOUS+1; 002897 sqlite3PagerSetFlags(pBt->pPager, 002898 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 002899 } 002900 } 002901 #endif 002902 if( isOpen==0 ){ 002903 releasePage(pPage1); 002904 return SQLITE_OK; 002905 } 002906 } 002907 rc = SQLITE_NOTADB; 002908 } 002909 #endif 002910 002911 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 002912 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 002913 ** 002914 ** The original design allowed these amounts to vary, but as of 002915 ** version 3.6.0, we require them to be fixed. 002916 */ 002917 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 002918 goto page1_init_failed; 002919 } 002920 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 002921 ** determined by the 2-byte integer located at an offset of 16 bytes from 002922 ** the beginning of the database file. */ 002923 pageSize = (page1[16]<<8) | (page1[17]<<16); 002924 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 002925 ** between 512 and 65536 inclusive. */ 002926 if( ((pageSize-1)&pageSize)!=0 002927 || pageSize>SQLITE_MAX_PAGE_SIZE 002928 || pageSize<=256 002929 ){ 002930 goto page1_init_failed; 002931 } 002932 assert( (pageSize & 7)==0 ); 002933 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 002934 ** integer at offset 20 is the number of bytes of space at the end of 002935 ** each page to reserve for extensions. 002936 ** 002937 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 002938 ** determined by the one-byte unsigned integer found at an offset of 20 002939 ** into the database file header. */ 002940 usableSize = pageSize - page1[20]; 002941 if( (u32)pageSize!=pBt->pageSize ){ 002942 /* After reading the first page of the database assuming a page size 002943 ** of BtShared.pageSize, we have discovered that the page-size is 002944 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 002945 ** zero and return SQLITE_OK. The caller will call this function 002946 ** again with the correct page-size. 002947 */ 002948 releasePage(pPage1); 002949 pBt->usableSize = usableSize; 002950 pBt->pageSize = pageSize; 002951 freeTempSpace(pBt); 002952 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 002953 pageSize-usableSize); 002954 return rc; 002955 } 002956 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){ 002957 rc = SQLITE_CORRUPT_BKPT; 002958 goto page1_init_failed; 002959 } 002960 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 002961 ** be less than 480. In other words, if the page size is 512, then the 002962 ** reserved space size cannot exceed 32. */ 002963 if( usableSize<480 ){ 002964 goto page1_init_failed; 002965 } 002966 pBt->pageSize = pageSize; 002967 pBt->usableSize = usableSize; 002968 #ifndef SQLITE_OMIT_AUTOVACUUM 002969 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 002970 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 002971 #endif 002972 } 002973 002974 /* maxLocal is the maximum amount of payload to store locally for 002975 ** a cell. Make sure it is small enough so that at least minFanout 002976 ** cells can will fit on one page. We assume a 10-byte page header. 002977 ** Besides the payload, the cell must store: 002978 ** 2-byte pointer to the cell 002979 ** 4-byte child pointer 002980 ** 9-byte nKey value 002981 ** 4-byte nData value 002982 ** 4-byte overflow page pointer 002983 ** So a cell consists of a 2-byte pointer, a header which is as much as 002984 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 002985 ** page pointer. 002986 */ 002987 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 002988 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 002989 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 002990 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 002991 if( pBt->maxLocal>127 ){ 002992 pBt->max1bytePayload = 127; 002993 }else{ 002994 pBt->max1bytePayload = (u8)pBt->maxLocal; 002995 } 002996 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 002997 pBt->pPage1 = pPage1; 002998 pBt->nPage = nPage; 002999 return SQLITE_OK; 003000 003001 page1_init_failed: 003002 releasePage(pPage1); 003003 pBt->pPage1 = 0; 003004 return rc; 003005 } 003006 003007 #ifndef NDEBUG 003008 /* 003009 ** Return the number of cursors open on pBt. This is for use 003010 ** in assert() expressions, so it is only compiled if NDEBUG is not 003011 ** defined. 003012 ** 003013 ** Only write cursors are counted if wrOnly is true. If wrOnly is 003014 ** false then all cursors are counted. 003015 ** 003016 ** For the purposes of this routine, a cursor is any cursor that 003017 ** is capable of reading or writing to the database. Cursors that 003018 ** have been tripped into the CURSOR_FAULT state are not counted. 003019 */ 003020 static int countValidCursors(BtShared *pBt, int wrOnly){ 003021 BtCursor *pCur; 003022 int r = 0; 003023 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 003024 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 003025 && pCur->eState!=CURSOR_FAULT ) r++; 003026 } 003027 return r; 003028 } 003029 #endif 003030 003031 /* 003032 ** If there are no outstanding cursors and we are not in the middle 003033 ** of a transaction but there is a read lock on the database, then 003034 ** this routine unrefs the first page of the database file which 003035 ** has the effect of releasing the read lock. 003036 ** 003037 ** If there is a transaction in progress, this routine is a no-op. 003038 */ 003039 static void unlockBtreeIfUnused(BtShared *pBt){ 003040 assert( sqlite3_mutex_held(pBt->mutex) ); 003041 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 003042 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 003043 MemPage *pPage1 = pBt->pPage1; 003044 assert( pPage1->aData ); 003045 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 003046 pBt->pPage1 = 0; 003047 releasePageNotNull(pPage1); 003048 } 003049 } 003050 003051 /* 003052 ** If pBt points to an empty file then convert that empty file 003053 ** into a new empty database by initializing the first page of 003054 ** the database. 003055 */ 003056 static int newDatabase(BtShared *pBt){ 003057 MemPage *pP1; 003058 unsigned char *data; 003059 int rc; 003060 003061 assert( sqlite3_mutex_held(pBt->mutex) ); 003062 if( pBt->nPage>0 ){ 003063 return SQLITE_OK; 003064 } 003065 pP1 = pBt->pPage1; 003066 assert( pP1!=0 ); 003067 data = pP1->aData; 003068 rc = sqlite3PagerWrite(pP1->pDbPage); 003069 if( rc ) return rc; 003070 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 003071 assert( sizeof(zMagicHeader)==16 ); 003072 data[16] = (u8)((pBt->pageSize>>8)&0xff); 003073 data[17] = (u8)((pBt->pageSize>>16)&0xff); 003074 data[18] = 1; 003075 data[19] = 1; 003076 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 003077 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 003078 data[21] = 64; 003079 data[22] = 32; 003080 data[23] = 32; 003081 memset(&data[24], 0, 100-24); 003082 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 003083 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 003084 #ifndef SQLITE_OMIT_AUTOVACUUM 003085 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 003086 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 003087 put4byte(&data[36 + 4*4], pBt->autoVacuum); 003088 put4byte(&data[36 + 7*4], pBt->incrVacuum); 003089 #endif 003090 pBt->nPage = 1; 003091 data[31] = 1; 003092 return SQLITE_OK; 003093 } 003094 003095 /* 003096 ** Initialize the first page of the database file (creating a database 003097 ** consisting of a single page and no schema objects). Return SQLITE_OK 003098 ** if successful, or an SQLite error code otherwise. 003099 */ 003100 int sqlite3BtreeNewDb(Btree *p){ 003101 int rc; 003102 sqlite3BtreeEnter(p); 003103 p->pBt->nPage = 0; 003104 rc = newDatabase(p->pBt); 003105 sqlite3BtreeLeave(p); 003106 return rc; 003107 } 003108 003109 /* 003110 ** Attempt to start a new transaction. A write-transaction 003111 ** is started if the second argument is nonzero, otherwise a read- 003112 ** transaction. If the second argument is 2 or more and exclusive 003113 ** transaction is started, meaning that no other process is allowed 003114 ** to access the database. A preexisting transaction may not be 003115 ** upgraded to exclusive by calling this routine a second time - the 003116 ** exclusivity flag only works for a new transaction. 003117 ** 003118 ** A write-transaction must be started before attempting any 003119 ** changes to the database. None of the following routines 003120 ** will work unless a transaction is started first: 003121 ** 003122 ** sqlite3BtreeCreateTable() 003123 ** sqlite3BtreeCreateIndex() 003124 ** sqlite3BtreeClearTable() 003125 ** sqlite3BtreeDropTable() 003126 ** sqlite3BtreeInsert() 003127 ** sqlite3BtreeDelete() 003128 ** sqlite3BtreeUpdateMeta() 003129 ** 003130 ** If an initial attempt to acquire the lock fails because of lock contention 003131 ** and the database was previously unlocked, then invoke the busy handler 003132 ** if there is one. But if there was previously a read-lock, do not 003133 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 003134 ** returned when there is already a read-lock in order to avoid a deadlock. 003135 ** 003136 ** Suppose there are two processes A and B. A has a read lock and B has 003137 ** a reserved lock. B tries to promote to exclusive but is blocked because 003138 ** of A's read lock. A tries to promote to reserved but is blocked by B. 003139 ** One or the other of the two processes must give way or there can be 003140 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 003141 ** when A already has a read lock, we encourage A to give up and let B 003142 ** proceed. 003143 */ 003144 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ 003145 BtShared *pBt = p->pBt; 003146 int rc = SQLITE_OK; 003147 003148 sqlite3BtreeEnter(p); 003149 btreeIntegrity(p); 003150 003151 /* If the btree is already in a write-transaction, or it 003152 ** is already in a read-transaction and a read-transaction 003153 ** is requested, this is a no-op. 003154 */ 003155 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 003156 goto trans_begun; 003157 } 003158 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 003159 003160 /* Write transactions are not possible on a read-only database */ 003161 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 003162 rc = SQLITE_READONLY; 003163 goto trans_begun; 003164 } 003165 003166 #ifndef SQLITE_OMIT_SHARED_CACHE 003167 { 003168 sqlite3 *pBlock = 0; 003169 /* If another database handle has already opened a write transaction 003170 ** on this shared-btree structure and a second write transaction is 003171 ** requested, return SQLITE_LOCKED. 003172 */ 003173 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 003174 || (pBt->btsFlags & BTS_PENDING)!=0 003175 ){ 003176 pBlock = pBt->pWriter->db; 003177 }else if( wrflag>1 ){ 003178 BtLock *pIter; 003179 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 003180 if( pIter->pBtree!=p ){ 003181 pBlock = pIter->pBtree->db; 003182 break; 003183 } 003184 } 003185 } 003186 if( pBlock ){ 003187 sqlite3ConnectionBlocked(p->db, pBlock); 003188 rc = SQLITE_LOCKED_SHAREDCACHE; 003189 goto trans_begun; 003190 } 003191 } 003192 #endif 003193 003194 /* Any read-only or read-write transaction implies a read-lock on 003195 ** page 1. So if some other shared-cache client already has a write-lock 003196 ** on page 1, the transaction cannot be opened. */ 003197 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 003198 if( SQLITE_OK!=rc ) goto trans_begun; 003199 003200 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 003201 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 003202 do { 003203 /* Call lockBtree() until either pBt->pPage1 is populated or 003204 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 003205 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 003206 ** reading page 1 it discovers that the page-size of the database 003207 ** file is not pBt->pageSize. In this case lockBtree() will update 003208 ** pBt->pageSize to the page-size of the file on disk. 003209 */ 003210 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 003211 003212 if( rc==SQLITE_OK && wrflag ){ 003213 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 003214 rc = SQLITE_READONLY; 003215 }else{ 003216 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); 003217 if( rc==SQLITE_OK ){ 003218 rc = newDatabase(pBt); 003219 } 003220 } 003221 } 003222 003223 if( rc!=SQLITE_OK ){ 003224 unlockBtreeIfUnused(pBt); 003225 } 003226 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 003227 btreeInvokeBusyHandler(pBt) ); 003228 003229 if( rc==SQLITE_OK ){ 003230 if( p->inTrans==TRANS_NONE ){ 003231 pBt->nTransaction++; 003232 #ifndef SQLITE_OMIT_SHARED_CACHE 003233 if( p->sharable ){ 003234 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 003235 p->lock.eLock = READ_LOCK; 003236 p->lock.pNext = pBt->pLock; 003237 pBt->pLock = &p->lock; 003238 } 003239 #endif 003240 } 003241 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 003242 if( p->inTrans>pBt->inTransaction ){ 003243 pBt->inTransaction = p->inTrans; 003244 } 003245 if( wrflag ){ 003246 MemPage *pPage1 = pBt->pPage1; 003247 #ifndef SQLITE_OMIT_SHARED_CACHE 003248 assert( !pBt->pWriter ); 003249 pBt->pWriter = p; 003250 pBt->btsFlags &= ~BTS_EXCLUSIVE; 003251 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 003252 #endif 003253 003254 /* If the db-size header field is incorrect (as it may be if an old 003255 ** client has been writing the database file), update it now. Doing 003256 ** this sooner rather than later means the database size can safely 003257 ** re-read the database size from page 1 if a savepoint or transaction 003258 ** rollback occurs within the transaction. 003259 */ 003260 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 003261 rc = sqlite3PagerWrite(pPage1->pDbPage); 003262 if( rc==SQLITE_OK ){ 003263 put4byte(&pPage1->aData[28], pBt->nPage); 003264 } 003265 } 003266 } 003267 } 003268 003269 003270 trans_begun: 003271 if( rc==SQLITE_OK && wrflag ){ 003272 /* This call makes sure that the pager has the correct number of 003273 ** open savepoints. If the second parameter is greater than 0 and 003274 ** the sub-journal is not already open, then it will be opened here. 003275 */ 003276 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); 003277 } 003278 003279 btreeIntegrity(p); 003280 sqlite3BtreeLeave(p); 003281 return rc; 003282 } 003283 003284 #ifndef SQLITE_OMIT_AUTOVACUUM 003285 003286 /* 003287 ** Set the pointer-map entries for all children of page pPage. Also, if 003288 ** pPage contains cells that point to overflow pages, set the pointer 003289 ** map entries for the overflow pages as well. 003290 */ 003291 static int setChildPtrmaps(MemPage *pPage){ 003292 int i; /* Counter variable */ 003293 int nCell; /* Number of cells in page pPage */ 003294 int rc; /* Return code */ 003295 BtShared *pBt = pPage->pBt; 003296 Pgno pgno = pPage->pgno; 003297 003298 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 003299 rc = btreeInitPage(pPage); 003300 if( rc!=SQLITE_OK ) return rc; 003301 nCell = pPage->nCell; 003302 003303 for(i=0; i<nCell; i++){ 003304 u8 *pCell = findCell(pPage, i); 003305 003306 ptrmapPutOvflPtr(pPage, pCell, &rc); 003307 003308 if( !pPage->leaf ){ 003309 Pgno childPgno = get4byte(pCell); 003310 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 003311 } 003312 } 003313 003314 if( !pPage->leaf ){ 003315 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 003316 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 003317 } 003318 003319 return rc; 003320 } 003321 003322 /* 003323 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 003324 ** that it points to iTo. Parameter eType describes the type of pointer to 003325 ** be modified, as follows: 003326 ** 003327 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 003328 ** page of pPage. 003329 ** 003330 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 003331 ** page pointed to by one of the cells on pPage. 003332 ** 003333 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 003334 ** overflow page in the list. 003335 */ 003336 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 003337 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 003338 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 003339 if( eType==PTRMAP_OVERFLOW2 ){ 003340 /* The pointer is always the first 4 bytes of the page in this case. */ 003341 if( get4byte(pPage->aData)!=iFrom ){ 003342 return SQLITE_CORRUPT_BKPT; 003343 } 003344 put4byte(pPage->aData, iTo); 003345 }else{ 003346 int i; 003347 int nCell; 003348 int rc; 003349 003350 rc = btreeInitPage(pPage); 003351 if( rc ) return rc; 003352 nCell = pPage->nCell; 003353 003354 for(i=0; i<nCell; i++){ 003355 u8 *pCell = findCell(pPage, i); 003356 if( eType==PTRMAP_OVERFLOW1 ){ 003357 CellInfo info; 003358 pPage->xParseCell(pPage, pCell, &info); 003359 if( info.nLocal<info.nPayload 003360 && pCell+info.nSize-1<=pPage->aData+pPage->maskPage 003361 && iFrom==get4byte(pCell+info.nSize-4) 003362 ){ 003363 put4byte(pCell+info.nSize-4, iTo); 003364 break; 003365 } 003366 }else{ 003367 if( get4byte(pCell)==iFrom ){ 003368 put4byte(pCell, iTo); 003369 break; 003370 } 003371 } 003372 } 003373 003374 if( i==nCell ){ 003375 if( eType!=PTRMAP_BTREE || 003376 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 003377 return SQLITE_CORRUPT_BKPT; 003378 } 003379 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 003380 } 003381 } 003382 return SQLITE_OK; 003383 } 003384 003385 003386 /* 003387 ** Move the open database page pDbPage to location iFreePage in the 003388 ** database. The pDbPage reference remains valid. 003389 ** 003390 ** The isCommit flag indicates that there is no need to remember that 003391 ** the journal needs to be sync()ed before database page pDbPage->pgno 003392 ** can be written to. The caller has already promised not to write to that 003393 ** page. 003394 */ 003395 static int relocatePage( 003396 BtShared *pBt, /* Btree */ 003397 MemPage *pDbPage, /* Open page to move */ 003398 u8 eType, /* Pointer map 'type' entry for pDbPage */ 003399 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 003400 Pgno iFreePage, /* The location to move pDbPage to */ 003401 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 003402 ){ 003403 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 003404 Pgno iDbPage = pDbPage->pgno; 003405 Pager *pPager = pBt->pPager; 003406 int rc; 003407 003408 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 003409 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 003410 assert( sqlite3_mutex_held(pBt->mutex) ); 003411 assert( pDbPage->pBt==pBt ); 003412 003413 /* Move page iDbPage from its current location to page number iFreePage */ 003414 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 003415 iDbPage, iFreePage, iPtrPage, eType)); 003416 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 003417 if( rc!=SQLITE_OK ){ 003418 return rc; 003419 } 003420 pDbPage->pgno = iFreePage; 003421 003422 /* If pDbPage was a btree-page, then it may have child pages and/or cells 003423 ** that point to overflow pages. The pointer map entries for all these 003424 ** pages need to be changed. 003425 ** 003426 ** If pDbPage is an overflow page, then the first 4 bytes may store a 003427 ** pointer to a subsequent overflow page. If this is the case, then 003428 ** the pointer map needs to be updated for the subsequent overflow page. 003429 */ 003430 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 003431 rc = setChildPtrmaps(pDbPage); 003432 if( rc!=SQLITE_OK ){ 003433 return rc; 003434 } 003435 }else{ 003436 Pgno nextOvfl = get4byte(pDbPage->aData); 003437 if( nextOvfl!=0 ){ 003438 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 003439 if( rc!=SQLITE_OK ){ 003440 return rc; 003441 } 003442 } 003443 } 003444 003445 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 003446 ** that it points at iFreePage. Also fix the pointer map entry for 003447 ** iPtrPage. 003448 */ 003449 if( eType!=PTRMAP_ROOTPAGE ){ 003450 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 003451 if( rc!=SQLITE_OK ){ 003452 return rc; 003453 } 003454 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 003455 if( rc!=SQLITE_OK ){ 003456 releasePage(pPtrPage); 003457 return rc; 003458 } 003459 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 003460 releasePage(pPtrPage); 003461 if( rc==SQLITE_OK ){ 003462 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 003463 } 003464 } 003465 return rc; 003466 } 003467 003468 /* Forward declaration required by incrVacuumStep(). */ 003469 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 003470 003471 /* 003472 ** Perform a single step of an incremental-vacuum. If successful, return 003473 ** SQLITE_OK. If there is no work to do (and therefore no point in 003474 ** calling this function again), return SQLITE_DONE. Or, if an error 003475 ** occurs, return some other error code. 003476 ** 003477 ** More specifically, this function attempts to re-organize the database so 003478 ** that the last page of the file currently in use is no longer in use. 003479 ** 003480 ** Parameter nFin is the number of pages that this database would contain 003481 ** were this function called until it returns SQLITE_DONE. 003482 ** 003483 ** If the bCommit parameter is non-zero, this function assumes that the 003484 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 003485 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 003486 ** operation, or false for an incremental vacuum. 003487 */ 003488 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 003489 Pgno nFreeList; /* Number of pages still on the free-list */ 003490 int rc; 003491 003492 assert( sqlite3_mutex_held(pBt->mutex) ); 003493 assert( iLastPg>nFin ); 003494 003495 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 003496 u8 eType; 003497 Pgno iPtrPage; 003498 003499 nFreeList = get4byte(&pBt->pPage1->aData[36]); 003500 if( nFreeList==0 ){ 003501 return SQLITE_DONE; 003502 } 003503 003504 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 003505 if( rc!=SQLITE_OK ){ 003506 return rc; 003507 } 003508 if( eType==PTRMAP_ROOTPAGE ){ 003509 return SQLITE_CORRUPT_BKPT; 003510 } 003511 003512 if( eType==PTRMAP_FREEPAGE ){ 003513 if( bCommit==0 ){ 003514 /* Remove the page from the files free-list. This is not required 003515 ** if bCommit is non-zero. In that case, the free-list will be 003516 ** truncated to zero after this function returns, so it doesn't 003517 ** matter if it still contains some garbage entries. 003518 */ 003519 Pgno iFreePg; 003520 MemPage *pFreePg; 003521 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 003522 if( rc!=SQLITE_OK ){ 003523 return rc; 003524 } 003525 assert( iFreePg==iLastPg ); 003526 releasePage(pFreePg); 003527 } 003528 } else { 003529 Pgno iFreePg; /* Index of free page to move pLastPg to */ 003530 MemPage *pLastPg; 003531 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 003532 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 003533 003534 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 003535 if( rc!=SQLITE_OK ){ 003536 return rc; 003537 } 003538 003539 /* If bCommit is zero, this loop runs exactly once and page pLastPg 003540 ** is swapped with the first free page pulled off the free list. 003541 ** 003542 ** On the other hand, if bCommit is greater than zero, then keep 003543 ** looping until a free-page located within the first nFin pages 003544 ** of the file is found. 003545 */ 003546 if( bCommit==0 ){ 003547 eMode = BTALLOC_LE; 003548 iNear = nFin; 003549 } 003550 do { 003551 MemPage *pFreePg; 003552 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 003553 if( rc!=SQLITE_OK ){ 003554 releasePage(pLastPg); 003555 return rc; 003556 } 003557 releasePage(pFreePg); 003558 }while( bCommit && iFreePg>nFin ); 003559 assert( iFreePg<iLastPg ); 003560 003561 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 003562 releasePage(pLastPg); 003563 if( rc!=SQLITE_OK ){ 003564 return rc; 003565 } 003566 } 003567 } 003568 003569 if( bCommit==0 ){ 003570 do { 003571 iLastPg--; 003572 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 003573 pBt->bDoTruncate = 1; 003574 pBt->nPage = iLastPg; 003575 } 003576 return SQLITE_OK; 003577 } 003578 003579 /* 003580 ** The database opened by the first argument is an auto-vacuum database 003581 ** nOrig pages in size containing nFree free pages. Return the expected 003582 ** size of the database in pages following an auto-vacuum operation. 003583 */ 003584 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 003585 int nEntry; /* Number of entries on one ptrmap page */ 003586 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 003587 Pgno nFin; /* Return value */ 003588 003589 nEntry = pBt->usableSize/5; 003590 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 003591 nFin = nOrig - nFree - nPtrmap; 003592 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 003593 nFin--; 003594 } 003595 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 003596 nFin--; 003597 } 003598 003599 return nFin; 003600 } 003601 003602 /* 003603 ** A write-transaction must be opened before calling this function. 003604 ** It performs a single unit of work towards an incremental vacuum. 003605 ** 003606 ** If the incremental vacuum is finished after this function has run, 003607 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 003608 ** SQLITE_OK is returned. Otherwise an SQLite error code. 003609 */ 003610 int sqlite3BtreeIncrVacuum(Btree *p){ 003611 int rc; 003612 BtShared *pBt = p->pBt; 003613 003614 sqlite3BtreeEnter(p); 003615 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 003616 if( !pBt->autoVacuum ){ 003617 rc = SQLITE_DONE; 003618 }else{ 003619 Pgno nOrig = btreePagecount(pBt); 003620 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 003621 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 003622 003623 if( nOrig<nFin ){ 003624 rc = SQLITE_CORRUPT_BKPT; 003625 }else if( nFree>0 ){ 003626 rc = saveAllCursors(pBt, 0, 0); 003627 if( rc==SQLITE_OK ){ 003628 invalidateAllOverflowCache(pBt); 003629 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 003630 } 003631 if( rc==SQLITE_OK ){ 003632 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 003633 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 003634 } 003635 }else{ 003636 rc = SQLITE_DONE; 003637 } 003638 } 003639 sqlite3BtreeLeave(p); 003640 return rc; 003641 } 003642 003643 /* 003644 ** This routine is called prior to sqlite3PagerCommit when a transaction 003645 ** is committed for an auto-vacuum database. 003646 ** 003647 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages 003648 ** the database file should be truncated to during the commit process. 003649 ** i.e. the database has been reorganized so that only the first *pnTrunc 003650 ** pages are in use. 003651 */ 003652 static int autoVacuumCommit(BtShared *pBt){ 003653 int rc = SQLITE_OK; 003654 Pager *pPager = pBt->pPager; 003655 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) 003656 003657 assert( sqlite3_mutex_held(pBt->mutex) ); 003658 invalidateAllOverflowCache(pBt); 003659 assert(pBt->autoVacuum); 003660 if( !pBt->incrVacuum ){ 003661 Pgno nFin; /* Number of pages in database after autovacuuming */ 003662 Pgno nFree; /* Number of pages on the freelist initially */ 003663 Pgno iFree; /* The next page to be freed */ 003664 Pgno nOrig; /* Database size before freeing */ 003665 003666 nOrig = btreePagecount(pBt); 003667 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 003668 /* It is not possible to create a database for which the final page 003669 ** is either a pointer-map page or the pending-byte page. If one 003670 ** is encountered, this indicates corruption. 003671 */ 003672 return SQLITE_CORRUPT_BKPT; 003673 } 003674 003675 nFree = get4byte(&pBt->pPage1->aData[36]); 003676 nFin = finalDbSize(pBt, nOrig, nFree); 003677 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 003678 if( nFin<nOrig ){ 003679 rc = saveAllCursors(pBt, 0, 0); 003680 } 003681 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 003682 rc = incrVacuumStep(pBt, nFin, iFree, 1); 003683 } 003684 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 003685 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 003686 put4byte(&pBt->pPage1->aData[32], 0); 003687 put4byte(&pBt->pPage1->aData[36], 0); 003688 put4byte(&pBt->pPage1->aData[28], nFin); 003689 pBt->bDoTruncate = 1; 003690 pBt->nPage = nFin; 003691 } 003692 if( rc!=SQLITE_OK ){ 003693 sqlite3PagerRollback(pPager); 003694 } 003695 } 003696 003697 assert( nRef>=sqlite3PagerRefcount(pPager) ); 003698 return rc; 003699 } 003700 003701 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 003702 # define setChildPtrmaps(x) SQLITE_OK 003703 #endif 003704 003705 /* 003706 ** This routine does the first phase of a two-phase commit. This routine 003707 ** causes a rollback journal to be created (if it does not already exist) 003708 ** and populated with enough information so that if a power loss occurs 003709 ** the database can be restored to its original state by playing back 003710 ** the journal. Then the contents of the journal are flushed out to 003711 ** the disk. After the journal is safely on oxide, the changes to the 003712 ** database are written into the database file and flushed to oxide. 003713 ** At the end of this call, the rollback journal still exists on the 003714 ** disk and we are still holding all locks, so the transaction has not 003715 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 003716 ** commit process. 003717 ** 003718 ** This call is a no-op if no write-transaction is currently active on pBt. 003719 ** 003720 ** Otherwise, sync the database file for the btree pBt. zMaster points to 003721 ** the name of a master journal file that should be written into the 003722 ** individual journal file, or is NULL, indicating no master journal file 003723 ** (single database transaction). 003724 ** 003725 ** When this is called, the master journal should already have been 003726 ** created, populated with this journal pointer and synced to disk. 003727 ** 003728 ** Once this is routine has returned, the only thing required to commit 003729 ** the write-transaction for this database file is to delete the journal. 003730 */ 003731 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ 003732 int rc = SQLITE_OK; 003733 if( p->inTrans==TRANS_WRITE ){ 003734 BtShared *pBt = p->pBt; 003735 sqlite3BtreeEnter(p); 003736 #ifndef SQLITE_OMIT_AUTOVACUUM 003737 if( pBt->autoVacuum ){ 003738 rc = autoVacuumCommit(pBt); 003739 if( rc!=SQLITE_OK ){ 003740 sqlite3BtreeLeave(p); 003741 return rc; 003742 } 003743 } 003744 if( pBt->bDoTruncate ){ 003745 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 003746 } 003747 #endif 003748 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); 003749 sqlite3BtreeLeave(p); 003750 } 003751 return rc; 003752 } 003753 003754 /* 003755 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 003756 ** at the conclusion of a transaction. 003757 */ 003758 static void btreeEndTransaction(Btree *p){ 003759 BtShared *pBt = p->pBt; 003760 sqlite3 *db = p->db; 003761 assert( sqlite3BtreeHoldsMutex(p) ); 003762 003763 #ifndef SQLITE_OMIT_AUTOVACUUM 003764 pBt->bDoTruncate = 0; 003765 #endif 003766 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 003767 /* If there are other active statements that belong to this database 003768 ** handle, downgrade to a read-only transaction. The other statements 003769 ** may still be reading from the database. */ 003770 downgradeAllSharedCacheTableLocks(p); 003771 p->inTrans = TRANS_READ; 003772 }else{ 003773 /* If the handle had any kind of transaction open, decrement the 003774 ** transaction count of the shared btree. If the transaction count 003775 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 003776 ** call below will unlock the pager. */ 003777 if( p->inTrans!=TRANS_NONE ){ 003778 clearAllSharedCacheTableLocks(p); 003779 pBt->nTransaction--; 003780 if( 0==pBt->nTransaction ){ 003781 pBt->inTransaction = TRANS_NONE; 003782 } 003783 } 003784 003785 /* Set the current transaction state to TRANS_NONE and unlock the 003786 ** pager if this call closed the only read or write transaction. */ 003787 p->inTrans = TRANS_NONE; 003788 unlockBtreeIfUnused(pBt); 003789 } 003790 003791 btreeIntegrity(p); 003792 } 003793 003794 /* 003795 ** Commit the transaction currently in progress. 003796 ** 003797 ** This routine implements the second phase of a 2-phase commit. The 003798 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 003799 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 003800 ** routine did all the work of writing information out to disk and flushing the 003801 ** contents so that they are written onto the disk platter. All this 003802 ** routine has to do is delete or truncate or zero the header in the 003803 ** the rollback journal (which causes the transaction to commit) and 003804 ** drop locks. 003805 ** 003806 ** Normally, if an error occurs while the pager layer is attempting to 003807 ** finalize the underlying journal file, this function returns an error and 003808 ** the upper layer will attempt a rollback. However, if the second argument 003809 ** is non-zero then this b-tree transaction is part of a multi-file 003810 ** transaction. In this case, the transaction has already been committed 003811 ** (by deleting a master journal file) and the caller will ignore this 003812 ** functions return code. So, even if an error occurs in the pager layer, 003813 ** reset the b-tree objects internal state to indicate that the write 003814 ** transaction has been closed. This is quite safe, as the pager will have 003815 ** transitioned to the error state. 003816 ** 003817 ** This will release the write lock on the database file. If there 003818 ** are no active cursors, it also releases the read lock. 003819 */ 003820 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 003821 003822 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 003823 sqlite3BtreeEnter(p); 003824 btreeIntegrity(p); 003825 003826 /* If the handle has a write-transaction open, commit the shared-btrees 003827 ** transaction and set the shared state to TRANS_READ. 003828 */ 003829 if( p->inTrans==TRANS_WRITE ){ 003830 int rc; 003831 BtShared *pBt = p->pBt; 003832 assert( pBt->inTransaction==TRANS_WRITE ); 003833 assert( pBt->nTransaction>0 ); 003834 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 003835 if( rc!=SQLITE_OK && bCleanup==0 ){ 003836 sqlite3BtreeLeave(p); 003837 return rc; 003838 } 003839 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */ 003840 pBt->inTransaction = TRANS_READ; 003841 btreeClearHasContent(pBt); 003842 } 003843 003844 btreeEndTransaction(p); 003845 sqlite3BtreeLeave(p); 003846 return SQLITE_OK; 003847 } 003848 003849 /* 003850 ** Do both phases of a commit. 003851 */ 003852 int sqlite3BtreeCommit(Btree *p){ 003853 int rc; 003854 sqlite3BtreeEnter(p); 003855 rc = sqlite3BtreeCommitPhaseOne(p, 0); 003856 if( rc==SQLITE_OK ){ 003857 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 003858 } 003859 sqlite3BtreeLeave(p); 003860 return rc; 003861 } 003862 003863 /* 003864 ** This routine sets the state to CURSOR_FAULT and the error 003865 ** code to errCode for every cursor on any BtShared that pBtree 003866 ** references. Or if the writeOnly flag is set to 1, then only 003867 ** trip write cursors and leave read cursors unchanged. 003868 ** 003869 ** Every cursor is a candidate to be tripped, including cursors 003870 ** that belong to other database connections that happen to be 003871 ** sharing the cache with pBtree. 003872 ** 003873 ** This routine gets called when a rollback occurs. If the writeOnly 003874 ** flag is true, then only write-cursors need be tripped - read-only 003875 ** cursors save their current positions so that they may continue 003876 ** following the rollback. Or, if writeOnly is false, all cursors are 003877 ** tripped. In general, writeOnly is false if the transaction being 003878 ** rolled back modified the database schema. In this case b-tree root 003879 ** pages may be moved or deleted from the database altogether, making 003880 ** it unsafe for read cursors to continue. 003881 ** 003882 ** If the writeOnly flag is true and an error is encountered while 003883 ** saving the current position of a read-only cursor, all cursors, 003884 ** including all read-cursors are tripped. 003885 ** 003886 ** SQLITE_OK is returned if successful, or if an error occurs while 003887 ** saving a cursor position, an SQLite error code. 003888 */ 003889 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 003890 BtCursor *p; 003891 int rc = SQLITE_OK; 003892 003893 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 003894 if( pBtree ){ 003895 sqlite3BtreeEnter(pBtree); 003896 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 003897 int i; 003898 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 003899 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 003900 rc = saveCursorPosition(p); 003901 if( rc!=SQLITE_OK ){ 003902 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 003903 break; 003904 } 003905 } 003906 }else{ 003907 sqlite3BtreeClearCursor(p); 003908 p->eState = CURSOR_FAULT; 003909 p->skipNext = errCode; 003910 } 003911 for(i=0; i<=p->iPage; i++){ 003912 releasePage(p->apPage[i]); 003913 p->apPage[i] = 0; 003914 } 003915 } 003916 sqlite3BtreeLeave(pBtree); 003917 } 003918 return rc; 003919 } 003920 003921 /* 003922 ** Rollback the transaction in progress. 003923 ** 003924 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 003925 ** Only write cursors are tripped if writeOnly is true but all cursors are 003926 ** tripped if writeOnly is false. Any attempt to use 003927 ** a tripped cursor will result in an error. 003928 ** 003929 ** This will release the write lock on the database file. If there 003930 ** are no active cursors, it also releases the read lock. 003931 */ 003932 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 003933 int rc; 003934 BtShared *pBt = p->pBt; 003935 MemPage *pPage1; 003936 003937 assert( writeOnly==1 || writeOnly==0 ); 003938 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 003939 sqlite3BtreeEnter(p); 003940 if( tripCode==SQLITE_OK ){ 003941 rc = tripCode = saveAllCursors(pBt, 0, 0); 003942 if( rc ) writeOnly = 0; 003943 }else{ 003944 rc = SQLITE_OK; 003945 } 003946 if( tripCode ){ 003947 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 003948 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 003949 if( rc2!=SQLITE_OK ) rc = rc2; 003950 } 003951 btreeIntegrity(p); 003952 003953 if( p->inTrans==TRANS_WRITE ){ 003954 int rc2; 003955 003956 assert( TRANS_WRITE==pBt->inTransaction ); 003957 rc2 = sqlite3PagerRollback(pBt->pPager); 003958 if( rc2!=SQLITE_OK ){ 003959 rc = rc2; 003960 } 003961 003962 /* The rollback may have destroyed the pPage1->aData value. So 003963 ** call btreeGetPage() on page 1 again to make 003964 ** sure pPage1->aData is set correctly. */ 003965 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 003966 int nPage = get4byte(28+(u8*)pPage1->aData); 003967 testcase( nPage==0 ); 003968 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 003969 testcase( pBt->nPage!=nPage ); 003970 pBt->nPage = nPage; 003971 releasePage(pPage1); 003972 } 003973 assert( countValidCursors(pBt, 1)==0 ); 003974 pBt->inTransaction = TRANS_READ; 003975 btreeClearHasContent(pBt); 003976 } 003977 003978 btreeEndTransaction(p); 003979 sqlite3BtreeLeave(p); 003980 return rc; 003981 } 003982 003983 /* 003984 ** Start a statement subtransaction. The subtransaction can be rolled 003985 ** back independently of the main transaction. You must start a transaction 003986 ** before starting a subtransaction. The subtransaction is ended automatically 003987 ** if the main transaction commits or rolls back. 003988 ** 003989 ** Statement subtransactions are used around individual SQL statements 003990 ** that are contained within a BEGIN...COMMIT block. If a constraint 003991 ** error occurs within the statement, the effect of that one statement 003992 ** can be rolled back without having to rollback the entire transaction. 003993 ** 003994 ** A statement sub-transaction is implemented as an anonymous savepoint. The 003995 ** value passed as the second parameter is the total number of savepoints, 003996 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 003997 ** are no active savepoints and no other statement-transactions open, 003998 ** iStatement is 1. This anonymous savepoint can be released or rolled back 003999 ** using the sqlite3BtreeSavepoint() function. 004000 */ 004001 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 004002 int rc; 004003 BtShared *pBt = p->pBt; 004004 sqlite3BtreeEnter(p); 004005 assert( p->inTrans==TRANS_WRITE ); 004006 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 004007 assert( iStatement>0 ); 004008 assert( iStatement>p->db->nSavepoint ); 004009 assert( pBt->inTransaction==TRANS_WRITE ); 004010 /* At the pager level, a statement transaction is a savepoint with 004011 ** an index greater than all savepoints created explicitly using 004012 ** SQL statements. It is illegal to open, release or rollback any 004013 ** such savepoints while the statement transaction savepoint is active. 004014 */ 004015 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 004016 sqlite3BtreeLeave(p); 004017 return rc; 004018 } 004019 004020 /* 004021 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 004022 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 004023 ** savepoint identified by parameter iSavepoint, depending on the value 004024 ** of op. 004025 ** 004026 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 004027 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 004028 ** contents of the entire transaction are rolled back. This is different 004029 ** from a normal transaction rollback, as no locks are released and the 004030 ** transaction remains open. 004031 */ 004032 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 004033 int rc = SQLITE_OK; 004034 if( p && p->inTrans==TRANS_WRITE ){ 004035 BtShared *pBt = p->pBt; 004036 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 004037 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 004038 sqlite3BtreeEnter(p); 004039 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 004040 if( rc==SQLITE_OK ){ 004041 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 004042 pBt->nPage = 0; 004043 } 004044 rc = newDatabase(pBt); 004045 pBt->nPage = get4byte(28 + pBt->pPage1->aData); 004046 004047 /* The database size was written into the offset 28 of the header 004048 ** when the transaction started, so we know that the value at offset 004049 ** 28 is nonzero. */ 004050 assert( pBt->nPage>0 ); 004051 } 004052 sqlite3BtreeLeave(p); 004053 } 004054 return rc; 004055 } 004056 004057 /* 004058 ** Create a new cursor for the BTree whose root is on the page 004059 ** iTable. If a read-only cursor is requested, it is assumed that 004060 ** the caller already has at least a read-only transaction open 004061 ** on the database already. If a write-cursor is requested, then 004062 ** the caller is assumed to have an open write transaction. 004063 ** 004064 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 004065 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 004066 ** can be used for reading or for writing if other conditions for writing 004067 ** are also met. These are the conditions that must be met in order 004068 ** for writing to be allowed: 004069 ** 004070 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 004071 ** 004072 ** 2: Other database connections that share the same pager cache 004073 ** but which are not in the READ_UNCOMMITTED state may not have 004074 ** cursors open with wrFlag==0 on the same table. Otherwise 004075 ** the changes made by this write cursor would be visible to 004076 ** the read cursors in the other database connection. 004077 ** 004078 ** 3: The database must be writable (not on read-only media) 004079 ** 004080 ** 4: There must be an active transaction. 004081 ** 004082 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 004083 ** is set. If FORDELETE is set, that is a hint to the implementation that 004084 ** this cursor will only be used to seek to and delete entries of an index 004085 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 004086 ** this implementation. But in a hypothetical alternative storage engine 004087 ** in which index entries are automatically deleted when corresponding table 004088 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 004089 ** operations on this cursor can be no-ops and all READ operations can 004090 ** return a null row (2-bytes: 0x01 0x00). 004091 ** 004092 ** No checking is done to make sure that page iTable really is the 004093 ** root page of a b-tree. If it is not, then the cursor acquired 004094 ** will not work correctly. 004095 ** 004096 ** It is assumed that the sqlite3BtreeCursorZero() has been called 004097 ** on pCur to initialize the memory space prior to invoking this routine. 004098 */ 004099 static int btreeCursor( 004100 Btree *p, /* The btree */ 004101 int iTable, /* Root page of table to open */ 004102 int wrFlag, /* 1 to write. 0 read-only */ 004103 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 004104 BtCursor *pCur /* Space for new cursor */ 004105 ){ 004106 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 004107 BtCursor *pX; /* Looping over other all cursors */ 004108 004109 assert( sqlite3BtreeHoldsMutex(p) ); 004110 assert( wrFlag==0 004111 || wrFlag==BTREE_WRCSR 004112 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 004113 ); 004114 004115 /* The following assert statements verify that if this is a sharable 004116 ** b-tree database, the connection is holding the required table locks, 004117 ** and that no other connection has any open cursor that conflicts with 004118 ** this lock. */ 004119 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) ); 004120 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 004121 004122 /* Assert that the caller has opened the required transaction. */ 004123 assert( p->inTrans>TRANS_NONE ); 004124 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 004125 assert( pBt->pPage1 && pBt->pPage1->aData ); 004126 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 004127 004128 if( wrFlag ){ 004129 allocateTempSpace(pBt); 004130 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT; 004131 } 004132 if( iTable==1 && btreePagecount(pBt)==0 ){ 004133 assert( wrFlag==0 ); 004134 iTable = 0; 004135 } 004136 004137 /* Now that no other errors can occur, finish filling in the BtCursor 004138 ** variables and link the cursor into the BtShared list. */ 004139 pCur->pgnoRoot = (Pgno)iTable; 004140 pCur->iPage = -1; 004141 pCur->pKeyInfo = pKeyInfo; 004142 pCur->pBtree = p; 004143 pCur->pBt = pBt; 004144 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; 004145 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; 004146 /* If there are two or more cursors on the same btree, then all such 004147 ** cursors *must* have the BTCF_Multiple flag set. */ 004148 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 004149 if( pX->pgnoRoot==(Pgno)iTable ){ 004150 pX->curFlags |= BTCF_Multiple; 004151 pCur->curFlags |= BTCF_Multiple; 004152 } 004153 } 004154 pCur->pNext = pBt->pCursor; 004155 pBt->pCursor = pCur; 004156 pCur->eState = CURSOR_INVALID; 004157 return SQLITE_OK; 004158 } 004159 int sqlite3BtreeCursor( 004160 Btree *p, /* The btree */ 004161 int iTable, /* Root page of table to open */ 004162 int wrFlag, /* 1 to write. 0 read-only */ 004163 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 004164 BtCursor *pCur /* Write new cursor here */ 004165 ){ 004166 int rc; 004167 if( iTable<1 ){ 004168 rc = SQLITE_CORRUPT_BKPT; 004169 }else{ 004170 sqlite3BtreeEnter(p); 004171 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 004172 sqlite3BtreeLeave(p); 004173 } 004174 return rc; 004175 } 004176 004177 /* 004178 ** Return the size of a BtCursor object in bytes. 004179 ** 004180 ** This interfaces is needed so that users of cursors can preallocate 004181 ** sufficient storage to hold a cursor. The BtCursor object is opaque 004182 ** to users so they cannot do the sizeof() themselves - they must call 004183 ** this routine. 004184 */ 004185 int sqlite3BtreeCursorSize(void){ 004186 return ROUND8(sizeof(BtCursor)); 004187 } 004188 004189 /* 004190 ** Initialize memory that will be converted into a BtCursor object. 004191 ** 004192 ** The simple approach here would be to memset() the entire object 004193 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 004194 ** do not need to be zeroed and they are large, so we can save a lot 004195 ** of run-time by skipping the initialization of those elements. 004196 */ 004197 void sqlite3BtreeCursorZero(BtCursor *p){ 004198 memset(p, 0, offsetof(BtCursor, iPage)); 004199 } 004200 004201 /* 004202 ** Close a cursor. The read lock on the database file is released 004203 ** when the last cursor is closed. 004204 */ 004205 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 004206 Btree *pBtree = pCur->pBtree; 004207 if( pBtree ){ 004208 int i; 004209 BtShared *pBt = pCur->pBt; 004210 sqlite3BtreeEnter(pBtree); 004211 sqlite3BtreeClearCursor(pCur); 004212 assert( pBt->pCursor!=0 ); 004213 if( pBt->pCursor==pCur ){ 004214 pBt->pCursor = pCur->pNext; 004215 }else{ 004216 BtCursor *pPrev = pBt->pCursor; 004217 do{ 004218 if( pPrev->pNext==pCur ){ 004219 pPrev->pNext = pCur->pNext; 004220 break; 004221 } 004222 pPrev = pPrev->pNext; 004223 }while( ALWAYS(pPrev) ); 004224 } 004225 for(i=0; i<=pCur->iPage; i++){ 004226 releasePage(pCur->apPage[i]); 004227 } 004228 unlockBtreeIfUnused(pBt); 004229 sqlite3_free(pCur->aOverflow); 004230 /* sqlite3_free(pCur); */ 004231 sqlite3BtreeLeave(pBtree); 004232 } 004233 return SQLITE_OK; 004234 } 004235 004236 /* 004237 ** Make sure the BtCursor* given in the argument has a valid 004238 ** BtCursor.info structure. If it is not already valid, call 004239 ** btreeParseCell() to fill it in. 004240 ** 004241 ** BtCursor.info is a cache of the information in the current cell. 004242 ** Using this cache reduces the number of calls to btreeParseCell(). 004243 */ 004244 #ifndef NDEBUG 004245 static void assertCellInfo(BtCursor *pCur){ 004246 CellInfo info; 004247 int iPage = pCur->iPage; 004248 memset(&info, 0, sizeof(info)); 004249 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); 004250 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 ); 004251 } 004252 #else 004253 #define assertCellInfo(x) 004254 #endif 004255 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 004256 if( pCur->info.nSize==0 ){ 004257 int iPage = pCur->iPage; 004258 pCur->curFlags |= BTCF_ValidNKey; 004259 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); 004260 }else{ 004261 assertCellInfo(pCur); 004262 } 004263 } 004264 004265 #ifndef NDEBUG /* The next routine used only within assert() statements */ 004266 /* 004267 ** Return true if the given BtCursor is valid. A valid cursor is one 004268 ** that is currently pointing to a row in a (non-empty) table. 004269 ** This is a verification routine is used only within assert() statements. 004270 */ 004271 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 004272 return pCur && pCur->eState==CURSOR_VALID; 004273 } 004274 #endif /* NDEBUG */ 004275 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 004276 assert( pCur!=0 ); 004277 return pCur->eState==CURSOR_VALID; 004278 } 004279 004280 /* 004281 ** Return the value of the integer key or "rowid" for a table btree. 004282 ** This routine is only valid for a cursor that is pointing into a 004283 ** ordinary table btree. If the cursor points to an index btree or 004284 ** is invalid, the result of this routine is undefined. 004285 */ 004286 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 004287 assert( cursorHoldsMutex(pCur) ); 004288 assert( pCur->eState==CURSOR_VALID ); 004289 assert( pCur->curIntKey ); 004290 getCellInfo(pCur); 004291 return pCur->info.nKey; 004292 } 004293 004294 /* 004295 ** Return the number of bytes of payload for the entry that pCur is 004296 ** currently pointing to. For table btrees, this will be the amount 004297 ** of data. For index btrees, this will be the size of the key. 004298 ** 004299 ** The caller must guarantee that the cursor is pointing to a non-NULL 004300 ** valid entry. In other words, the calling procedure must guarantee 004301 ** that the cursor has Cursor.eState==CURSOR_VALID. 004302 */ 004303 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 004304 assert( cursorHoldsMutex(pCur) ); 004305 assert( pCur->eState==CURSOR_VALID ); 004306 getCellInfo(pCur); 004307 return pCur->info.nPayload; 004308 } 004309 004310 /* 004311 ** Given the page number of an overflow page in the database (parameter 004312 ** ovfl), this function finds the page number of the next page in the 004313 ** linked list of overflow pages. If possible, it uses the auto-vacuum 004314 ** pointer-map data instead of reading the content of page ovfl to do so. 004315 ** 004316 ** If an error occurs an SQLite error code is returned. Otherwise: 004317 ** 004318 ** The page number of the next overflow page in the linked list is 004319 ** written to *pPgnoNext. If page ovfl is the last page in its linked 004320 ** list, *pPgnoNext is set to zero. 004321 ** 004322 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 004323 ** to page number pOvfl was obtained, then *ppPage is set to point to that 004324 ** reference. It is the responsibility of the caller to call releasePage() 004325 ** on *ppPage to free the reference. In no reference was obtained (because 004326 ** the pointer-map was used to obtain the value for *pPgnoNext), then 004327 ** *ppPage is set to zero. 004328 */ 004329 static int getOverflowPage( 004330 BtShared *pBt, /* The database file */ 004331 Pgno ovfl, /* Current overflow page number */ 004332 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 004333 Pgno *pPgnoNext /* OUT: Next overflow page number */ 004334 ){ 004335 Pgno next = 0; 004336 MemPage *pPage = 0; 004337 int rc = SQLITE_OK; 004338 004339 assert( sqlite3_mutex_held(pBt->mutex) ); 004340 assert(pPgnoNext); 004341 004342 #ifndef SQLITE_OMIT_AUTOVACUUM 004343 /* Try to find the next page in the overflow list using the 004344 ** autovacuum pointer-map pages. Guess that the next page in 004345 ** the overflow list is page number (ovfl+1). If that guess turns 004346 ** out to be wrong, fall back to loading the data of page 004347 ** number ovfl to determine the next page number. 004348 */ 004349 if( pBt->autoVacuum ){ 004350 Pgno pgno; 004351 Pgno iGuess = ovfl+1; 004352 u8 eType; 004353 004354 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 004355 iGuess++; 004356 } 004357 004358 if( iGuess<=btreePagecount(pBt) ){ 004359 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 004360 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 004361 next = iGuess; 004362 rc = SQLITE_DONE; 004363 } 004364 } 004365 } 004366 #endif 004367 004368 assert( next==0 || rc==SQLITE_DONE ); 004369 if( rc==SQLITE_OK ){ 004370 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 004371 assert( rc==SQLITE_OK || pPage==0 ); 004372 if( rc==SQLITE_OK ){ 004373 next = get4byte(pPage->aData); 004374 } 004375 } 004376 004377 *pPgnoNext = next; 004378 if( ppPage ){ 004379 *ppPage = pPage; 004380 }else{ 004381 releasePage(pPage); 004382 } 004383 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 004384 } 004385 004386 /* 004387 ** Copy data from a buffer to a page, or from a page to a buffer. 004388 ** 004389 ** pPayload is a pointer to data stored on database page pDbPage. 004390 ** If argument eOp is false, then nByte bytes of data are copied 004391 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 004392 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 004393 ** of data are copied from the buffer pBuf to pPayload. 004394 ** 004395 ** SQLITE_OK is returned on success, otherwise an error code. 004396 */ 004397 static int copyPayload( 004398 void *pPayload, /* Pointer to page data */ 004399 void *pBuf, /* Pointer to buffer */ 004400 int nByte, /* Number of bytes to copy */ 004401 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 004402 DbPage *pDbPage /* Page containing pPayload */ 004403 ){ 004404 if( eOp ){ 004405 /* Copy data from buffer to page (a write operation) */ 004406 int rc = sqlite3PagerWrite(pDbPage); 004407 if( rc!=SQLITE_OK ){ 004408 return rc; 004409 } 004410 memcpy(pPayload, pBuf, nByte); 004411 }else{ 004412 /* Copy data from page to buffer (a read operation) */ 004413 memcpy(pBuf, pPayload, nByte); 004414 } 004415 return SQLITE_OK; 004416 } 004417 004418 /* 004419 ** This function is used to read or overwrite payload information 004420 ** for the entry that the pCur cursor is pointing to. The eOp 004421 ** argument is interpreted as follows: 004422 ** 004423 ** 0: The operation is a read. Populate the overflow cache. 004424 ** 1: The operation is a write. Populate the overflow cache. 004425 ** 2: The operation is a read. Do not populate the overflow cache. 004426 ** 004427 ** A total of "amt" bytes are read or written beginning at "offset". 004428 ** Data is read to or from the buffer pBuf. 004429 ** 004430 ** The content being read or written might appear on the main page 004431 ** or be scattered out on multiple overflow pages. 004432 ** 004433 ** If the current cursor entry uses one or more overflow pages and the 004434 ** eOp argument is not 2, this function may allocate space for and lazily 004435 ** populates the overflow page-list cache array (BtCursor.aOverflow). 004436 ** Subsequent calls use this cache to make seeking to the supplied offset 004437 ** more efficient. 004438 ** 004439 ** Once an overflow page-list cache has been allocated, it may be 004440 ** invalidated if some other cursor writes to the same table, or if 004441 ** the cursor is moved to a different row. Additionally, in auto-vacuum 004442 ** mode, the following events may invalidate an overflow page-list cache. 004443 ** 004444 ** * An incremental vacuum, 004445 ** * A commit in auto_vacuum="full" mode, 004446 ** * Creating a table (may require moving an overflow page). 004447 */ 004448 static int accessPayload( 004449 BtCursor *pCur, /* Cursor pointing to entry to read from */ 004450 u32 offset, /* Begin reading this far into payload */ 004451 u32 amt, /* Read this many bytes */ 004452 unsigned char *pBuf, /* Write the bytes into this buffer */ 004453 int eOp /* zero to read. non-zero to write. */ 004454 ){ 004455 unsigned char *aPayload; 004456 int rc = SQLITE_OK; 004457 int iIdx = 0; 004458 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ 004459 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 004460 #ifdef SQLITE_DIRECT_OVERFLOW_READ 004461 unsigned char * const pBufStart = pBuf; 004462 int bEnd; /* True if reading to end of data */ 004463 #endif 004464 004465 assert( pPage ); 004466 assert( pCur->eState==CURSOR_VALID ); 004467 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); 004468 assert( cursorHoldsMutex(pCur) ); 004469 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */ 004470 004471 getCellInfo(pCur); 004472 aPayload = pCur->info.pPayload; 004473 #ifdef SQLITE_DIRECT_OVERFLOW_READ 004474 bEnd = offset+amt==pCur->info.nPayload; 004475 #endif 004476 assert( offset+amt <= pCur->info.nPayload ); 004477 004478 assert( aPayload > pPage->aData ); 004479 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 004480 /* Trying to read or write past the end of the data is an error. The 004481 ** conditional above is really: 004482 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 004483 ** but is recast into its current form to avoid integer overflow problems 004484 */ 004485 return SQLITE_CORRUPT_BKPT; 004486 } 004487 004488 /* Check if data must be read/written to/from the btree page itself. */ 004489 if( offset<pCur->info.nLocal ){ 004490 int a = amt; 004491 if( a+offset>pCur->info.nLocal ){ 004492 a = pCur->info.nLocal - offset; 004493 } 004494 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage); 004495 offset = 0; 004496 pBuf += a; 004497 amt -= a; 004498 }else{ 004499 offset -= pCur->info.nLocal; 004500 } 004501 004502 004503 if( rc==SQLITE_OK && amt>0 ){ 004504 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 004505 Pgno nextPage; 004506 004507 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 004508 004509 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 004510 ** Except, do not allocate aOverflow[] for eOp==2. 004511 ** 004512 ** The aOverflow[] array is sized at one entry for each overflow page 004513 ** in the overflow chain. The page number of the first overflow page is 004514 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 004515 ** means "not yet known" (the cache is lazily populated). 004516 */ 004517 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 004518 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 004519 if( nOvfl>pCur->nOvflAlloc ){ 004520 Pgno *aNew = (Pgno*)sqlite3Realloc( 004521 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 004522 ); 004523 if( aNew==0 ){ 004524 rc = SQLITE_NOMEM_BKPT; 004525 }else{ 004526 pCur->nOvflAlloc = nOvfl*2; 004527 pCur->aOverflow = aNew; 004528 } 004529 } 004530 if( rc==SQLITE_OK ){ 004531 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 004532 pCur->curFlags |= BTCF_ValidOvfl; 004533 } 004534 } 004535 004536 /* If the overflow page-list cache has been allocated and the 004537 ** entry for the first required overflow page is valid, skip 004538 ** directly to it. 004539 */ 004540 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 004541 && pCur->aOverflow[offset/ovflSize] 004542 ){ 004543 iIdx = (offset/ovflSize); 004544 nextPage = pCur->aOverflow[iIdx]; 004545 offset = (offset%ovflSize); 004546 } 004547 004548 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ 004549 004550 /* If required, populate the overflow page-list cache. */ 004551 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){ 004552 assert( pCur->aOverflow[iIdx]==0 004553 || pCur->aOverflow[iIdx]==nextPage 004554 || CORRUPT_DB ); 004555 pCur->aOverflow[iIdx] = nextPage; 004556 } 004557 004558 if( offset>=ovflSize ){ 004559 /* The only reason to read this page is to obtain the page 004560 ** number for the next page in the overflow chain. The page 004561 ** data is not required. So first try to lookup the overflow 004562 ** page-list cache, if any, then fall back to the getOverflowPage() 004563 ** function. 004564 ** 004565 ** Note that the aOverflow[] array must be allocated because eOp!=2 004566 ** here. If eOp==2, then offset==0 and this branch is never taken. 004567 */ 004568 assert( eOp!=2 ); 004569 assert( pCur->curFlags & BTCF_ValidOvfl ); 004570 assert( pCur->pBtree->db==pBt->db ); 004571 if( pCur->aOverflow[iIdx+1] ){ 004572 nextPage = pCur->aOverflow[iIdx+1]; 004573 }else{ 004574 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 004575 } 004576 offset -= ovflSize; 004577 }else{ 004578 /* Need to read this page properly. It contains some of the 004579 ** range of data that is being read (eOp==0) or written (eOp!=0). 004580 */ 004581 #ifdef SQLITE_DIRECT_OVERFLOW_READ 004582 sqlite3_file *fd; 004583 #endif 004584 int a = amt; 004585 if( a + offset > ovflSize ){ 004586 a = ovflSize - offset; 004587 } 004588 004589 #ifdef SQLITE_DIRECT_OVERFLOW_READ 004590 /* If all the following are true: 004591 ** 004592 ** 1) this is a read operation, and 004593 ** 2) data is required from the start of this overflow page, and 004594 ** 3) the database is file-backed, and 004595 ** 4) there is no open write-transaction, and 004596 ** 5) the database is not a WAL database, 004597 ** 6) all data from the page is being read. 004598 ** 7) at least 4 bytes have already been read into the output buffer 004599 ** 004600 ** then data can be read directly from the database file into the 004601 ** output buffer, bypassing the page-cache altogether. This speeds 004602 ** up loading large records that span many overflow pages. 004603 */ 004604 if( (eOp&0x01)==0 /* (1) */ 004605 && offset==0 /* (2) */ 004606 && (bEnd || a==ovflSize) /* (6) */ 004607 && pBt->inTransaction==TRANS_READ /* (4) */ 004608 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */ 004609 && 0==sqlite3PagerUseWal(pBt->pPager) /* (5) */ 004610 && &pBuf[-4]>=pBufStart /* (7) */ 004611 ){ 004612 u8 aSave[4]; 004613 u8 *aWrite = &pBuf[-4]; 004614 assert( aWrite>=pBufStart ); /* hence (7) */ 004615 memcpy(aSave, aWrite, 4); 004616 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 004617 nextPage = get4byte(aWrite); 004618 memcpy(aWrite, aSave, 4); 004619 }else 004620 #endif 004621 004622 { 004623 DbPage *pDbPage; 004624 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 004625 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0) 004626 ); 004627 if( rc==SQLITE_OK ){ 004628 aPayload = sqlite3PagerGetData(pDbPage); 004629 nextPage = get4byte(aPayload); 004630 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage); 004631 sqlite3PagerUnref(pDbPage); 004632 offset = 0; 004633 } 004634 } 004635 amt -= a; 004636 pBuf += a; 004637 } 004638 } 004639 } 004640 004641 if( rc==SQLITE_OK && amt>0 ){ 004642 return SQLITE_CORRUPT_BKPT; 004643 } 004644 return rc; 004645 } 004646 004647 /* 004648 ** Read part of the payload for the row at which that cursor pCur is currently 004649 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 004650 ** begins at "offset". 004651 ** 004652 ** pCur can be pointing to either a table or an index b-tree. 004653 ** If pointing to a table btree, then the content section is read. If 004654 ** pCur is pointing to an index b-tree then the key section is read. 004655 ** 004656 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 004657 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 004658 ** cursor might be invalid or might need to be restored before being read. 004659 ** 004660 ** Return SQLITE_OK on success or an error code if anything goes 004661 ** wrong. An error is returned if "offset+amt" is larger than 004662 ** the available payload. 004663 */ 004664 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 004665 assert( cursorHoldsMutex(pCur) ); 004666 assert( pCur->eState==CURSOR_VALID ); 004667 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); 004668 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); 004669 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 004670 } 004671 #ifndef SQLITE_OMIT_INCRBLOB 004672 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 004673 int rc; 004674 if ( pCur->eState==CURSOR_INVALID ){ 004675 return SQLITE_ABORT; 004676 } 004677 assert( cursorOwnsBtShared(pCur) ); 004678 rc = restoreCursorPosition(pCur); 004679 if( rc==SQLITE_OK ){ 004680 assert( pCur->eState==CURSOR_VALID ); 004681 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); 004682 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); 004683 rc = accessPayload(pCur, offset, amt, pBuf, 0); 004684 } 004685 return rc; 004686 } 004687 #endif /* SQLITE_OMIT_INCRBLOB */ 004688 004689 /* 004690 ** Return a pointer to payload information from the entry that the 004691 ** pCur cursor is pointing to. The pointer is to the beginning of 004692 ** the key if index btrees (pPage->intKey==0) and is the data for 004693 ** table btrees (pPage->intKey==1). The number of bytes of available 004694 ** key/data is written into *pAmt. If *pAmt==0, then the value 004695 ** returned will not be a valid pointer. 004696 ** 004697 ** This routine is an optimization. It is common for the entire key 004698 ** and data to fit on the local page and for there to be no overflow 004699 ** pages. When that is so, this routine can be used to access the 004700 ** key and data without making a copy. If the key and/or data spills 004701 ** onto overflow pages, then accessPayload() must be used to reassemble 004702 ** the key/data and copy it into a preallocated buffer. 004703 ** 004704 ** The pointer returned by this routine looks directly into the cached 004705 ** page of the database. The data might change or move the next time 004706 ** any btree routine is called. 004707 */ 004708 static const void *fetchPayload( 004709 BtCursor *pCur, /* Cursor pointing to entry to read from */ 004710 u32 *pAmt /* Write the number of available bytes here */ 004711 ){ 004712 u32 amt; 004713 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); 004714 assert( pCur->eState==CURSOR_VALID ); 004715 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 004716 assert( cursorOwnsBtShared(pCur) ); 004717 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); 004718 assert( pCur->info.nSize>0 ); 004719 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB ); 004720 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB); 004721 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload); 004722 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal; 004723 *pAmt = amt; 004724 return (void*)pCur->info.pPayload; 004725 } 004726 004727 004728 /* 004729 ** For the entry that cursor pCur is point to, return as 004730 ** many bytes of the key or data as are available on the local 004731 ** b-tree page. Write the number of available bytes into *pAmt. 004732 ** 004733 ** The pointer returned is ephemeral. The key/data may move 004734 ** or be destroyed on the next call to any Btree routine, 004735 ** including calls from other threads against the same cache. 004736 ** Hence, a mutex on the BtShared should be held prior to calling 004737 ** this routine. 004738 ** 004739 ** These routines is used to get quick access to key and data 004740 ** in the common case where no overflow pages are used. 004741 */ 004742 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 004743 return fetchPayload(pCur, pAmt); 004744 } 004745 004746 004747 /* 004748 ** Move the cursor down to a new child page. The newPgno argument is the 004749 ** page number of the child page to move to. 004750 ** 004751 ** This function returns SQLITE_CORRUPT if the page-header flags field of 004752 ** the new child page does not match the flags field of the parent (i.e. 004753 ** if an intkey page appears to be the parent of a non-intkey page, or 004754 ** vice-versa). 004755 */ 004756 static int moveToChild(BtCursor *pCur, u32 newPgno){ 004757 BtShared *pBt = pCur->pBt; 004758 004759 assert( cursorOwnsBtShared(pCur) ); 004760 assert( pCur->eState==CURSOR_VALID ); 004761 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 004762 assert( pCur->iPage>=0 ); 004763 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 004764 return SQLITE_CORRUPT_BKPT; 004765 } 004766 pCur->info.nSize = 0; 004767 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 004768 pCur->iPage++; 004769 pCur->aiIdx[pCur->iPage] = 0; 004770 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage], 004771 pCur, pCur->curPagerFlags); 004772 } 004773 004774 #if SQLITE_DEBUG 004775 /* 004776 ** Page pParent is an internal (non-leaf) tree page. This function 004777 ** asserts that page number iChild is the left-child if the iIdx'th 004778 ** cell in page pParent. Or, if iIdx is equal to the total number of 004779 ** cells in pParent, that page number iChild is the right-child of 004780 ** the page. 004781 */ 004782 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 004783 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 004784 ** in a corrupt database */ 004785 assert( iIdx<=pParent->nCell ); 004786 if( iIdx==pParent->nCell ){ 004787 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 004788 }else{ 004789 assert( get4byte(findCell(pParent, iIdx))==iChild ); 004790 } 004791 } 004792 #else 004793 # define assertParentIndex(x,y,z) 004794 #endif 004795 004796 /* 004797 ** Move the cursor up to the parent page. 004798 ** 004799 ** pCur->idx is set to the cell index that contains the pointer 004800 ** to the page we are coming from. If we are coming from the 004801 ** right-most child page then pCur->idx is set to one more than 004802 ** the largest cell index. 004803 */ 004804 static void moveToParent(BtCursor *pCur){ 004805 assert( cursorOwnsBtShared(pCur) ); 004806 assert( pCur->eState==CURSOR_VALID ); 004807 assert( pCur->iPage>0 ); 004808 assert( pCur->apPage[pCur->iPage] ); 004809 assertParentIndex( 004810 pCur->apPage[pCur->iPage-1], 004811 pCur->aiIdx[pCur->iPage-1], 004812 pCur->apPage[pCur->iPage]->pgno 004813 ); 004814 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 004815 pCur->info.nSize = 0; 004816 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 004817 releasePageNotNull(pCur->apPage[pCur->iPage--]); 004818 } 004819 004820 /* 004821 ** Move the cursor to point to the root page of its b-tree structure. 004822 ** 004823 ** If the table has a virtual root page, then the cursor is moved to point 004824 ** to the virtual root page instead of the actual root page. A table has a 004825 ** virtual root page when the actual root page contains no cells and a 004826 ** single child page. This can only happen with the table rooted at page 1. 004827 ** 004828 ** If the b-tree structure is empty, the cursor state is set to 004829 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first 004830 ** cell located on the root (or virtual root) page and the cursor state 004831 ** is set to CURSOR_VALID. 004832 ** 004833 ** If this function returns successfully, it may be assumed that the 004834 ** page-header flags indicate that the [virtual] root-page is the expected 004835 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 004836 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 004837 ** indicating a table b-tree, or if the caller did specify a KeyInfo 004838 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 004839 ** b-tree). 004840 */ 004841 static int moveToRoot(BtCursor *pCur){ 004842 MemPage *pRoot; 004843 int rc = SQLITE_OK; 004844 004845 assert( cursorOwnsBtShared(pCur) ); 004846 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 004847 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 004848 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 004849 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 004850 if( pCur->eState==CURSOR_FAULT ){ 004851 assert( pCur->skipNext!=SQLITE_OK ); 004852 return pCur->skipNext; 004853 } 004854 sqlite3BtreeClearCursor(pCur); 004855 } 004856 004857 if( pCur->iPage>=0 ){ 004858 if( pCur->iPage ){ 004859 do{ 004860 assert( pCur->apPage[pCur->iPage]!=0 ); 004861 releasePageNotNull(pCur->apPage[pCur->iPage--]); 004862 }while( pCur->iPage); 004863 goto skip_init; 004864 } 004865 }else if( pCur->pgnoRoot==0 ){ 004866 pCur->eState = CURSOR_INVALID; 004867 return SQLITE_OK; 004868 }else{ 004869 assert( pCur->iPage==(-1) ); 004870 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0], 004871 0, pCur->curPagerFlags); 004872 if( rc!=SQLITE_OK ){ 004873 pCur->eState = CURSOR_INVALID; 004874 return rc; 004875 } 004876 pCur->iPage = 0; 004877 pCur->curIntKey = pCur->apPage[0]->intKey; 004878 } 004879 pRoot = pCur->apPage[0]; 004880 assert( pRoot->pgno==pCur->pgnoRoot ); 004881 004882 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 004883 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 004884 ** NULL, the caller expects a table b-tree. If this is not the case, 004885 ** return an SQLITE_CORRUPT error. 004886 ** 004887 ** Earlier versions of SQLite assumed that this test could not fail 004888 ** if the root page was already loaded when this function was called (i.e. 004889 ** if pCur->iPage>=0). But this is not so if the database is corrupted 004890 ** in such a way that page pRoot is linked into a second b-tree table 004891 ** (or the freelist). */ 004892 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 004893 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 004894 return SQLITE_CORRUPT_BKPT; 004895 } 004896 004897 skip_init: 004898 pCur->aiIdx[0] = 0; 004899 pCur->info.nSize = 0; 004900 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 004901 004902 pRoot = pCur->apPage[0]; 004903 if( pRoot->nCell>0 ){ 004904 pCur->eState = CURSOR_VALID; 004905 }else if( !pRoot->leaf ){ 004906 Pgno subpage; 004907 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 004908 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 004909 pCur->eState = CURSOR_VALID; 004910 rc = moveToChild(pCur, subpage); 004911 }else{ 004912 pCur->eState = CURSOR_INVALID; 004913 } 004914 return rc; 004915 } 004916 004917 /* 004918 ** Move the cursor down to the left-most leaf entry beneath the 004919 ** entry to which it is currently pointing. 004920 ** 004921 ** The left-most leaf is the one with the smallest key - the first 004922 ** in ascending order. 004923 */ 004924 static int moveToLeftmost(BtCursor *pCur){ 004925 Pgno pgno; 004926 int rc = SQLITE_OK; 004927 MemPage *pPage; 004928 004929 assert( cursorOwnsBtShared(pCur) ); 004930 assert( pCur->eState==CURSOR_VALID ); 004931 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ 004932 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); 004933 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage])); 004934 rc = moveToChild(pCur, pgno); 004935 } 004936 return rc; 004937 } 004938 004939 /* 004940 ** Move the cursor down to the right-most leaf entry beneath the 004941 ** page to which it is currently pointing. Notice the difference 004942 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 004943 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 004944 ** finds the right-most entry beneath the *page*. 004945 ** 004946 ** The right-most entry is the one with the largest key - the last 004947 ** key in ascending order. 004948 */ 004949 static int moveToRightmost(BtCursor *pCur){ 004950 Pgno pgno; 004951 int rc = SQLITE_OK; 004952 MemPage *pPage = 0; 004953 004954 assert( cursorOwnsBtShared(pCur) ); 004955 assert( pCur->eState==CURSOR_VALID ); 004956 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){ 004957 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 004958 pCur->aiIdx[pCur->iPage] = pPage->nCell; 004959 rc = moveToChild(pCur, pgno); 004960 if( rc ) return rc; 004961 } 004962 pCur->aiIdx[pCur->iPage] = pPage->nCell-1; 004963 assert( pCur->info.nSize==0 ); 004964 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 004965 return SQLITE_OK; 004966 } 004967 004968 /* Move the cursor to the first entry in the table. Return SQLITE_OK 004969 ** on success. Set *pRes to 0 if the cursor actually points to something 004970 ** or set *pRes to 1 if the table is empty. 004971 */ 004972 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 004973 int rc; 004974 004975 assert( cursorOwnsBtShared(pCur) ); 004976 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 004977 rc = moveToRoot(pCur); 004978 if( rc==SQLITE_OK ){ 004979 if( pCur->eState==CURSOR_INVALID ){ 004980 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); 004981 *pRes = 1; 004982 }else{ 004983 assert( pCur->apPage[pCur->iPage]->nCell>0 ); 004984 *pRes = 0; 004985 rc = moveToLeftmost(pCur); 004986 } 004987 } 004988 return rc; 004989 } 004990 004991 /* Move the cursor to the last entry in the table. Return SQLITE_OK 004992 ** on success. Set *pRes to 0 if the cursor actually points to something 004993 ** or set *pRes to 1 if the table is empty. 004994 */ 004995 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 004996 int rc; 004997 004998 assert( cursorOwnsBtShared(pCur) ); 004999 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 005000 005001 /* If the cursor already points to the last entry, this is a no-op. */ 005002 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 005003 #ifdef SQLITE_DEBUG 005004 /* This block serves to assert() that the cursor really does point 005005 ** to the last entry in the b-tree. */ 005006 int ii; 005007 for(ii=0; ii<pCur->iPage; ii++){ 005008 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 005009 } 005010 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 ); 005011 assert( pCur->apPage[pCur->iPage]->leaf ); 005012 #endif 005013 return SQLITE_OK; 005014 } 005015 005016 rc = moveToRoot(pCur); 005017 if( rc==SQLITE_OK ){ 005018 if( CURSOR_INVALID==pCur->eState ){ 005019 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); 005020 *pRes = 1; 005021 }else{ 005022 assert( pCur->eState==CURSOR_VALID ); 005023 *pRes = 0; 005024 rc = moveToRightmost(pCur); 005025 if( rc==SQLITE_OK ){ 005026 pCur->curFlags |= BTCF_AtLast; 005027 }else{ 005028 pCur->curFlags &= ~BTCF_AtLast; 005029 } 005030 005031 } 005032 } 005033 return rc; 005034 } 005035 005036 /* Move the cursor so that it points to an entry near the key 005037 ** specified by pIdxKey or intKey. Return a success code. 005038 ** 005039 ** For INTKEY tables, the intKey parameter is used. pIdxKey 005040 ** must be NULL. For index tables, pIdxKey is used and intKey 005041 ** is ignored. 005042 ** 005043 ** If an exact match is not found, then the cursor is always 005044 ** left pointing at a leaf page which would hold the entry if it 005045 ** were present. The cursor might point to an entry that comes 005046 ** before or after the key. 005047 ** 005048 ** An integer is written into *pRes which is the result of 005049 ** comparing the key with the entry to which the cursor is 005050 ** pointing. The meaning of the integer written into 005051 ** *pRes is as follows: 005052 ** 005053 ** *pRes<0 The cursor is left pointing at an entry that 005054 ** is smaller than intKey/pIdxKey or if the table is empty 005055 ** and the cursor is therefore left point to nothing. 005056 ** 005057 ** *pRes==0 The cursor is left pointing at an entry that 005058 ** exactly matches intKey/pIdxKey. 005059 ** 005060 ** *pRes>0 The cursor is left pointing at an entry that 005061 ** is larger than intKey/pIdxKey. 005062 ** 005063 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there 005064 ** exists an entry in the table that exactly matches pIdxKey. 005065 */ 005066 int sqlite3BtreeMovetoUnpacked( 005067 BtCursor *pCur, /* The cursor to be moved */ 005068 UnpackedRecord *pIdxKey, /* Unpacked index key */ 005069 i64 intKey, /* The table key */ 005070 int biasRight, /* If true, bias the search to the high end */ 005071 int *pRes /* Write search results here */ 005072 ){ 005073 int rc; 005074 RecordCompare xRecordCompare; 005075 005076 assert( cursorOwnsBtShared(pCur) ); 005077 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 005078 assert( pRes ); 005079 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); 005080 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) ); 005081 005082 /* If the cursor is already positioned at the point we are trying 005083 ** to move to, then just return without doing any work */ 005084 if( pIdxKey==0 005085 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 005086 ){ 005087 if( pCur->info.nKey==intKey ){ 005088 *pRes = 0; 005089 return SQLITE_OK; 005090 } 005091 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){ 005092 *pRes = -1; 005093 return SQLITE_OK; 005094 } 005095 } 005096 005097 if( pIdxKey ){ 005098 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 005099 pIdxKey->errCode = 0; 005100 assert( pIdxKey->default_rc==1 005101 || pIdxKey->default_rc==0 005102 || pIdxKey->default_rc==-1 005103 ); 005104 }else{ 005105 xRecordCompare = 0; /* All keys are integers */ 005106 } 005107 005108 rc = moveToRoot(pCur); 005109 if( rc ){ 005110 return rc; 005111 } 005112 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); 005113 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); 005114 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); 005115 if( pCur->eState==CURSOR_INVALID ){ 005116 *pRes = -1; 005117 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); 005118 return SQLITE_OK; 005119 } 005120 assert( pCur->apPage[0]->intKey==pCur->curIntKey ); 005121 assert( pCur->curIntKey || pIdxKey ); 005122 for(;;){ 005123 int lwr, upr, idx, c; 005124 Pgno chldPg; 005125 MemPage *pPage = pCur->apPage[pCur->iPage]; 005126 u8 *pCell; /* Pointer to current cell in pPage */ 005127 005128 /* pPage->nCell must be greater than zero. If this is the root-page 005129 ** the cursor would have been INVALID above and this for(;;) loop 005130 ** not run. If this is not the root-page, then the moveToChild() routine 005131 ** would have already detected db corruption. Similarly, pPage must 005132 ** be the right kind (index or table) of b-tree page. Otherwise 005133 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 005134 assert( pPage->nCell>0 ); 005135 assert( pPage->intKey==(pIdxKey==0) ); 005136 lwr = 0; 005137 upr = pPage->nCell-1; 005138 assert( biasRight==0 || biasRight==1 ); 005139 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 005140 pCur->aiIdx[pCur->iPage] = (u16)idx; 005141 if( xRecordCompare==0 ){ 005142 for(;;){ 005143 i64 nCellKey; 005144 pCell = findCellPastPtr(pPage, idx); 005145 if( pPage->intKeyLeaf ){ 005146 while( 0x80 <= *(pCell++) ){ 005147 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; 005148 } 005149 } 005150 getVarint(pCell, (u64*)&nCellKey); 005151 if( nCellKey<intKey ){ 005152 lwr = idx+1; 005153 if( lwr>upr ){ c = -1; break; } 005154 }else if( nCellKey>intKey ){ 005155 upr = idx-1; 005156 if( lwr>upr ){ c = +1; break; } 005157 }else{ 005158 assert( nCellKey==intKey ); 005159 pCur->aiIdx[pCur->iPage] = (u16)idx; 005160 if( !pPage->leaf ){ 005161 lwr = idx; 005162 goto moveto_next_layer; 005163 }else{ 005164 pCur->curFlags |= BTCF_ValidNKey; 005165 pCur->info.nKey = nCellKey; 005166 pCur->info.nSize = 0; 005167 *pRes = 0; 005168 return SQLITE_OK; 005169 } 005170 } 005171 assert( lwr+upr>=0 ); 005172 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 005173 } 005174 }else{ 005175 for(;;){ 005176 int nCell; /* Size of the pCell cell in bytes */ 005177 pCell = findCellPastPtr(pPage, idx); 005178 005179 /* The maximum supported page-size is 65536 bytes. This means that 005180 ** the maximum number of record bytes stored on an index B-Tree 005181 ** page is less than 16384 bytes and may be stored as a 2-byte 005182 ** varint. This information is used to attempt to avoid parsing 005183 ** the entire cell by checking for the cases where the record is 005184 ** stored entirely within the b-tree page by inspecting the first 005185 ** 2 bytes of the cell. 005186 */ 005187 nCell = pCell[0]; 005188 if( nCell<=pPage->max1bytePayload ){ 005189 /* This branch runs if the record-size field of the cell is a 005190 ** single byte varint and the record fits entirely on the main 005191 ** b-tree page. */ 005192 testcase( pCell+nCell+1==pPage->aDataEnd ); 005193 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 005194 }else if( !(pCell[1] & 0x80) 005195 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 005196 ){ 005197 /* The record-size field is a 2 byte varint and the record 005198 ** fits entirely on the main b-tree page. */ 005199 testcase( pCell+nCell+2==pPage->aDataEnd ); 005200 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 005201 }else{ 005202 /* The record flows over onto one or more overflow pages. In 005203 ** this case the whole cell needs to be parsed, a buffer allocated 005204 ** and accessPayload() used to retrieve the record into the 005205 ** buffer before VdbeRecordCompare() can be called. 005206 ** 005207 ** If the record is corrupt, the xRecordCompare routine may read 005208 ** up to two varints past the end of the buffer. An extra 18 005209 ** bytes of padding is allocated at the end of the buffer in 005210 ** case this happens. */ 005211 void *pCellKey; 005212 u8 * const pCellBody = pCell - pPage->childPtrSize; 005213 pPage->xParseCell(pPage, pCellBody, &pCur->info); 005214 nCell = (int)pCur->info.nKey; 005215 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 005216 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 005217 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 005218 testcase( nCell==2 ); /* Minimum legal index key size */ 005219 if( nCell<2 ){ 005220 rc = SQLITE_CORRUPT_BKPT; 005221 goto moveto_finish; 005222 } 005223 pCellKey = sqlite3Malloc( nCell+18 ); 005224 if( pCellKey==0 ){ 005225 rc = SQLITE_NOMEM_BKPT; 005226 goto moveto_finish; 005227 } 005228 pCur->aiIdx[pCur->iPage] = (u16)idx; 005229 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2); 005230 if( rc ){ 005231 sqlite3_free(pCellKey); 005232 goto moveto_finish; 005233 } 005234 c = xRecordCompare(nCell, pCellKey, pIdxKey); 005235 sqlite3_free(pCellKey); 005236 } 005237 assert( 005238 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 005239 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 005240 ); 005241 if( c<0 ){ 005242 lwr = idx+1; 005243 }else if( c>0 ){ 005244 upr = idx-1; 005245 }else{ 005246 assert( c==0 ); 005247 *pRes = 0; 005248 rc = SQLITE_OK; 005249 pCur->aiIdx[pCur->iPage] = (u16)idx; 005250 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT; 005251 goto moveto_finish; 005252 } 005253 if( lwr>upr ) break; 005254 assert( lwr+upr>=0 ); 005255 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 005256 } 005257 } 005258 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 005259 assert( pPage->isInit ); 005260 if( pPage->leaf ){ 005261 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); 005262 pCur->aiIdx[pCur->iPage] = (u16)idx; 005263 *pRes = c; 005264 rc = SQLITE_OK; 005265 goto moveto_finish; 005266 } 005267 moveto_next_layer: 005268 if( lwr>=pPage->nCell ){ 005269 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 005270 }else{ 005271 chldPg = get4byte(findCell(pPage, lwr)); 005272 } 005273 pCur->aiIdx[pCur->iPage] = (u16)lwr; 005274 rc = moveToChild(pCur, chldPg); 005275 if( rc ) break; 005276 } 005277 moveto_finish: 005278 pCur->info.nSize = 0; 005279 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 005280 return rc; 005281 } 005282 005283 005284 /* 005285 ** Return TRUE if the cursor is not pointing at an entry of the table. 005286 ** 005287 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 005288 ** past the last entry in the table or sqlite3BtreePrev() moves past 005289 ** the first entry. TRUE is also returned if the table is empty. 005290 */ 005291 int sqlite3BtreeEof(BtCursor *pCur){ 005292 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 005293 ** have been deleted? This API will need to change to return an error code 005294 ** as well as the boolean result value. 005295 */ 005296 return (CURSOR_VALID!=pCur->eState); 005297 } 005298 005299 /* 005300 ** Advance the cursor to the next entry in the database. If 005301 ** successful then set *pRes=0. If the cursor 005302 ** was already pointing to the last entry in the database before 005303 ** this routine was called, then set *pRes=1. 005304 ** 005305 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 005306 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 005307 ** to the next cell on the current page. The (slower) btreeNext() helper 005308 ** routine is called when it is necessary to move to a different page or 005309 ** to restore the cursor. 005310 ** 005311 ** The calling function will set *pRes to 0 or 1. The initial *pRes value 005312 ** will be 1 if the cursor being stepped corresponds to an SQL index and 005313 ** if this routine could have been skipped if that SQL index had been 005314 ** a unique index. Otherwise the caller will have set *pRes to zero. 005315 ** Zero is the common case. The btree implementation is free to use the 005316 ** initial *pRes value as a hint to improve performance, but the current 005317 ** SQLite btree implementation does not. (Note that the comdb2 btree 005318 ** implementation does use this hint, however.) 005319 */ 005320 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){ 005321 int rc; 005322 int idx; 005323 MemPage *pPage; 005324 005325 assert( cursorOwnsBtShared(pCur) ); 005326 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 005327 assert( *pRes==0 ); 005328 if( pCur->eState!=CURSOR_VALID ){ 005329 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 005330 rc = restoreCursorPosition(pCur); 005331 if( rc!=SQLITE_OK ){ 005332 return rc; 005333 } 005334 if( CURSOR_INVALID==pCur->eState ){ 005335 *pRes = 1; 005336 return SQLITE_OK; 005337 } 005338 if( pCur->skipNext ){ 005339 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); 005340 pCur->eState = CURSOR_VALID; 005341 if( pCur->skipNext>0 ){ 005342 pCur->skipNext = 0; 005343 return SQLITE_OK; 005344 } 005345 pCur->skipNext = 0; 005346 } 005347 } 005348 005349 pPage = pCur->apPage[pCur->iPage]; 005350 idx = ++pCur->aiIdx[pCur->iPage]; 005351 assert( pPage->isInit ); 005352 005353 /* If the database file is corrupt, it is possible for the value of idx 005354 ** to be invalid here. This can only occur if a second cursor modifies 005355 ** the page while cursor pCur is holding a reference to it. Which can 005356 ** only happen if the database is corrupt in such a way as to link the 005357 ** page into more than one b-tree structure. */ 005358 testcase( idx>pPage->nCell ); 005359 005360 if( idx>=pPage->nCell ){ 005361 if( !pPage->leaf ){ 005362 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 005363 if( rc ) return rc; 005364 return moveToLeftmost(pCur); 005365 } 005366 do{ 005367 if( pCur->iPage==0 ){ 005368 *pRes = 1; 005369 pCur->eState = CURSOR_INVALID; 005370 return SQLITE_OK; 005371 } 005372 moveToParent(pCur); 005373 pPage = pCur->apPage[pCur->iPage]; 005374 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); 005375 if( pPage->intKey ){ 005376 return sqlite3BtreeNext(pCur, pRes); 005377 }else{ 005378 return SQLITE_OK; 005379 } 005380 } 005381 if( pPage->leaf ){ 005382 return SQLITE_OK; 005383 }else{ 005384 return moveToLeftmost(pCur); 005385 } 005386 } 005387 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ 005388 MemPage *pPage; 005389 assert( cursorOwnsBtShared(pCur) ); 005390 assert( pRes!=0 ); 005391 assert( *pRes==0 || *pRes==1 ); 005392 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 005393 pCur->info.nSize = 0; 005394 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 005395 *pRes = 0; 005396 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes); 005397 pPage = pCur->apPage[pCur->iPage]; 005398 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){ 005399 pCur->aiIdx[pCur->iPage]--; 005400 return btreeNext(pCur, pRes); 005401 } 005402 if( pPage->leaf ){ 005403 return SQLITE_OK; 005404 }else{ 005405 return moveToLeftmost(pCur); 005406 } 005407 } 005408 005409 /* 005410 ** Step the cursor to the back to the previous entry in the database. If 005411 ** successful then set *pRes=0. If the cursor 005412 ** was already pointing to the first entry in the database before 005413 ** this routine was called, then set *pRes=1. 005414 ** 005415 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 005416 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 005417 ** to the previous cell on the current page. The (slower) btreePrevious() 005418 ** helper routine is called when it is necessary to move to a different page 005419 ** or to restore the cursor. 005420 ** 005421 ** The calling function will set *pRes to 0 or 1. The initial *pRes value 005422 ** will be 1 if the cursor being stepped corresponds to an SQL index and 005423 ** if this routine could have been skipped if that SQL index had been 005424 ** a unique index. Otherwise the caller will have set *pRes to zero. 005425 ** Zero is the common case. The btree implementation is free to use the 005426 ** initial *pRes value as a hint to improve performance, but the current 005427 ** SQLite btree implementation does not. (Note that the comdb2 btree 005428 ** implementation does use this hint, however.) 005429 */ 005430 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){ 005431 int rc; 005432 MemPage *pPage; 005433 005434 assert( cursorOwnsBtShared(pCur) ); 005435 assert( pRes!=0 ); 005436 assert( *pRes==0 ); 005437 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 005438 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 005439 assert( pCur->info.nSize==0 ); 005440 if( pCur->eState!=CURSOR_VALID ){ 005441 rc = restoreCursorPosition(pCur); 005442 if( rc!=SQLITE_OK ){ 005443 return rc; 005444 } 005445 if( CURSOR_INVALID==pCur->eState ){ 005446 *pRes = 1; 005447 return SQLITE_OK; 005448 } 005449 if( pCur->skipNext ){ 005450 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); 005451 pCur->eState = CURSOR_VALID; 005452 if( pCur->skipNext<0 ){ 005453 pCur->skipNext = 0; 005454 return SQLITE_OK; 005455 } 005456 pCur->skipNext = 0; 005457 } 005458 } 005459 005460 pPage = pCur->apPage[pCur->iPage]; 005461 assert( pPage->isInit ); 005462 if( !pPage->leaf ){ 005463 int idx = pCur->aiIdx[pCur->iPage]; 005464 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 005465 if( rc ) return rc; 005466 rc = moveToRightmost(pCur); 005467 }else{ 005468 while( pCur->aiIdx[pCur->iPage]==0 ){ 005469 if( pCur->iPage==0 ){ 005470 pCur->eState = CURSOR_INVALID; 005471 *pRes = 1; 005472 return SQLITE_OK; 005473 } 005474 moveToParent(pCur); 005475 } 005476 assert( pCur->info.nSize==0 ); 005477 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 005478 005479 pCur->aiIdx[pCur->iPage]--; 005480 pPage = pCur->apPage[pCur->iPage]; 005481 if( pPage->intKey && !pPage->leaf ){ 005482 rc = sqlite3BtreePrevious(pCur, pRes); 005483 }else{ 005484 rc = SQLITE_OK; 005485 } 005486 } 005487 return rc; 005488 } 005489 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ 005490 assert( cursorOwnsBtShared(pCur) ); 005491 assert( pRes!=0 ); 005492 assert( *pRes==0 || *pRes==1 ); 005493 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 005494 *pRes = 0; 005495 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 005496 pCur->info.nSize = 0; 005497 if( pCur->eState!=CURSOR_VALID 005498 || pCur->aiIdx[pCur->iPage]==0 005499 || pCur->apPage[pCur->iPage]->leaf==0 005500 ){ 005501 return btreePrevious(pCur, pRes); 005502 } 005503 pCur->aiIdx[pCur->iPage]--; 005504 return SQLITE_OK; 005505 } 005506 005507 /* 005508 ** Allocate a new page from the database file. 005509 ** 005510 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 005511 ** has already been called on the new page.) The new page has also 005512 ** been referenced and the calling routine is responsible for calling 005513 ** sqlite3PagerUnref() on the new page when it is done. 005514 ** 005515 ** SQLITE_OK is returned on success. Any other return value indicates 005516 ** an error. *ppPage is set to NULL in the event of an error. 005517 ** 005518 ** If the "nearby" parameter is not 0, then an effort is made to 005519 ** locate a page close to the page number "nearby". This can be used in an 005520 ** attempt to keep related pages close to each other in the database file, 005521 ** which in turn can make database access faster. 005522 ** 005523 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 005524 ** anywhere on the free-list, then it is guaranteed to be returned. If 005525 ** eMode is BTALLOC_LT then the page returned will be less than or equal 005526 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 005527 ** are no restrictions on which page is returned. 005528 */ 005529 static int allocateBtreePage( 005530 BtShared *pBt, /* The btree */ 005531 MemPage **ppPage, /* Store pointer to the allocated page here */ 005532 Pgno *pPgno, /* Store the page number here */ 005533 Pgno nearby, /* Search for a page near this one */ 005534 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 005535 ){ 005536 MemPage *pPage1; 005537 int rc; 005538 u32 n; /* Number of pages on the freelist */ 005539 u32 k; /* Number of leaves on the trunk of the freelist */ 005540 MemPage *pTrunk = 0; 005541 MemPage *pPrevTrunk = 0; 005542 Pgno mxPage; /* Total size of the database file */ 005543 005544 assert( sqlite3_mutex_held(pBt->mutex) ); 005545 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 005546 pPage1 = pBt->pPage1; 005547 mxPage = btreePagecount(pBt); 005548 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 005549 ** stores stores the total number of pages on the freelist. */ 005550 n = get4byte(&pPage1->aData[36]); 005551 testcase( n==mxPage-1 ); 005552 if( n>=mxPage ){ 005553 return SQLITE_CORRUPT_BKPT; 005554 } 005555 if( n>0 ){ 005556 /* There are pages on the freelist. Reuse one of those pages. */ 005557 Pgno iTrunk; 005558 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 005559 u32 nSearch = 0; /* Count of the number of search attempts */ 005560 005561 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 005562 ** shows that the page 'nearby' is somewhere on the free-list, then 005563 ** the entire-list will be searched for that page. 005564 */ 005565 #ifndef SQLITE_OMIT_AUTOVACUUM 005566 if( eMode==BTALLOC_EXACT ){ 005567 if( nearby<=mxPage ){ 005568 u8 eType; 005569 assert( nearby>0 ); 005570 assert( pBt->autoVacuum ); 005571 rc = ptrmapGet(pBt, nearby, &eType, 0); 005572 if( rc ) return rc; 005573 if( eType==PTRMAP_FREEPAGE ){ 005574 searchList = 1; 005575 } 005576 } 005577 }else if( eMode==BTALLOC_LE ){ 005578 searchList = 1; 005579 } 005580 #endif 005581 005582 /* Decrement the free-list count by 1. Set iTrunk to the index of the 005583 ** first free-list trunk page. iPrevTrunk is initially 1. 005584 */ 005585 rc = sqlite3PagerWrite(pPage1->pDbPage); 005586 if( rc ) return rc; 005587 put4byte(&pPage1->aData[36], n-1); 005588 005589 /* The code within this loop is run only once if the 'searchList' variable 005590 ** is not true. Otherwise, it runs once for each trunk-page on the 005591 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 005592 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 005593 */ 005594 do { 005595 pPrevTrunk = pTrunk; 005596 if( pPrevTrunk ){ 005597 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 005598 ** is the page number of the next freelist trunk page in the list or 005599 ** zero if this is the last freelist trunk page. */ 005600 iTrunk = get4byte(&pPrevTrunk->aData[0]); 005601 }else{ 005602 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 005603 ** stores the page number of the first page of the freelist, or zero if 005604 ** the freelist is empty. */ 005605 iTrunk = get4byte(&pPage1->aData[32]); 005606 } 005607 testcase( iTrunk==mxPage ); 005608 if( iTrunk>mxPage || nSearch++ > n ){ 005609 rc = SQLITE_CORRUPT_BKPT; 005610 }else{ 005611 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 005612 } 005613 if( rc ){ 005614 pTrunk = 0; 005615 goto end_allocate_page; 005616 } 005617 assert( pTrunk!=0 ); 005618 assert( pTrunk->aData!=0 ); 005619 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 005620 ** is the number of leaf page pointers to follow. */ 005621 k = get4byte(&pTrunk->aData[4]); 005622 if( k==0 && !searchList ){ 005623 /* The trunk has no leaves and the list is not being searched. 005624 ** So extract the trunk page itself and use it as the newly 005625 ** allocated page */ 005626 assert( pPrevTrunk==0 ); 005627 rc = sqlite3PagerWrite(pTrunk->pDbPage); 005628 if( rc ){ 005629 goto end_allocate_page; 005630 } 005631 *pPgno = iTrunk; 005632 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 005633 *ppPage = pTrunk; 005634 pTrunk = 0; 005635 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 005636 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 005637 /* Value of k is out of range. Database corruption */ 005638 rc = SQLITE_CORRUPT_BKPT; 005639 goto end_allocate_page; 005640 #ifndef SQLITE_OMIT_AUTOVACUUM 005641 }else if( searchList 005642 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 005643 ){ 005644 /* The list is being searched and this trunk page is the page 005645 ** to allocate, regardless of whether it has leaves. 005646 */ 005647 *pPgno = iTrunk; 005648 *ppPage = pTrunk; 005649 searchList = 0; 005650 rc = sqlite3PagerWrite(pTrunk->pDbPage); 005651 if( rc ){ 005652 goto end_allocate_page; 005653 } 005654 if( k==0 ){ 005655 if( !pPrevTrunk ){ 005656 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 005657 }else{ 005658 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 005659 if( rc!=SQLITE_OK ){ 005660 goto end_allocate_page; 005661 } 005662 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 005663 } 005664 }else{ 005665 /* The trunk page is required by the caller but it contains 005666 ** pointers to free-list leaves. The first leaf becomes a trunk 005667 ** page in this case. 005668 */ 005669 MemPage *pNewTrunk; 005670 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 005671 if( iNewTrunk>mxPage ){ 005672 rc = SQLITE_CORRUPT_BKPT; 005673 goto end_allocate_page; 005674 } 005675 testcase( iNewTrunk==mxPage ); 005676 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 005677 if( rc!=SQLITE_OK ){ 005678 goto end_allocate_page; 005679 } 005680 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 005681 if( rc!=SQLITE_OK ){ 005682 releasePage(pNewTrunk); 005683 goto end_allocate_page; 005684 } 005685 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 005686 put4byte(&pNewTrunk->aData[4], k-1); 005687 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 005688 releasePage(pNewTrunk); 005689 if( !pPrevTrunk ){ 005690 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 005691 put4byte(&pPage1->aData[32], iNewTrunk); 005692 }else{ 005693 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 005694 if( rc ){ 005695 goto end_allocate_page; 005696 } 005697 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 005698 } 005699 } 005700 pTrunk = 0; 005701 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 005702 #endif 005703 }else if( k>0 ){ 005704 /* Extract a leaf from the trunk */ 005705 u32 closest; 005706 Pgno iPage; 005707 unsigned char *aData = pTrunk->aData; 005708 if( nearby>0 ){ 005709 u32 i; 005710 closest = 0; 005711 if( eMode==BTALLOC_LE ){ 005712 for(i=0; i<k; i++){ 005713 iPage = get4byte(&aData[8+i*4]); 005714 if( iPage<=nearby ){ 005715 closest = i; 005716 break; 005717 } 005718 } 005719 }else{ 005720 int dist; 005721 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 005722 for(i=1; i<k; i++){ 005723 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 005724 if( d2<dist ){ 005725 closest = i; 005726 dist = d2; 005727 } 005728 } 005729 } 005730 }else{ 005731 closest = 0; 005732 } 005733 005734 iPage = get4byte(&aData[8+closest*4]); 005735 testcase( iPage==mxPage ); 005736 if( iPage>mxPage ){ 005737 rc = SQLITE_CORRUPT_BKPT; 005738 goto end_allocate_page; 005739 } 005740 testcase( iPage==mxPage ); 005741 if( !searchList 005742 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 005743 ){ 005744 int noContent; 005745 *pPgno = iPage; 005746 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 005747 ": %d more free pages\n", 005748 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 005749 rc = sqlite3PagerWrite(pTrunk->pDbPage); 005750 if( rc ) goto end_allocate_page; 005751 if( closest<k-1 ){ 005752 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 005753 } 005754 put4byte(&aData[4], k-1); 005755 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 005756 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 005757 if( rc==SQLITE_OK ){ 005758 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 005759 if( rc!=SQLITE_OK ){ 005760 releasePage(*ppPage); 005761 *ppPage = 0; 005762 } 005763 } 005764 searchList = 0; 005765 } 005766 } 005767 releasePage(pPrevTrunk); 005768 pPrevTrunk = 0; 005769 }while( searchList ); 005770 }else{ 005771 /* There are no pages on the freelist, so append a new page to the 005772 ** database image. 005773 ** 005774 ** Normally, new pages allocated by this block can be requested from the 005775 ** pager layer with the 'no-content' flag set. This prevents the pager 005776 ** from trying to read the pages content from disk. However, if the 005777 ** current transaction has already run one or more incremental-vacuum 005778 ** steps, then the page we are about to allocate may contain content 005779 ** that is required in the event of a rollback. In this case, do 005780 ** not set the no-content flag. This causes the pager to load and journal 005781 ** the current page content before overwriting it. 005782 ** 005783 ** Note that the pager will not actually attempt to load or journal 005784 ** content for any page that really does lie past the end of the database 005785 ** file on disk. So the effects of disabling the no-content optimization 005786 ** here are confined to those pages that lie between the end of the 005787 ** database image and the end of the database file. 005788 */ 005789 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 005790 005791 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 005792 if( rc ) return rc; 005793 pBt->nPage++; 005794 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 005795 005796 #ifndef SQLITE_OMIT_AUTOVACUUM 005797 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 005798 /* If *pPgno refers to a pointer-map page, allocate two new pages 005799 ** at the end of the file instead of one. The first allocated page 005800 ** becomes a new pointer-map page, the second is used by the caller. 005801 */ 005802 MemPage *pPg = 0; 005803 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 005804 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 005805 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 005806 if( rc==SQLITE_OK ){ 005807 rc = sqlite3PagerWrite(pPg->pDbPage); 005808 releasePage(pPg); 005809 } 005810 if( rc ) return rc; 005811 pBt->nPage++; 005812 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 005813 } 005814 #endif 005815 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 005816 *pPgno = pBt->nPage; 005817 005818 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 005819 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 005820 if( rc ) return rc; 005821 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 005822 if( rc!=SQLITE_OK ){ 005823 releasePage(*ppPage); 005824 *ppPage = 0; 005825 } 005826 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 005827 } 005828 005829 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 005830 005831 end_allocate_page: 005832 releasePage(pTrunk); 005833 releasePage(pPrevTrunk); 005834 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 005835 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 005836 return rc; 005837 } 005838 005839 /* 005840 ** This function is used to add page iPage to the database file free-list. 005841 ** It is assumed that the page is not already a part of the free-list. 005842 ** 005843 ** The value passed as the second argument to this function is optional. 005844 ** If the caller happens to have a pointer to the MemPage object 005845 ** corresponding to page iPage handy, it may pass it as the second value. 005846 ** Otherwise, it may pass NULL. 005847 ** 005848 ** If a pointer to a MemPage object is passed as the second argument, 005849 ** its reference count is not altered by this function. 005850 */ 005851 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 005852 MemPage *pTrunk = 0; /* Free-list trunk page */ 005853 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 005854 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 005855 MemPage *pPage; /* Page being freed. May be NULL. */ 005856 int rc; /* Return Code */ 005857 int nFree; /* Initial number of pages on free-list */ 005858 005859 assert( sqlite3_mutex_held(pBt->mutex) ); 005860 assert( CORRUPT_DB || iPage>1 ); 005861 assert( !pMemPage || pMemPage->pgno==iPage ); 005862 005863 if( iPage<2 ) return SQLITE_CORRUPT_BKPT; 005864 if( pMemPage ){ 005865 pPage = pMemPage; 005866 sqlite3PagerRef(pPage->pDbPage); 005867 }else{ 005868 pPage = btreePageLookup(pBt, iPage); 005869 } 005870 005871 /* Increment the free page count on pPage1 */ 005872 rc = sqlite3PagerWrite(pPage1->pDbPage); 005873 if( rc ) goto freepage_out; 005874 nFree = get4byte(&pPage1->aData[36]); 005875 put4byte(&pPage1->aData[36], nFree+1); 005876 005877 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 005878 /* If the secure_delete option is enabled, then 005879 ** always fully overwrite deleted information with zeros. 005880 */ 005881 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 005882 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 005883 ){ 005884 goto freepage_out; 005885 } 005886 memset(pPage->aData, 0, pPage->pBt->pageSize); 005887 } 005888 005889 /* If the database supports auto-vacuum, write an entry in the pointer-map 005890 ** to indicate that the page is free. 005891 */ 005892 if( ISAUTOVACUUM ){ 005893 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 005894 if( rc ) goto freepage_out; 005895 } 005896 005897 /* Now manipulate the actual database free-list structure. There are two 005898 ** possibilities. If the free-list is currently empty, or if the first 005899 ** trunk page in the free-list is full, then this page will become a 005900 ** new free-list trunk page. Otherwise, it will become a leaf of the 005901 ** first trunk page in the current free-list. This block tests if it 005902 ** is possible to add the page as a new free-list leaf. 005903 */ 005904 if( nFree!=0 ){ 005905 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 005906 005907 iTrunk = get4byte(&pPage1->aData[32]); 005908 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 005909 if( rc!=SQLITE_OK ){ 005910 goto freepage_out; 005911 } 005912 005913 nLeaf = get4byte(&pTrunk->aData[4]); 005914 assert( pBt->usableSize>32 ); 005915 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 005916 rc = SQLITE_CORRUPT_BKPT; 005917 goto freepage_out; 005918 } 005919 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 005920 /* In this case there is room on the trunk page to insert the page 005921 ** being freed as a new leaf. 005922 ** 005923 ** Note that the trunk page is not really full until it contains 005924 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 005925 ** coded. But due to a coding error in versions of SQLite prior to 005926 ** 3.6.0, databases with freelist trunk pages holding more than 005927 ** usableSize/4 - 8 entries will be reported as corrupt. In order 005928 ** to maintain backwards compatibility with older versions of SQLite, 005929 ** we will continue to restrict the number of entries to usableSize/4 - 8 005930 ** for now. At some point in the future (once everyone has upgraded 005931 ** to 3.6.0 or later) we should consider fixing the conditional above 005932 ** to read "usableSize/4-2" instead of "usableSize/4-8". 005933 ** 005934 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 005935 ** avoid using the last six entries in the freelist trunk page array in 005936 ** order that database files created by newer versions of SQLite can be 005937 ** read by older versions of SQLite. 005938 */ 005939 rc = sqlite3PagerWrite(pTrunk->pDbPage); 005940 if( rc==SQLITE_OK ){ 005941 put4byte(&pTrunk->aData[4], nLeaf+1); 005942 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 005943 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 005944 sqlite3PagerDontWrite(pPage->pDbPage); 005945 } 005946 rc = btreeSetHasContent(pBt, iPage); 005947 } 005948 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 005949 goto freepage_out; 005950 } 005951 } 005952 005953 /* If control flows to this point, then it was not possible to add the 005954 ** the page being freed as a leaf page of the first trunk in the free-list. 005955 ** Possibly because the free-list is empty, or possibly because the 005956 ** first trunk in the free-list is full. Either way, the page being freed 005957 ** will become the new first trunk page in the free-list. 005958 */ 005959 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 005960 goto freepage_out; 005961 } 005962 rc = sqlite3PagerWrite(pPage->pDbPage); 005963 if( rc!=SQLITE_OK ){ 005964 goto freepage_out; 005965 } 005966 put4byte(pPage->aData, iTrunk); 005967 put4byte(&pPage->aData[4], 0); 005968 put4byte(&pPage1->aData[32], iPage); 005969 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 005970 005971 freepage_out: 005972 if( pPage ){ 005973 pPage->isInit = 0; 005974 } 005975 releasePage(pPage); 005976 releasePage(pTrunk); 005977 return rc; 005978 } 005979 static void freePage(MemPage *pPage, int *pRC){ 005980 if( (*pRC)==SQLITE_OK ){ 005981 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 005982 } 005983 } 005984 005985 /* 005986 ** Free any overflow pages associated with the given Cell. Write the 005987 ** local Cell size (the number of bytes on the original page, omitting 005988 ** overflow) into *pnSize. 005989 */ 005990 static int clearCell( 005991 MemPage *pPage, /* The page that contains the Cell */ 005992 unsigned char *pCell, /* First byte of the Cell */ 005993 CellInfo *pInfo /* Size information about the cell */ 005994 ){ 005995 BtShared *pBt = pPage->pBt; 005996 Pgno ovflPgno; 005997 int rc; 005998 int nOvfl; 005999 u32 ovflPageSize; 006000 006001 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 006002 pPage->xParseCell(pPage, pCell, pInfo); 006003 if( pInfo->nLocal==pInfo->nPayload ){ 006004 return SQLITE_OK; /* No overflow pages. Return without doing anything */ 006005 } 006006 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){ 006007 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */ 006008 } 006009 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 006010 assert( pBt->usableSize > 4 ); 006011 ovflPageSize = pBt->usableSize - 4; 006012 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 006013 assert( nOvfl>0 || 006014 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 006015 ); 006016 while( nOvfl-- ){ 006017 Pgno iNext = 0; 006018 MemPage *pOvfl = 0; 006019 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 006020 /* 0 is not a legal page number and page 1 cannot be an 006021 ** overflow page. Therefore if ovflPgno<2 or past the end of the 006022 ** file the database must be corrupt. */ 006023 return SQLITE_CORRUPT_BKPT; 006024 } 006025 if( nOvfl ){ 006026 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 006027 if( rc ) return rc; 006028 } 006029 006030 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 006031 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 006032 ){ 006033 /* There is no reason any cursor should have an outstanding reference 006034 ** to an overflow page belonging to a cell that is being deleted/updated. 006035 ** So if there exists more than one reference to this page, then it 006036 ** must not really be an overflow page and the database must be corrupt. 006037 ** It is helpful to detect this before calling freePage2(), as 006038 ** freePage2() may zero the page contents if secure-delete mode is 006039 ** enabled. If this 'overflow' page happens to be a page that the 006040 ** caller is iterating through or using in some other way, this 006041 ** can be problematic. 006042 */ 006043 rc = SQLITE_CORRUPT_BKPT; 006044 }else{ 006045 rc = freePage2(pBt, pOvfl, ovflPgno); 006046 } 006047 006048 if( pOvfl ){ 006049 sqlite3PagerUnref(pOvfl->pDbPage); 006050 } 006051 if( rc ) return rc; 006052 ovflPgno = iNext; 006053 } 006054 return SQLITE_OK; 006055 } 006056 006057 /* 006058 ** Create the byte sequence used to represent a cell on page pPage 006059 ** and write that byte sequence into pCell[]. Overflow pages are 006060 ** allocated and filled in as necessary. The calling procedure 006061 ** is responsible for making sure sufficient space has been allocated 006062 ** for pCell[]. 006063 ** 006064 ** Note that pCell does not necessary need to point to the pPage->aData 006065 ** area. pCell might point to some temporary storage. The cell will 006066 ** be constructed in this temporary area then copied into pPage->aData 006067 ** later. 006068 */ 006069 static int fillInCell( 006070 MemPage *pPage, /* The page that contains the cell */ 006071 unsigned char *pCell, /* Complete text of the cell */ 006072 const BtreePayload *pX, /* Payload with which to construct the cell */ 006073 int *pnSize /* Write cell size here */ 006074 ){ 006075 int nPayload; 006076 const u8 *pSrc; 006077 int nSrc, n, rc; 006078 int spaceLeft; 006079 MemPage *pOvfl = 0; 006080 MemPage *pToRelease = 0; 006081 unsigned char *pPrior; 006082 unsigned char *pPayload; 006083 BtShared *pBt = pPage->pBt; 006084 Pgno pgnoOvfl = 0; 006085 int nHeader; 006086 006087 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 006088 006089 /* pPage is not necessarily writeable since pCell might be auxiliary 006090 ** buffer space that is separate from the pPage buffer area */ 006091 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize] 006092 || sqlite3PagerIswriteable(pPage->pDbPage) ); 006093 006094 /* Fill in the header. */ 006095 nHeader = pPage->childPtrSize; 006096 if( pPage->intKey ){ 006097 nPayload = pX->nData + pX->nZero; 006098 pSrc = pX->pData; 006099 nSrc = pX->nData; 006100 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 006101 nHeader += putVarint32(&pCell[nHeader], nPayload); 006102 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 006103 }else{ 006104 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 006105 nSrc = nPayload = (int)pX->nKey; 006106 pSrc = pX->pKey; 006107 nHeader += putVarint32(&pCell[nHeader], nPayload); 006108 } 006109 006110 /* Fill in the payload */ 006111 if( nPayload<=pPage->maxLocal ){ 006112 n = nHeader + nPayload; 006113 testcase( n==3 ); 006114 testcase( n==4 ); 006115 if( n<4 ) n = 4; 006116 *pnSize = n; 006117 spaceLeft = nPayload; 006118 pPrior = pCell; 006119 }else{ 006120 int mn = pPage->minLocal; 006121 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 006122 testcase( n==pPage->maxLocal ); 006123 testcase( n==pPage->maxLocal+1 ); 006124 if( n > pPage->maxLocal ) n = mn; 006125 spaceLeft = n; 006126 *pnSize = n + nHeader + 4; 006127 pPrior = &pCell[nHeader+n]; 006128 } 006129 pPayload = &pCell[nHeader]; 006130 006131 /* At this point variables should be set as follows: 006132 ** 006133 ** nPayload Total payload size in bytes 006134 ** pPayload Begin writing payload here 006135 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 006136 ** that means content must spill into overflow pages. 006137 ** *pnSize Size of the local cell (not counting overflow pages) 006138 ** pPrior Where to write the pgno of the first overflow page 006139 ** 006140 ** Use a call to btreeParseCellPtr() to verify that the values above 006141 ** were computed correctly. 006142 */ 006143 #if SQLITE_DEBUG 006144 { 006145 CellInfo info; 006146 pPage->xParseCell(pPage, pCell, &info); 006147 assert( nHeader==(int)(info.pPayload - pCell) ); 006148 assert( info.nKey==pX->nKey ); 006149 assert( *pnSize == info.nSize ); 006150 assert( spaceLeft == info.nLocal ); 006151 } 006152 #endif 006153 006154 /* Write the payload into the local Cell and any extra into overflow pages */ 006155 while( nPayload>0 ){ 006156 if( spaceLeft==0 ){ 006157 #ifndef SQLITE_OMIT_AUTOVACUUM 006158 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 006159 if( pBt->autoVacuum ){ 006160 do{ 006161 pgnoOvfl++; 006162 } while( 006163 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 006164 ); 006165 } 006166 #endif 006167 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 006168 #ifndef SQLITE_OMIT_AUTOVACUUM 006169 /* If the database supports auto-vacuum, and the second or subsequent 006170 ** overflow page is being allocated, add an entry to the pointer-map 006171 ** for that page now. 006172 ** 006173 ** If this is the first overflow page, then write a partial entry 006174 ** to the pointer-map. If we write nothing to this pointer-map slot, 006175 ** then the optimistic overflow chain processing in clearCell() 006176 ** may misinterpret the uninitialized values and delete the 006177 ** wrong pages from the database. 006178 */ 006179 if( pBt->autoVacuum && rc==SQLITE_OK ){ 006180 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 006181 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 006182 if( rc ){ 006183 releasePage(pOvfl); 006184 } 006185 } 006186 #endif 006187 if( rc ){ 006188 releasePage(pToRelease); 006189 return rc; 006190 } 006191 006192 /* If pToRelease is not zero than pPrior points into the data area 006193 ** of pToRelease. Make sure pToRelease is still writeable. */ 006194 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 006195 006196 /* If pPrior is part of the data area of pPage, then make sure pPage 006197 ** is still writeable */ 006198 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 006199 || sqlite3PagerIswriteable(pPage->pDbPage) ); 006200 006201 put4byte(pPrior, pgnoOvfl); 006202 releasePage(pToRelease); 006203 pToRelease = pOvfl; 006204 pPrior = pOvfl->aData; 006205 put4byte(pPrior, 0); 006206 pPayload = &pOvfl->aData[4]; 006207 spaceLeft = pBt->usableSize - 4; 006208 } 006209 n = nPayload; 006210 if( n>spaceLeft ) n = spaceLeft; 006211 006212 /* If pToRelease is not zero than pPayload points into the data area 006213 ** of pToRelease. Make sure pToRelease is still writeable. */ 006214 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 006215 006216 /* If pPayload is part of the data area of pPage, then make sure pPage 006217 ** is still writeable */ 006218 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 006219 || sqlite3PagerIswriteable(pPage->pDbPage) ); 006220 006221 if( nSrc>0 ){ 006222 if( n>nSrc ) n = nSrc; 006223 assert( pSrc ); 006224 memcpy(pPayload, pSrc, n); 006225 }else{ 006226 memset(pPayload, 0, n); 006227 } 006228 nPayload -= n; 006229 pPayload += n; 006230 pSrc += n; 006231 nSrc -= n; 006232 spaceLeft -= n; 006233 } 006234 releasePage(pToRelease); 006235 return SQLITE_OK; 006236 } 006237 006238 /* 006239 ** Remove the i-th cell from pPage. This routine effects pPage only. 006240 ** The cell content is not freed or deallocated. It is assumed that 006241 ** the cell content has been copied someplace else. This routine just 006242 ** removes the reference to the cell from pPage. 006243 ** 006244 ** "sz" must be the number of bytes in the cell. 006245 */ 006246 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 006247 u32 pc; /* Offset to cell content of cell being deleted */ 006248 u8 *data; /* pPage->aData */ 006249 u8 *ptr; /* Used to move bytes around within data[] */ 006250 int rc; /* The return code */ 006251 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 006252 006253 if( *pRC ) return; 006254 assert( idx>=0 && idx<pPage->nCell ); 006255 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 006256 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 006257 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 006258 data = pPage->aData; 006259 ptr = &pPage->aCellIdx[2*idx]; 006260 pc = get2byte(ptr); 006261 hdr = pPage->hdrOffset; 006262 testcase( pc==get2byte(&data[hdr+5]) ); 006263 testcase( pc+sz==pPage->pBt->usableSize ); 006264 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ 006265 *pRC = SQLITE_CORRUPT_BKPT; 006266 return; 006267 } 006268 rc = freeSpace(pPage, pc, sz); 006269 if( rc ){ 006270 *pRC = rc; 006271 return; 006272 } 006273 pPage->nCell--; 006274 if( pPage->nCell==0 ){ 006275 memset(&data[hdr+1], 0, 4); 006276 data[hdr+7] = 0; 006277 put2byte(&data[hdr+5], pPage->pBt->usableSize); 006278 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 006279 - pPage->childPtrSize - 8; 006280 }else{ 006281 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 006282 put2byte(&data[hdr+3], pPage->nCell); 006283 pPage->nFree += 2; 006284 } 006285 } 006286 006287 /* 006288 ** Insert a new cell on pPage at cell index "i". pCell points to the 006289 ** content of the cell. 006290 ** 006291 ** If the cell content will fit on the page, then put it there. If it 006292 ** will not fit, then make a copy of the cell content into pTemp if 006293 ** pTemp is not null. Regardless of pTemp, allocate a new entry 006294 ** in pPage->apOvfl[] and make it point to the cell content (either 006295 ** in pTemp or the original pCell) and also record its index. 006296 ** Allocating a new entry in pPage->aCell[] implies that 006297 ** pPage->nOverflow is incremented. 006298 ** 006299 ** *pRC must be SQLITE_OK when this routine is called. 006300 */ 006301 static void insertCell( 006302 MemPage *pPage, /* Page into which we are copying */ 006303 int i, /* New cell becomes the i-th cell of the page */ 006304 u8 *pCell, /* Content of the new cell */ 006305 int sz, /* Bytes of content in pCell */ 006306 u8 *pTemp, /* Temp storage space for pCell, if needed */ 006307 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 006308 int *pRC /* Read and write return code from here */ 006309 ){ 006310 int idx = 0; /* Where to write new cell content in data[] */ 006311 int j; /* Loop counter */ 006312 u8 *data; /* The content of the whole page */ 006313 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 006314 006315 assert( *pRC==SQLITE_OK ); 006316 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 006317 assert( MX_CELL(pPage->pBt)<=10921 ); 006318 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 006319 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 006320 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 006321 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 006322 /* The cell should normally be sized correctly. However, when moving a 006323 ** malformed cell from a leaf page to an interior page, if the cell size 006324 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size 006325 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence 006326 ** the term after the || in the following assert(). */ 006327 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) ); 006328 if( pPage->nOverflow || sz+2>pPage->nFree ){ 006329 if( pTemp ){ 006330 memcpy(pTemp, pCell, sz); 006331 pCell = pTemp; 006332 } 006333 if( iChild ){ 006334 put4byte(pCell, iChild); 006335 } 006336 j = pPage->nOverflow++; 006337 /* Comparison against ArraySize-1 since we hold back one extra slot 006338 ** as a contingency. In other words, never need more than 3 overflow 006339 ** slots but 4 are allocated, just to be safe. */ 006340 assert( j < ArraySize(pPage->apOvfl)-1 ); 006341 pPage->apOvfl[j] = pCell; 006342 pPage->aiOvfl[j] = (u16)i; 006343 006344 /* When multiple overflows occur, they are always sequential and in 006345 ** sorted order. This invariants arise because multiple overflows can 006346 ** only occur when inserting divider cells into the parent page during 006347 ** balancing, and the dividers are adjacent and sorted. 006348 */ 006349 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 006350 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 006351 }else{ 006352 int rc = sqlite3PagerWrite(pPage->pDbPage); 006353 if( rc!=SQLITE_OK ){ 006354 *pRC = rc; 006355 return; 006356 } 006357 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 006358 data = pPage->aData; 006359 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 006360 rc = allocateSpace(pPage, sz, &idx); 006361 if( rc ){ *pRC = rc; return; } 006362 /* The allocateSpace() routine guarantees the following properties 006363 ** if it returns successfully */ 006364 assert( idx >= 0 ); 006365 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 006366 assert( idx+sz <= (int)pPage->pBt->usableSize ); 006367 pPage->nFree -= (u16)(2 + sz); 006368 memcpy(&data[idx], pCell, sz); 006369 if( iChild ){ 006370 put4byte(&data[idx], iChild); 006371 } 006372 pIns = pPage->aCellIdx + i*2; 006373 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 006374 put2byte(pIns, idx); 006375 pPage->nCell++; 006376 /* increment the cell count */ 006377 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 006378 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell ); 006379 #ifndef SQLITE_OMIT_AUTOVACUUM 006380 if( pPage->pBt->autoVacuum ){ 006381 /* The cell may contain a pointer to an overflow page. If so, write 006382 ** the entry for the overflow page into the pointer map. 006383 */ 006384 ptrmapPutOvflPtr(pPage, pCell, pRC); 006385 } 006386 #endif 006387 } 006388 } 006389 006390 /* 006391 ** A CellArray object contains a cache of pointers and sizes for a 006392 ** consecutive sequence of cells that might be held on multiple pages. 006393 */ 006394 typedef struct CellArray CellArray; 006395 struct CellArray { 006396 int nCell; /* Number of cells in apCell[] */ 006397 MemPage *pRef; /* Reference page */ 006398 u8 **apCell; /* All cells begin balanced */ 006399 u16 *szCell; /* Local size of all cells in apCell[] */ 006400 }; 006401 006402 /* 006403 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 006404 ** computed. 006405 */ 006406 static void populateCellCache(CellArray *p, int idx, int N){ 006407 assert( idx>=0 && idx+N<=p->nCell ); 006408 while( N>0 ){ 006409 assert( p->apCell[idx]!=0 ); 006410 if( p->szCell[idx]==0 ){ 006411 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 006412 }else{ 006413 assert( CORRUPT_DB || 006414 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 006415 } 006416 idx++; 006417 N--; 006418 } 006419 } 006420 006421 /* 006422 ** Return the size of the Nth element of the cell array 006423 */ 006424 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 006425 assert( N>=0 && N<p->nCell ); 006426 assert( p->szCell[N]==0 ); 006427 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 006428 return p->szCell[N]; 006429 } 006430 static u16 cachedCellSize(CellArray *p, int N){ 006431 assert( N>=0 && N<p->nCell ); 006432 if( p->szCell[N] ) return p->szCell[N]; 006433 return computeCellSize(p, N); 006434 } 006435 006436 /* 006437 ** Array apCell[] contains pointers to nCell b-tree page cells. The 006438 ** szCell[] array contains the size in bytes of each cell. This function 006439 ** replaces the current contents of page pPg with the contents of the cell 006440 ** array. 006441 ** 006442 ** Some of the cells in apCell[] may currently be stored in pPg. This 006443 ** function works around problems caused by this by making a copy of any 006444 ** such cells before overwriting the page data. 006445 ** 006446 ** The MemPage.nFree field is invalidated by this function. It is the 006447 ** responsibility of the caller to set it correctly. 006448 */ 006449 static int rebuildPage( 006450 MemPage *pPg, /* Edit this page */ 006451 int nCell, /* Final number of cells on page */ 006452 u8 **apCell, /* Array of cells */ 006453 u16 *szCell /* Array of cell sizes */ 006454 ){ 006455 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 006456 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 006457 const int usableSize = pPg->pBt->usableSize; 006458 u8 * const pEnd = &aData[usableSize]; 006459 int i; 006460 u8 *pCellptr = pPg->aCellIdx; 006461 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 006462 u8 *pData; 006463 006464 i = get2byte(&aData[hdr+5]); 006465 memcpy(&pTmp[i], &aData[i], usableSize - i); 006466 006467 pData = pEnd; 006468 for(i=0; i<nCell; i++){ 006469 u8 *pCell = apCell[i]; 006470 if( SQLITE_WITHIN(pCell,aData,pEnd) ){ 006471 pCell = &pTmp[pCell - aData]; 006472 } 006473 pData -= szCell[i]; 006474 put2byte(pCellptr, (pData - aData)); 006475 pCellptr += 2; 006476 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 006477 memcpy(pData, pCell, szCell[i]); 006478 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 006479 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) ); 006480 } 006481 006482 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 006483 pPg->nCell = nCell; 006484 pPg->nOverflow = 0; 006485 006486 put2byte(&aData[hdr+1], 0); 006487 put2byte(&aData[hdr+3], pPg->nCell); 006488 put2byte(&aData[hdr+5], pData - aData); 006489 aData[hdr+7] = 0x00; 006490 return SQLITE_OK; 006491 } 006492 006493 /* 006494 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 006495 ** contains the size in bytes of each such cell. This function attempts to 006496 ** add the cells stored in the array to page pPg. If it cannot (because 006497 ** the page needs to be defragmented before the cells will fit), non-zero 006498 ** is returned. Otherwise, if the cells are added successfully, zero is 006499 ** returned. 006500 ** 006501 ** Argument pCellptr points to the first entry in the cell-pointer array 006502 ** (part of page pPg) to populate. After cell apCell[0] is written to the 006503 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 006504 ** cell in the array. It is the responsibility of the caller to ensure 006505 ** that it is safe to overwrite this part of the cell-pointer array. 006506 ** 006507 ** When this function is called, *ppData points to the start of the 006508 ** content area on page pPg. If the size of the content area is extended, 006509 ** *ppData is updated to point to the new start of the content area 006510 ** before returning. 006511 ** 006512 ** Finally, argument pBegin points to the byte immediately following the 006513 ** end of the space required by this page for the cell-pointer area (for 006514 ** all cells - not just those inserted by the current call). If the content 006515 ** area must be extended to before this point in order to accomodate all 006516 ** cells in apCell[], then the cells do not fit and non-zero is returned. 006517 */ 006518 static int pageInsertArray( 006519 MemPage *pPg, /* Page to add cells to */ 006520 u8 *pBegin, /* End of cell-pointer array */ 006521 u8 **ppData, /* IN/OUT: Page content -area pointer */ 006522 u8 *pCellptr, /* Pointer to cell-pointer area */ 006523 int iFirst, /* Index of first cell to add */ 006524 int nCell, /* Number of cells to add to pPg */ 006525 CellArray *pCArray /* Array of cells */ 006526 ){ 006527 int i; 006528 u8 *aData = pPg->aData; 006529 u8 *pData = *ppData; 006530 int iEnd = iFirst + nCell; 006531 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 006532 for(i=iFirst; i<iEnd; i++){ 006533 int sz, rc; 006534 u8 *pSlot; 006535 sz = cachedCellSize(pCArray, i); 006536 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 006537 if( (pData - pBegin)<sz ) return 1; 006538 pData -= sz; 006539 pSlot = pData; 006540 } 006541 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 006542 ** database. But they might for a corrupt database. Hence use memmove() 006543 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 006544 assert( (pSlot+sz)<=pCArray->apCell[i] 006545 || pSlot>=(pCArray->apCell[i]+sz) 006546 || CORRUPT_DB ); 006547 memmove(pSlot, pCArray->apCell[i], sz); 006548 put2byte(pCellptr, (pSlot - aData)); 006549 pCellptr += 2; 006550 } 006551 *ppData = pData; 006552 return 0; 006553 } 006554 006555 /* 006556 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 006557 ** contains the size in bytes of each such cell. This function adds the 006558 ** space associated with each cell in the array that is currently stored 006559 ** within the body of pPg to the pPg free-list. The cell-pointers and other 006560 ** fields of the page are not updated. 006561 ** 006562 ** This function returns the total number of cells added to the free-list. 006563 */ 006564 static int pageFreeArray( 006565 MemPage *pPg, /* Page to edit */ 006566 int iFirst, /* First cell to delete */ 006567 int nCell, /* Cells to delete */ 006568 CellArray *pCArray /* Array of cells */ 006569 ){ 006570 u8 * const aData = pPg->aData; 006571 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 006572 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 006573 int nRet = 0; 006574 int i; 006575 int iEnd = iFirst + nCell; 006576 u8 *pFree = 0; 006577 int szFree = 0; 006578 006579 for(i=iFirst; i<iEnd; i++){ 006580 u8 *pCell = pCArray->apCell[i]; 006581 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 006582 int sz; 006583 /* No need to use cachedCellSize() here. The sizes of all cells that 006584 ** are to be freed have already been computing while deciding which 006585 ** cells need freeing */ 006586 sz = pCArray->szCell[i]; assert( sz>0 ); 006587 if( pFree!=(pCell + sz) ){ 006588 if( pFree ){ 006589 assert( pFree>aData && (pFree - aData)<65536 ); 006590 freeSpace(pPg, (u16)(pFree - aData), szFree); 006591 } 006592 pFree = pCell; 006593 szFree = sz; 006594 if( pFree+sz>pEnd ) return 0; 006595 }else{ 006596 pFree = pCell; 006597 szFree += sz; 006598 } 006599 nRet++; 006600 } 006601 } 006602 if( pFree ){ 006603 assert( pFree>aData && (pFree - aData)<65536 ); 006604 freeSpace(pPg, (u16)(pFree - aData), szFree); 006605 } 006606 return nRet; 006607 } 006608 006609 /* 006610 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the 006611 ** pages being balanced. The current page, pPg, has pPg->nCell cells starting 006612 ** with apCell[iOld]. After balancing, this page should hold nNew cells 006613 ** starting at apCell[iNew]. 006614 ** 006615 ** This routine makes the necessary adjustments to pPg so that it contains 006616 ** the correct cells after being balanced. 006617 ** 006618 ** The pPg->nFree field is invalid when this function returns. It is the 006619 ** responsibility of the caller to set it correctly. 006620 */ 006621 static int editPage( 006622 MemPage *pPg, /* Edit this page */ 006623 int iOld, /* Index of first cell currently on page */ 006624 int iNew, /* Index of new first cell on page */ 006625 int nNew, /* Final number of cells on page */ 006626 CellArray *pCArray /* Array of cells and sizes */ 006627 ){ 006628 u8 * const aData = pPg->aData; 006629 const int hdr = pPg->hdrOffset; 006630 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 006631 int nCell = pPg->nCell; /* Cells stored on pPg */ 006632 u8 *pData; 006633 u8 *pCellptr; 006634 int i; 006635 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 006636 int iNewEnd = iNew + nNew; 006637 006638 #ifdef SQLITE_DEBUG 006639 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 006640 memcpy(pTmp, aData, pPg->pBt->usableSize); 006641 #endif 006642 006643 /* Remove cells from the start and end of the page */ 006644 if( iOld<iNew ){ 006645 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 006646 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 006647 nCell -= nShift; 006648 } 006649 if( iNewEnd < iOldEnd ){ 006650 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 006651 } 006652 006653 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 006654 if( pData<pBegin ) goto editpage_fail; 006655 006656 /* Add cells to the start of the page */ 006657 if( iNew<iOld ){ 006658 int nAdd = MIN(nNew,iOld-iNew); 006659 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 006660 pCellptr = pPg->aCellIdx; 006661 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 006662 if( pageInsertArray( 006663 pPg, pBegin, &pData, pCellptr, 006664 iNew, nAdd, pCArray 006665 ) ) goto editpage_fail; 006666 nCell += nAdd; 006667 } 006668 006669 /* Add any overflow cells */ 006670 for(i=0; i<pPg->nOverflow; i++){ 006671 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 006672 if( iCell>=0 && iCell<nNew ){ 006673 pCellptr = &pPg->aCellIdx[iCell * 2]; 006674 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 006675 nCell++; 006676 if( pageInsertArray( 006677 pPg, pBegin, &pData, pCellptr, 006678 iCell+iNew, 1, pCArray 006679 ) ) goto editpage_fail; 006680 } 006681 } 006682 006683 /* Append cells to the end of the page */ 006684 pCellptr = &pPg->aCellIdx[nCell*2]; 006685 if( pageInsertArray( 006686 pPg, pBegin, &pData, pCellptr, 006687 iNew+nCell, nNew-nCell, pCArray 006688 ) ) goto editpage_fail; 006689 006690 pPg->nCell = nNew; 006691 pPg->nOverflow = 0; 006692 006693 put2byte(&aData[hdr+3], pPg->nCell); 006694 put2byte(&aData[hdr+5], pData - aData); 006695 006696 #ifdef SQLITE_DEBUG 006697 for(i=0; i<nNew && !CORRUPT_DB; i++){ 006698 u8 *pCell = pCArray->apCell[i+iNew]; 006699 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 006700 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 006701 pCell = &pTmp[pCell - aData]; 006702 } 006703 assert( 0==memcmp(pCell, &aData[iOff], 006704 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 006705 } 006706 #endif 006707 006708 return SQLITE_OK; 006709 editpage_fail: 006710 /* Unable to edit this page. Rebuild it from scratch instead. */ 006711 populateCellCache(pCArray, iNew, nNew); 006712 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]); 006713 } 006714 006715 /* 006716 ** The following parameters determine how many adjacent pages get involved 006717 ** in a balancing operation. NN is the number of neighbors on either side 006718 ** of the page that participate in the balancing operation. NB is the 006719 ** total number of pages that participate, including the target page and 006720 ** NN neighbors on either side. 006721 ** 006722 ** The minimum value of NN is 1 (of course). Increasing NN above 1 006723 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 006724 ** in exchange for a larger degradation in INSERT and UPDATE performance. 006725 ** The value of NN appears to give the best results overall. 006726 */ 006727 #define NN 1 /* Number of neighbors on either side of pPage */ 006728 #define NB (NN*2+1) /* Total pages involved in the balance */ 006729 006730 006731 #ifndef SQLITE_OMIT_QUICKBALANCE 006732 /* 006733 ** This version of balance() handles the common special case where 006734 ** a new entry is being inserted on the extreme right-end of the 006735 ** tree, in other words, when the new entry will become the largest 006736 ** entry in the tree. 006737 ** 006738 ** Instead of trying to balance the 3 right-most leaf pages, just add 006739 ** a new page to the right-hand side and put the one new entry in 006740 ** that page. This leaves the right side of the tree somewhat 006741 ** unbalanced. But odds are that we will be inserting new entries 006742 ** at the end soon afterwards so the nearly empty page will quickly 006743 ** fill up. On average. 006744 ** 006745 ** pPage is the leaf page which is the right-most page in the tree. 006746 ** pParent is its parent. pPage must have a single overflow entry 006747 ** which is also the right-most entry on the page. 006748 ** 006749 ** The pSpace buffer is used to store a temporary copy of the divider 006750 ** cell that will be inserted into pParent. Such a cell consists of a 4 006751 ** byte page number followed by a variable length integer. In other 006752 ** words, at most 13 bytes. Hence the pSpace buffer must be at 006753 ** least 13 bytes in size. 006754 */ 006755 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 006756 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 006757 MemPage *pNew; /* Newly allocated page */ 006758 int rc; /* Return Code */ 006759 Pgno pgnoNew; /* Page number of pNew */ 006760 006761 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 006762 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 006763 assert( pPage->nOverflow==1 ); 006764 006765 /* This error condition is now caught prior to reaching this function */ 006766 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT; 006767 006768 /* Allocate a new page. This page will become the right-sibling of 006769 ** pPage. Make the parent page writable, so that the new divider cell 006770 ** may be inserted. If both these operations are successful, proceed. 006771 */ 006772 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 006773 006774 if( rc==SQLITE_OK ){ 006775 006776 u8 *pOut = &pSpace[4]; 006777 u8 *pCell = pPage->apOvfl[0]; 006778 u16 szCell = pPage->xCellSize(pPage, pCell); 006779 u8 *pStop; 006780 006781 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 006782 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 006783 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 006784 rc = rebuildPage(pNew, 1, &pCell, &szCell); 006785 if( NEVER(rc) ) return rc; 006786 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 006787 006788 /* If this is an auto-vacuum database, update the pointer map 006789 ** with entries for the new page, and any pointer from the 006790 ** cell on the page to an overflow page. If either of these 006791 ** operations fails, the return code is set, but the contents 006792 ** of the parent page are still manipulated by thh code below. 006793 ** That is Ok, at this point the parent page is guaranteed to 006794 ** be marked as dirty. Returning an error code will cause a 006795 ** rollback, undoing any changes made to the parent page. 006796 */ 006797 if( ISAUTOVACUUM ){ 006798 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 006799 if( szCell>pNew->minLocal ){ 006800 ptrmapPutOvflPtr(pNew, pCell, &rc); 006801 } 006802 } 006803 006804 /* Create a divider cell to insert into pParent. The divider cell 006805 ** consists of a 4-byte page number (the page number of pPage) and 006806 ** a variable length key value (which must be the same value as the 006807 ** largest key on pPage). 006808 ** 006809 ** To find the largest key value on pPage, first find the right-most 006810 ** cell on pPage. The first two fields of this cell are the 006811 ** record-length (a variable length integer at most 32-bits in size) 006812 ** and the key value (a variable length integer, may have any value). 006813 ** The first of the while(...) loops below skips over the record-length 006814 ** field. The second while(...) loop copies the key value from the 006815 ** cell on pPage into the pSpace buffer. 006816 */ 006817 pCell = findCell(pPage, pPage->nCell-1); 006818 pStop = &pCell[9]; 006819 while( (*(pCell++)&0x80) && pCell<pStop ); 006820 pStop = &pCell[9]; 006821 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 006822 006823 /* Insert the new divider cell into pParent. */ 006824 if( rc==SQLITE_OK ){ 006825 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 006826 0, pPage->pgno, &rc); 006827 } 006828 006829 /* Set the right-child pointer of pParent to point to the new page. */ 006830 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 006831 006832 /* Release the reference to the new page. */ 006833 releasePage(pNew); 006834 } 006835 006836 return rc; 006837 } 006838 #endif /* SQLITE_OMIT_QUICKBALANCE */ 006839 006840 #if 0 006841 /* 006842 ** This function does not contribute anything to the operation of SQLite. 006843 ** it is sometimes activated temporarily while debugging code responsible 006844 ** for setting pointer-map entries. 006845 */ 006846 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 006847 int i, j; 006848 for(i=0; i<nPage; i++){ 006849 Pgno n; 006850 u8 e; 006851 MemPage *pPage = apPage[i]; 006852 BtShared *pBt = pPage->pBt; 006853 assert( pPage->isInit ); 006854 006855 for(j=0; j<pPage->nCell; j++){ 006856 CellInfo info; 006857 u8 *z; 006858 006859 z = findCell(pPage, j); 006860 pPage->xParseCell(pPage, z, &info); 006861 if( info.nLocal<info.nPayload ){ 006862 Pgno ovfl = get4byte(&z[info.nSize-4]); 006863 ptrmapGet(pBt, ovfl, &e, &n); 006864 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 006865 } 006866 if( !pPage->leaf ){ 006867 Pgno child = get4byte(z); 006868 ptrmapGet(pBt, child, &e, &n); 006869 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 006870 } 006871 } 006872 if( !pPage->leaf ){ 006873 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 006874 ptrmapGet(pBt, child, &e, &n); 006875 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 006876 } 006877 } 006878 return 1; 006879 } 006880 #endif 006881 006882 /* 006883 ** This function is used to copy the contents of the b-tree node stored 006884 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 006885 ** the pointer-map entries for each child page are updated so that the 006886 ** parent page stored in the pointer map is page pTo. If pFrom contained 006887 ** any cells with overflow page pointers, then the corresponding pointer 006888 ** map entries are also updated so that the parent page is page pTo. 006889 ** 006890 ** If pFrom is currently carrying any overflow cells (entries in the 006891 ** MemPage.apOvfl[] array), they are not copied to pTo. 006892 ** 006893 ** Before returning, page pTo is reinitialized using btreeInitPage(). 006894 ** 006895 ** The performance of this function is not critical. It is only used by 006896 ** the balance_shallower() and balance_deeper() procedures, neither of 006897 ** which are called often under normal circumstances. 006898 */ 006899 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 006900 if( (*pRC)==SQLITE_OK ){ 006901 BtShared * const pBt = pFrom->pBt; 006902 u8 * const aFrom = pFrom->aData; 006903 u8 * const aTo = pTo->aData; 006904 int const iFromHdr = pFrom->hdrOffset; 006905 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 006906 int rc; 006907 int iData; 006908 006909 006910 assert( pFrom->isInit ); 006911 assert( pFrom->nFree>=iToHdr ); 006912 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 006913 006914 /* Copy the b-tree node content from page pFrom to page pTo. */ 006915 iData = get2byte(&aFrom[iFromHdr+5]); 006916 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 006917 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 006918 006919 /* Reinitialize page pTo so that the contents of the MemPage structure 006920 ** match the new data. The initialization of pTo can actually fail under 006921 ** fairly obscure circumstances, even though it is a copy of initialized 006922 ** page pFrom. 006923 */ 006924 pTo->isInit = 0; 006925 rc = btreeInitPage(pTo); 006926 if( rc!=SQLITE_OK ){ 006927 *pRC = rc; 006928 return; 006929 } 006930 006931 /* If this is an auto-vacuum database, update the pointer-map entries 006932 ** for any b-tree or overflow pages that pTo now contains the pointers to. 006933 */ 006934 if( ISAUTOVACUUM ){ 006935 *pRC = setChildPtrmaps(pTo); 006936 } 006937 } 006938 } 006939 006940 /* 006941 ** This routine redistributes cells on the iParentIdx'th child of pParent 006942 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 006943 ** same amount of free space. Usually a single sibling on either side of the 006944 ** page are used in the balancing, though both siblings might come from one 006945 ** side if the page is the first or last child of its parent. If the page 006946 ** has fewer than 2 siblings (something which can only happen if the page 006947 ** is a root page or a child of a root page) then all available siblings 006948 ** participate in the balancing. 006949 ** 006950 ** The number of siblings of the page might be increased or decreased by 006951 ** one or two in an effort to keep pages nearly full but not over full. 006952 ** 006953 ** Note that when this routine is called, some of the cells on the page 006954 ** might not actually be stored in MemPage.aData[]. This can happen 006955 ** if the page is overfull. This routine ensures that all cells allocated 006956 ** to the page and its siblings fit into MemPage.aData[] before returning. 006957 ** 006958 ** In the course of balancing the page and its siblings, cells may be 006959 ** inserted into or removed from the parent page (pParent). Doing so 006960 ** may cause the parent page to become overfull or underfull. If this 006961 ** happens, it is the responsibility of the caller to invoke the correct 006962 ** balancing routine to fix this problem (see the balance() routine). 006963 ** 006964 ** If this routine fails for any reason, it might leave the database 006965 ** in a corrupted state. So if this routine fails, the database should 006966 ** be rolled back. 006967 ** 006968 ** The third argument to this function, aOvflSpace, is a pointer to a 006969 ** buffer big enough to hold one page. If while inserting cells into the parent 006970 ** page (pParent) the parent page becomes overfull, this buffer is 006971 ** used to store the parent's overflow cells. Because this function inserts 006972 ** a maximum of four divider cells into the parent page, and the maximum 006973 ** size of a cell stored within an internal node is always less than 1/4 006974 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 006975 ** enough for all overflow cells. 006976 ** 006977 ** If aOvflSpace is set to a null pointer, this function returns 006978 ** SQLITE_NOMEM. 006979 */ 006980 static int balance_nonroot( 006981 MemPage *pParent, /* Parent page of siblings being balanced */ 006982 int iParentIdx, /* Index of "the page" in pParent */ 006983 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 006984 int isRoot, /* True if pParent is a root-page */ 006985 int bBulk /* True if this call is part of a bulk load */ 006986 ){ 006987 BtShared *pBt; /* The whole database */ 006988 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 006989 int nNew = 0; /* Number of pages in apNew[] */ 006990 int nOld; /* Number of pages in apOld[] */ 006991 int i, j, k; /* Loop counters */ 006992 int nxDiv; /* Next divider slot in pParent->aCell[] */ 006993 int rc = SQLITE_OK; /* The return code */ 006994 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 006995 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 006996 int usableSpace; /* Bytes in pPage beyond the header */ 006997 int pageFlags; /* Value of pPage->aData[0] */ 006998 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 006999 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 007000 int szScratch; /* Size of scratch memory requested */ 007001 MemPage *apOld[NB]; /* pPage and up to two siblings */ 007002 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 007003 u8 *pRight; /* Location in parent of right-sibling pointer */ 007004 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 007005 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 007006 int cntOld[NB+2]; /* Old index in b.apCell[] */ 007007 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 007008 u8 *aSpace1; /* Space for copies of dividers cells */ 007009 Pgno pgno; /* Temp var to store a page number in */ 007010 u8 abDone[NB+2]; /* True after i'th new page is populated */ 007011 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 007012 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 007013 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 007014 CellArray b; /* Parsed information on cells being balanced */ 007015 007016 memset(abDone, 0, sizeof(abDone)); 007017 b.nCell = 0; 007018 b.apCell = 0; 007019 pBt = pParent->pBt; 007020 assert( sqlite3_mutex_held(pBt->mutex) ); 007021 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 007022 007023 #if 0 007024 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); 007025 #endif 007026 007027 /* At this point pParent may have at most one overflow cell. And if 007028 ** this overflow cell is present, it must be the cell with 007029 ** index iParentIdx. This scenario comes about when this function 007030 ** is called (indirectly) from sqlite3BtreeDelete(). 007031 */ 007032 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 007033 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 007034 007035 if( !aOvflSpace ){ 007036 return SQLITE_NOMEM_BKPT; 007037 } 007038 007039 /* Find the sibling pages to balance. Also locate the cells in pParent 007040 ** that divide the siblings. An attempt is made to find NN siblings on 007041 ** either side of pPage. More siblings are taken from one side, however, 007042 ** if there are fewer than NN siblings on the other side. If pParent 007043 ** has NB or fewer children then all children of pParent are taken. 007044 ** 007045 ** This loop also drops the divider cells from the parent page. This 007046 ** way, the remainder of the function does not have to deal with any 007047 ** overflow cells in the parent page, since if any existed they will 007048 ** have already been removed. 007049 */ 007050 i = pParent->nOverflow + pParent->nCell; 007051 if( i<2 ){ 007052 nxDiv = 0; 007053 }else{ 007054 assert( bBulk==0 || bBulk==1 ); 007055 if( iParentIdx==0 ){ 007056 nxDiv = 0; 007057 }else if( iParentIdx==i ){ 007058 nxDiv = i-2+bBulk; 007059 }else{ 007060 nxDiv = iParentIdx-1; 007061 } 007062 i = 2-bBulk; 007063 } 007064 nOld = i+1; 007065 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 007066 pRight = &pParent->aData[pParent->hdrOffset+8]; 007067 }else{ 007068 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 007069 } 007070 pgno = get4byte(pRight); 007071 while( 1 ){ 007072 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 007073 if( rc ){ 007074 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 007075 goto balance_cleanup; 007076 } 007077 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; 007078 if( (i--)==0 ) break; 007079 007080 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 007081 apDiv[i] = pParent->apOvfl[0]; 007082 pgno = get4byte(apDiv[i]); 007083 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 007084 pParent->nOverflow = 0; 007085 }else{ 007086 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 007087 pgno = get4byte(apDiv[i]); 007088 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 007089 007090 /* Drop the cell from the parent page. apDiv[i] still points to 007091 ** the cell within the parent, even though it has been dropped. 007092 ** This is safe because dropping a cell only overwrites the first 007093 ** four bytes of it, and this function does not need the first 007094 ** four bytes of the divider cell. So the pointer is safe to use 007095 ** later on. 007096 ** 007097 ** But not if we are in secure-delete mode. In secure-delete mode, 007098 ** the dropCell() routine will overwrite the entire cell with zeroes. 007099 ** In this case, temporarily copy the cell into the aOvflSpace[] 007100 ** buffer. It will be copied out again as soon as the aSpace[] buffer 007101 ** is allocated. */ 007102 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 007103 int iOff; 007104 007105 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 007106 if( (iOff+szNew[i])>(int)pBt->usableSize ){ 007107 rc = SQLITE_CORRUPT_BKPT; 007108 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 007109 goto balance_cleanup; 007110 }else{ 007111 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 007112 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 007113 } 007114 } 007115 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 007116 } 007117 } 007118 007119 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 007120 ** alignment */ 007121 nMaxCells = (nMaxCells + 3)&~3; 007122 007123 /* 007124 ** Allocate space for memory structures 007125 */ 007126 szScratch = 007127 nMaxCells*sizeof(u8*) /* b.apCell */ 007128 + nMaxCells*sizeof(u16) /* b.szCell */ 007129 + pBt->pageSize; /* aSpace1 */ 007130 007131 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer 007132 ** that is more than 6 times the database page size. */ 007133 assert( szScratch<=6*(int)pBt->pageSize ); 007134 b.apCell = sqlite3ScratchMalloc( szScratch ); 007135 if( b.apCell==0 ){ 007136 rc = SQLITE_NOMEM_BKPT; 007137 goto balance_cleanup; 007138 } 007139 b.szCell = (u16*)&b.apCell[nMaxCells]; 007140 aSpace1 = (u8*)&b.szCell[nMaxCells]; 007141 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 007142 007143 /* 007144 ** Load pointers to all cells on sibling pages and the divider cells 007145 ** into the local b.apCell[] array. Make copies of the divider cells 007146 ** into space obtained from aSpace1[]. The divider cells have already 007147 ** been removed from pParent. 007148 ** 007149 ** If the siblings are on leaf pages, then the child pointers of the 007150 ** divider cells are stripped from the cells before they are copied 007151 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 007152 ** child pointers. If siblings are not leaves, then all cell in 007153 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 007154 ** are alike. 007155 ** 007156 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 007157 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 007158 */ 007159 b.pRef = apOld[0]; 007160 leafCorrection = b.pRef->leaf*4; 007161 leafData = b.pRef->intKeyLeaf; 007162 for(i=0; i<nOld; i++){ 007163 MemPage *pOld = apOld[i]; 007164 int limit = pOld->nCell; 007165 u8 *aData = pOld->aData; 007166 u16 maskPage = pOld->maskPage; 007167 u8 *piCell = aData + pOld->cellOffset; 007168 u8 *piEnd; 007169 007170 /* Verify that all sibling pages are of the same "type" (table-leaf, 007171 ** table-interior, index-leaf, or index-interior). 007172 */ 007173 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 007174 rc = SQLITE_CORRUPT_BKPT; 007175 goto balance_cleanup; 007176 } 007177 007178 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 007179 ** constains overflow cells, include them in the b.apCell[] array 007180 ** in the correct spot. 007181 ** 007182 ** Note that when there are multiple overflow cells, it is always the 007183 ** case that they are sequential and adjacent. This invariant arises 007184 ** because multiple overflows can only occurs when inserting divider 007185 ** cells into a parent on a prior balance, and divider cells are always 007186 ** adjacent and are inserted in order. There is an assert() tagged 007187 ** with "NOTE 1" in the overflow cell insertion loop to prove this 007188 ** invariant. 007189 ** 007190 ** This must be done in advance. Once the balance starts, the cell 007191 ** offset section of the btree page will be overwritten and we will no 007192 ** long be able to find the cells if a pointer to each cell is not saved 007193 ** first. 007194 */ 007195 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 007196 if( pOld->nOverflow>0 ){ 007197 limit = pOld->aiOvfl[0]; 007198 for(j=0; j<limit; j++){ 007199 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 007200 piCell += 2; 007201 b.nCell++; 007202 } 007203 for(k=0; k<pOld->nOverflow; k++){ 007204 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 007205 b.apCell[b.nCell] = pOld->apOvfl[k]; 007206 b.nCell++; 007207 } 007208 } 007209 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 007210 while( piCell<piEnd ){ 007211 assert( b.nCell<nMaxCells ); 007212 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 007213 piCell += 2; 007214 b.nCell++; 007215 } 007216 007217 cntOld[i] = b.nCell; 007218 if( i<nOld-1 && !leafData){ 007219 u16 sz = (u16)szNew[i]; 007220 u8 *pTemp; 007221 assert( b.nCell<nMaxCells ); 007222 b.szCell[b.nCell] = sz; 007223 pTemp = &aSpace1[iSpace1]; 007224 iSpace1 += sz; 007225 assert( sz<=pBt->maxLocal+23 ); 007226 assert( iSpace1 <= (int)pBt->pageSize ); 007227 memcpy(pTemp, apDiv[i], sz); 007228 b.apCell[b.nCell] = pTemp+leafCorrection; 007229 assert( leafCorrection==0 || leafCorrection==4 ); 007230 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 007231 if( !pOld->leaf ){ 007232 assert( leafCorrection==0 ); 007233 assert( pOld->hdrOffset==0 ); 007234 /* The right pointer of the child page pOld becomes the left 007235 ** pointer of the divider cell */ 007236 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 007237 }else{ 007238 assert( leafCorrection==4 ); 007239 while( b.szCell[b.nCell]<4 ){ 007240 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 007241 ** does exist, pad it with 0x00 bytes. */ 007242 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 007243 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 007244 aSpace1[iSpace1++] = 0x00; 007245 b.szCell[b.nCell]++; 007246 } 007247 } 007248 b.nCell++; 007249 } 007250 } 007251 007252 /* 007253 ** Figure out the number of pages needed to hold all b.nCell cells. 007254 ** Store this number in "k". Also compute szNew[] which is the total 007255 ** size of all cells on the i-th page and cntNew[] which is the index 007256 ** in b.apCell[] of the cell that divides page i from page i+1. 007257 ** cntNew[k] should equal b.nCell. 007258 ** 007259 ** Values computed by this block: 007260 ** 007261 ** k: The total number of sibling pages 007262 ** szNew[i]: Spaced used on the i-th sibling page. 007263 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 007264 ** the right of the i-th sibling page. 007265 ** usableSpace: Number of bytes of space available on each sibling. 007266 ** 007267 */ 007268 usableSpace = pBt->usableSize - 12 + leafCorrection; 007269 for(i=0; i<nOld; i++){ 007270 MemPage *p = apOld[i]; 007271 szNew[i] = usableSpace - p->nFree; 007272 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 007273 for(j=0; j<p->nOverflow; j++){ 007274 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 007275 } 007276 cntNew[i] = cntOld[i]; 007277 } 007278 k = nOld; 007279 for(i=0; i<k; i++){ 007280 int sz; 007281 while( szNew[i]>usableSpace ){ 007282 if( i+1>=k ){ 007283 k = i+2; 007284 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 007285 szNew[k-1] = 0; 007286 cntNew[k-1] = b.nCell; 007287 } 007288 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 007289 szNew[i] -= sz; 007290 if( !leafData ){ 007291 if( cntNew[i]<b.nCell ){ 007292 sz = 2 + cachedCellSize(&b, cntNew[i]); 007293 }else{ 007294 sz = 0; 007295 } 007296 } 007297 szNew[i+1] += sz; 007298 cntNew[i]--; 007299 } 007300 while( cntNew[i]<b.nCell ){ 007301 sz = 2 + cachedCellSize(&b, cntNew[i]); 007302 if( szNew[i]+sz>usableSpace ) break; 007303 szNew[i] += sz; 007304 cntNew[i]++; 007305 if( !leafData ){ 007306 if( cntNew[i]<b.nCell ){ 007307 sz = 2 + cachedCellSize(&b, cntNew[i]); 007308 }else{ 007309 sz = 0; 007310 } 007311 } 007312 szNew[i+1] -= sz; 007313 } 007314 if( cntNew[i]>=b.nCell ){ 007315 k = i+1; 007316 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 007317 rc = SQLITE_CORRUPT_BKPT; 007318 goto balance_cleanup; 007319 } 007320 } 007321 007322 /* 007323 ** The packing computed by the previous block is biased toward the siblings 007324 ** on the left side (siblings with smaller keys). The left siblings are 007325 ** always nearly full, while the right-most sibling might be nearly empty. 007326 ** The next block of code attempts to adjust the packing of siblings to 007327 ** get a better balance. 007328 ** 007329 ** This adjustment is more than an optimization. The packing above might 007330 ** be so out of balance as to be illegal. For example, the right-most 007331 ** sibling might be completely empty. This adjustment is not optional. 007332 */ 007333 for(i=k-1; i>0; i--){ 007334 int szRight = szNew[i]; /* Size of sibling on the right */ 007335 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 007336 int r; /* Index of right-most cell in left sibling */ 007337 int d; /* Index of first cell to the left of right sibling */ 007338 007339 r = cntNew[i-1] - 1; 007340 d = r + 1 - leafData; 007341 (void)cachedCellSize(&b, d); 007342 do{ 007343 assert( d<nMaxCells ); 007344 assert( r<nMaxCells ); 007345 (void)cachedCellSize(&b, r); 007346 if( szRight!=0 007347 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 007348 break; 007349 } 007350 szRight += b.szCell[d] + 2; 007351 szLeft -= b.szCell[r] + 2; 007352 cntNew[i-1] = r; 007353 r--; 007354 d--; 007355 }while( r>=0 ); 007356 szNew[i] = szRight; 007357 szNew[i-1] = szLeft; 007358 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 007359 rc = SQLITE_CORRUPT_BKPT; 007360 goto balance_cleanup; 007361 } 007362 } 007363 007364 /* Sanity check: For a non-corrupt database file one of the follwing 007365 ** must be true: 007366 ** (1) We found one or more cells (cntNew[0])>0), or 007367 ** (2) pPage is a virtual root page. A virtual root page is when 007368 ** the real root page is page 1 and we are the only child of 007369 ** that page. 007370 */ 007371 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 007372 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 007373 apOld[0]->pgno, apOld[0]->nCell, 007374 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 007375 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 007376 )); 007377 007378 /* 007379 ** Allocate k new pages. Reuse old pages where possible. 007380 */ 007381 pageFlags = apOld[0]->aData[0]; 007382 for(i=0; i<k; i++){ 007383 MemPage *pNew; 007384 if( i<nOld ){ 007385 pNew = apNew[i] = apOld[i]; 007386 apOld[i] = 0; 007387 rc = sqlite3PagerWrite(pNew->pDbPage); 007388 nNew++; 007389 if( rc ) goto balance_cleanup; 007390 }else{ 007391 assert( i>0 ); 007392 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 007393 if( rc ) goto balance_cleanup; 007394 zeroPage(pNew, pageFlags); 007395 apNew[i] = pNew; 007396 nNew++; 007397 cntOld[i] = b.nCell; 007398 007399 /* Set the pointer-map entry for the new sibling page. */ 007400 if( ISAUTOVACUUM ){ 007401 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 007402 if( rc!=SQLITE_OK ){ 007403 goto balance_cleanup; 007404 } 007405 } 007406 } 007407 } 007408 007409 /* 007410 ** Reassign page numbers so that the new pages are in ascending order. 007411 ** This helps to keep entries in the disk file in order so that a scan 007412 ** of the table is closer to a linear scan through the file. That in turn 007413 ** helps the operating system to deliver pages from the disk more rapidly. 007414 ** 007415 ** An O(n^2) insertion sort algorithm is used, but since n is never more 007416 ** than (NB+2) (a small constant), that should not be a problem. 007417 ** 007418 ** When NB==3, this one optimization makes the database about 25% faster 007419 ** for large insertions and deletions. 007420 */ 007421 for(i=0; i<nNew; i++){ 007422 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 007423 aPgFlags[i] = apNew[i]->pDbPage->flags; 007424 for(j=0; j<i; j++){ 007425 if( aPgno[j]==aPgno[i] ){ 007426 /* This branch is taken if the set of sibling pages somehow contains 007427 ** duplicate entries. This can happen if the database is corrupt. 007428 ** It would be simpler to detect this as part of the loop below, but 007429 ** we do the detection here in order to avoid populating the pager 007430 ** cache with two separate objects associated with the same 007431 ** page number. */ 007432 assert( CORRUPT_DB ); 007433 rc = SQLITE_CORRUPT_BKPT; 007434 goto balance_cleanup; 007435 } 007436 } 007437 } 007438 for(i=0; i<nNew; i++){ 007439 int iBest = 0; /* aPgno[] index of page number to use */ 007440 for(j=1; j<nNew; j++){ 007441 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 007442 } 007443 pgno = aPgOrder[iBest]; 007444 aPgOrder[iBest] = 0xffffffff; 007445 if( iBest!=i ){ 007446 if( iBest>i ){ 007447 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 007448 } 007449 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 007450 apNew[i]->pgno = pgno; 007451 } 007452 } 007453 007454 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 007455 "%d(%d nc=%d) %d(%d nc=%d)\n", 007456 apNew[0]->pgno, szNew[0], cntNew[0], 007457 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 007458 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 007459 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 007460 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 007461 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 007462 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 007463 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 007464 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 007465 )); 007466 007467 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 007468 put4byte(pRight, apNew[nNew-1]->pgno); 007469 007470 /* If the sibling pages are not leaves, ensure that the right-child pointer 007471 ** of the right-most new sibling page is set to the value that was 007472 ** originally in the same field of the right-most old sibling page. */ 007473 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 007474 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 007475 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 007476 } 007477 007478 /* Make any required updates to pointer map entries associated with 007479 ** cells stored on sibling pages following the balance operation. Pointer 007480 ** map entries associated with divider cells are set by the insertCell() 007481 ** routine. The associated pointer map entries are: 007482 ** 007483 ** a) if the cell contains a reference to an overflow chain, the 007484 ** entry associated with the first page in the overflow chain, and 007485 ** 007486 ** b) if the sibling pages are not leaves, the child page associated 007487 ** with the cell. 007488 ** 007489 ** If the sibling pages are not leaves, then the pointer map entry 007490 ** associated with the right-child of each sibling may also need to be 007491 ** updated. This happens below, after the sibling pages have been 007492 ** populated, not here. 007493 */ 007494 if( ISAUTOVACUUM ){ 007495 MemPage *pNew = apNew[0]; 007496 u8 *aOld = pNew->aData; 007497 int cntOldNext = pNew->nCell + pNew->nOverflow; 007498 int usableSize = pBt->usableSize; 007499 int iNew = 0; 007500 int iOld = 0; 007501 007502 for(i=0; i<b.nCell; i++){ 007503 u8 *pCell = b.apCell[i]; 007504 if( i==cntOldNext ){ 007505 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld]; 007506 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 007507 aOld = pOld->aData; 007508 } 007509 if( i==cntNew[iNew] ){ 007510 pNew = apNew[++iNew]; 007511 if( !leafData ) continue; 007512 } 007513 007514 /* Cell pCell is destined for new sibling page pNew. Originally, it 007515 ** was either part of sibling page iOld (possibly an overflow cell), 007516 ** or else the divider cell to the left of sibling page iOld. So, 007517 ** if sibling page iOld had the same page number as pNew, and if 007518 ** pCell really was a part of sibling page iOld (not a divider or 007519 ** overflow cell), we can skip updating the pointer map entries. */ 007520 if( iOld>=nNew 007521 || pNew->pgno!=aPgno[iOld] 007522 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize]) 007523 ){ 007524 if( !leafCorrection ){ 007525 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 007526 } 007527 if( cachedCellSize(&b,i)>pNew->minLocal ){ 007528 ptrmapPutOvflPtr(pNew, pCell, &rc); 007529 } 007530 if( rc ) goto balance_cleanup; 007531 } 007532 } 007533 } 007534 007535 /* Insert new divider cells into pParent. */ 007536 for(i=0; i<nNew-1; i++){ 007537 u8 *pCell; 007538 u8 *pTemp; 007539 int sz; 007540 MemPage *pNew = apNew[i]; 007541 j = cntNew[i]; 007542 007543 assert( j<nMaxCells ); 007544 assert( b.apCell[j]!=0 ); 007545 pCell = b.apCell[j]; 007546 sz = b.szCell[j] + leafCorrection; 007547 pTemp = &aOvflSpace[iOvflSpace]; 007548 if( !pNew->leaf ){ 007549 memcpy(&pNew->aData[8], pCell, 4); 007550 }else if( leafData ){ 007551 /* If the tree is a leaf-data tree, and the siblings are leaves, 007552 ** then there is no divider cell in b.apCell[]. Instead, the divider 007553 ** cell consists of the integer key for the right-most cell of 007554 ** the sibling-page assembled above only. 007555 */ 007556 CellInfo info; 007557 j--; 007558 pNew->xParseCell(pNew, b.apCell[j], &info); 007559 pCell = pTemp; 007560 sz = 4 + putVarint(&pCell[4], info.nKey); 007561 pTemp = 0; 007562 }else{ 007563 pCell -= 4; 007564 /* Obscure case for non-leaf-data trees: If the cell at pCell was 007565 ** previously stored on a leaf node, and its reported size was 4 007566 ** bytes, then it may actually be smaller than this 007567 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 007568 ** any cell). But it is important to pass the correct size to 007569 ** insertCell(), so reparse the cell now. 007570 ** 007571 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 007572 ** and WITHOUT ROWID tables with exactly one column which is the 007573 ** primary key. 007574 */ 007575 if( b.szCell[j]==4 ){ 007576 assert(leafCorrection==4); 007577 sz = pParent->xCellSize(pParent, pCell); 007578 } 007579 } 007580 iOvflSpace += sz; 007581 assert( sz<=pBt->maxLocal+23 ); 007582 assert( iOvflSpace <= (int)pBt->pageSize ); 007583 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 007584 if( rc!=SQLITE_OK ) goto balance_cleanup; 007585 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 007586 } 007587 007588 /* Now update the actual sibling pages. The order in which they are updated 007589 ** is important, as this code needs to avoid disrupting any page from which 007590 ** cells may still to be read. In practice, this means: 007591 ** 007592 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 007593 ** then it is not safe to update page apNew[iPg] until after 007594 ** the left-hand sibling apNew[iPg-1] has been updated. 007595 ** 007596 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 007597 ** then it is not safe to update page apNew[iPg] until after 007598 ** the right-hand sibling apNew[iPg+1] has been updated. 007599 ** 007600 ** If neither of the above apply, the page is safe to update. 007601 ** 007602 ** The iPg value in the following loop starts at nNew-1 goes down 007603 ** to 0, then back up to nNew-1 again, thus making two passes over 007604 ** the pages. On the initial downward pass, only condition (1) above 007605 ** needs to be tested because (2) will always be true from the previous 007606 ** step. On the upward pass, both conditions are always true, so the 007607 ** upwards pass simply processes pages that were missed on the downward 007608 ** pass. 007609 */ 007610 for(i=1-nNew; i<nNew; i++){ 007611 int iPg = i<0 ? -i : i; 007612 assert( iPg>=0 && iPg<nNew ); 007613 if( abDone[iPg] ) continue; /* Skip pages already processed */ 007614 if( i>=0 /* On the upwards pass, or... */ 007615 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 007616 ){ 007617 int iNew; 007618 int iOld; 007619 int nNewCell; 007620 007621 /* Verify condition (1): If cells are moving left, update iPg 007622 ** only after iPg-1 has already been updated. */ 007623 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 007624 007625 /* Verify condition (2): If cells are moving right, update iPg 007626 ** only after iPg+1 has already been updated. */ 007627 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 007628 007629 if( iPg==0 ){ 007630 iNew = iOld = 0; 007631 nNewCell = cntNew[0]; 007632 }else{ 007633 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 007634 iNew = cntNew[iPg-1] + !leafData; 007635 nNewCell = cntNew[iPg] - iNew; 007636 } 007637 007638 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 007639 if( rc ) goto balance_cleanup; 007640 abDone[iPg]++; 007641 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 007642 assert( apNew[iPg]->nOverflow==0 ); 007643 assert( apNew[iPg]->nCell==nNewCell ); 007644 } 007645 } 007646 007647 /* All pages have been processed exactly once */ 007648 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 007649 007650 assert( nOld>0 ); 007651 assert( nNew>0 ); 007652 007653 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 007654 /* The root page of the b-tree now contains no cells. The only sibling 007655 ** page is the right-child of the parent. Copy the contents of the 007656 ** child page into the parent, decreasing the overall height of the 007657 ** b-tree structure by one. This is described as the "balance-shallower" 007658 ** sub-algorithm in some documentation. 007659 ** 007660 ** If this is an auto-vacuum database, the call to copyNodeContent() 007661 ** sets all pointer-map entries corresponding to database image pages 007662 ** for which the pointer is stored within the content being copied. 007663 ** 007664 ** It is critical that the child page be defragmented before being 007665 ** copied into the parent, because if the parent is page 1 then it will 007666 ** by smaller than the child due to the database header, and so all the 007667 ** free space needs to be up front. 007668 */ 007669 assert( nNew==1 || CORRUPT_DB ); 007670 rc = defragmentPage(apNew[0]); 007671 testcase( rc!=SQLITE_OK ); 007672 assert( apNew[0]->nFree == 007673 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) 007674 || rc!=SQLITE_OK 007675 ); 007676 copyNodeContent(apNew[0], pParent, &rc); 007677 freePage(apNew[0], &rc); 007678 }else if( ISAUTOVACUUM && !leafCorrection ){ 007679 /* Fix the pointer map entries associated with the right-child of each 007680 ** sibling page. All other pointer map entries have already been taken 007681 ** care of. */ 007682 for(i=0; i<nNew; i++){ 007683 u32 key = get4byte(&apNew[i]->aData[8]); 007684 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 007685 } 007686 } 007687 007688 assert( pParent->isInit ); 007689 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 007690 nOld, nNew, b.nCell)); 007691 007692 /* Free any old pages that were not reused as new pages. 007693 */ 007694 for(i=nNew; i<nOld; i++){ 007695 freePage(apOld[i], &rc); 007696 } 007697 007698 #if 0 007699 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 007700 /* The ptrmapCheckPages() contains assert() statements that verify that 007701 ** all pointer map pages are set correctly. This is helpful while 007702 ** debugging. This is usually disabled because a corrupt database may 007703 ** cause an assert() statement to fail. */ 007704 ptrmapCheckPages(apNew, nNew); 007705 ptrmapCheckPages(&pParent, 1); 007706 } 007707 #endif 007708 007709 /* 007710 ** Cleanup before returning. 007711 */ 007712 balance_cleanup: 007713 sqlite3ScratchFree(b.apCell); 007714 for(i=0; i<nOld; i++){ 007715 releasePage(apOld[i]); 007716 } 007717 for(i=0; i<nNew; i++){ 007718 releasePage(apNew[i]); 007719 } 007720 007721 return rc; 007722 } 007723 007724 007725 /* 007726 ** This function is called when the root page of a b-tree structure is 007727 ** overfull (has one or more overflow pages). 007728 ** 007729 ** A new child page is allocated and the contents of the current root 007730 ** page, including overflow cells, are copied into the child. The root 007731 ** page is then overwritten to make it an empty page with the right-child 007732 ** pointer pointing to the new page. 007733 ** 007734 ** Before returning, all pointer-map entries corresponding to pages 007735 ** that the new child-page now contains pointers to are updated. The 007736 ** entry corresponding to the new right-child pointer of the root 007737 ** page is also updated. 007738 ** 007739 ** If successful, *ppChild is set to contain a reference to the child 007740 ** page and SQLITE_OK is returned. In this case the caller is required 007741 ** to call releasePage() on *ppChild exactly once. If an error occurs, 007742 ** an error code is returned and *ppChild is set to 0. 007743 */ 007744 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 007745 int rc; /* Return value from subprocedures */ 007746 MemPage *pChild = 0; /* Pointer to a new child page */ 007747 Pgno pgnoChild = 0; /* Page number of the new child page */ 007748 BtShared *pBt = pRoot->pBt; /* The BTree */ 007749 007750 assert( pRoot->nOverflow>0 ); 007751 assert( sqlite3_mutex_held(pBt->mutex) ); 007752 007753 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 007754 ** page that will become the new right-child of pPage. Copy the contents 007755 ** of the node stored on pRoot into the new child page. 007756 */ 007757 rc = sqlite3PagerWrite(pRoot->pDbPage); 007758 if( rc==SQLITE_OK ){ 007759 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 007760 copyNodeContent(pRoot, pChild, &rc); 007761 if( ISAUTOVACUUM ){ 007762 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 007763 } 007764 } 007765 if( rc ){ 007766 *ppChild = 0; 007767 releasePage(pChild); 007768 return rc; 007769 } 007770 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 007771 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 007772 assert( pChild->nCell==pRoot->nCell ); 007773 007774 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 007775 007776 /* Copy the overflow cells from pRoot to pChild */ 007777 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 007778 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 007779 memcpy(pChild->apOvfl, pRoot->apOvfl, 007780 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 007781 pChild->nOverflow = pRoot->nOverflow; 007782 007783 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 007784 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 007785 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 007786 007787 *ppChild = pChild; 007788 return SQLITE_OK; 007789 } 007790 007791 /* 007792 ** The page that pCur currently points to has just been modified in 007793 ** some way. This function figures out if this modification means the 007794 ** tree needs to be balanced, and if so calls the appropriate balancing 007795 ** routine. Balancing routines are: 007796 ** 007797 ** balance_quick() 007798 ** balance_deeper() 007799 ** balance_nonroot() 007800 */ 007801 static int balance(BtCursor *pCur){ 007802 int rc = SQLITE_OK; 007803 const int nMin = pCur->pBt->usableSize * 2 / 3; 007804 u8 aBalanceQuickSpace[13]; 007805 u8 *pFree = 0; 007806 007807 VVA_ONLY( int balance_quick_called = 0 ); 007808 VVA_ONLY( int balance_deeper_called = 0 ); 007809 007810 do { 007811 int iPage = pCur->iPage; 007812 MemPage *pPage = pCur->apPage[iPage]; 007813 007814 if( iPage==0 ){ 007815 if( pPage->nOverflow ){ 007816 /* The root page of the b-tree is overfull. In this case call the 007817 ** balance_deeper() function to create a new child for the root-page 007818 ** and copy the current contents of the root-page to it. The 007819 ** next iteration of the do-loop will balance the child page. 007820 */ 007821 assert( balance_deeper_called==0 ); 007822 VVA_ONLY( balance_deeper_called++ ); 007823 rc = balance_deeper(pPage, &pCur->apPage[1]); 007824 if( rc==SQLITE_OK ){ 007825 pCur->iPage = 1; 007826 pCur->aiIdx[0] = 0; 007827 pCur->aiIdx[1] = 0; 007828 assert( pCur->apPage[1]->nOverflow ); 007829 } 007830 }else{ 007831 break; 007832 } 007833 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 007834 break; 007835 }else{ 007836 MemPage * const pParent = pCur->apPage[iPage-1]; 007837 int const iIdx = pCur->aiIdx[iPage-1]; 007838 007839 rc = sqlite3PagerWrite(pParent->pDbPage); 007840 if( rc==SQLITE_OK ){ 007841 #ifndef SQLITE_OMIT_QUICKBALANCE 007842 if( pPage->intKeyLeaf 007843 && pPage->nOverflow==1 007844 && pPage->aiOvfl[0]==pPage->nCell 007845 && pParent->pgno!=1 007846 && pParent->nCell==iIdx 007847 ){ 007848 /* Call balance_quick() to create a new sibling of pPage on which 007849 ** to store the overflow cell. balance_quick() inserts a new cell 007850 ** into pParent, which may cause pParent overflow. If this 007851 ** happens, the next iteration of the do-loop will balance pParent 007852 ** use either balance_nonroot() or balance_deeper(). Until this 007853 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 007854 ** buffer. 007855 ** 007856 ** The purpose of the following assert() is to check that only a 007857 ** single call to balance_quick() is made for each call to this 007858 ** function. If this were not verified, a subtle bug involving reuse 007859 ** of the aBalanceQuickSpace[] might sneak in. 007860 */ 007861 assert( balance_quick_called==0 ); 007862 VVA_ONLY( balance_quick_called++ ); 007863 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 007864 }else 007865 #endif 007866 { 007867 /* In this case, call balance_nonroot() to redistribute cells 007868 ** between pPage and up to 2 of its sibling pages. This involves 007869 ** modifying the contents of pParent, which may cause pParent to 007870 ** become overfull or underfull. The next iteration of the do-loop 007871 ** will balance the parent page to correct this. 007872 ** 007873 ** If the parent page becomes overfull, the overflow cell or cells 007874 ** are stored in the pSpace buffer allocated immediately below. 007875 ** A subsequent iteration of the do-loop will deal with this by 007876 ** calling balance_nonroot() (balance_deeper() may be called first, 007877 ** but it doesn't deal with overflow cells - just moves them to a 007878 ** different page). Once this subsequent call to balance_nonroot() 007879 ** has completed, it is safe to release the pSpace buffer used by 007880 ** the previous call, as the overflow cell data will have been 007881 ** copied either into the body of a database page or into the new 007882 ** pSpace buffer passed to the latter call to balance_nonroot(). 007883 */ 007884 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 007885 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 007886 pCur->hints&BTREE_BULKLOAD); 007887 if( pFree ){ 007888 /* If pFree is not NULL, it points to the pSpace buffer used 007889 ** by a previous call to balance_nonroot(). Its contents are 007890 ** now stored either on real database pages or within the 007891 ** new pSpace buffer, so it may be safely freed here. */ 007892 sqlite3PageFree(pFree); 007893 } 007894 007895 /* The pSpace buffer will be freed after the next call to 007896 ** balance_nonroot(), or just before this function returns, whichever 007897 ** comes first. */ 007898 pFree = pSpace; 007899 } 007900 } 007901 007902 pPage->nOverflow = 0; 007903 007904 /* The next iteration of the do-loop balances the parent page. */ 007905 releasePage(pPage); 007906 pCur->iPage--; 007907 assert( pCur->iPage>=0 ); 007908 } 007909 }while( rc==SQLITE_OK ); 007910 007911 if( pFree ){ 007912 sqlite3PageFree(pFree); 007913 } 007914 return rc; 007915 } 007916 007917 007918 /* 007919 ** Insert a new record into the BTree. The content of the new record 007920 ** is described by the pX object. The pCur cursor is used only to 007921 ** define what table the record should be inserted into, and is left 007922 ** pointing at a random location. 007923 ** 007924 ** For a table btree (used for rowid tables), only the pX.nKey value of 007925 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 007926 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 007927 ** hold the content of the row. 007928 ** 007929 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 007930 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 007931 ** pX.pData,nData,nZero fields must be zero. 007932 ** 007933 ** If the seekResult parameter is non-zero, then a successful call to 007934 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 007935 ** been performed. In other words, if seekResult!=0 then the cursor 007936 ** is currently pointing to a cell that will be adjacent to the cell 007937 ** to be inserted. If seekResult<0 then pCur points to a cell that is 007938 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 007939 ** that is larger than (pKey,nKey). 007940 ** 007941 ** If seekResult==0, that means pCur is pointing at some unknown location. 007942 ** In that case, this routine must seek the cursor to the correct insertion 007943 ** point for (pKey,nKey) before doing the insertion. For index btrees, 007944 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 007945 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 007946 ** to decode the key. 007947 */ 007948 int sqlite3BtreeInsert( 007949 BtCursor *pCur, /* Insert data into the table of this cursor */ 007950 const BtreePayload *pX, /* Content of the row to be inserted */ 007951 int appendBias, /* True if this is likely an append */ 007952 int seekResult /* Result of prior MovetoUnpacked() call */ 007953 ){ 007954 int rc; 007955 int loc = seekResult; /* -1: before desired location +1: after */ 007956 int szNew = 0; 007957 int idx; 007958 MemPage *pPage; 007959 Btree *p = pCur->pBtree; 007960 BtShared *pBt = p->pBt; 007961 unsigned char *oldCell; 007962 unsigned char *newCell = 0; 007963 007964 if( pCur->eState==CURSOR_FAULT ){ 007965 assert( pCur->skipNext!=SQLITE_OK ); 007966 return pCur->skipNext; 007967 } 007968 007969 assert( cursorOwnsBtShared(pCur) ); 007970 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 007971 && pBt->inTransaction==TRANS_WRITE 007972 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 007973 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 007974 007975 /* Assert that the caller has been consistent. If this cursor was opened 007976 ** expecting an index b-tree, then the caller should be inserting blob 007977 ** keys with no associated data. If the cursor was opened expecting an 007978 ** intkey table, the caller should be inserting integer keys with a 007979 ** blob of associated data. */ 007980 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) ); 007981 007982 /* Save the positions of any other cursors open on this table. 007983 ** 007984 ** In some cases, the call to btreeMoveto() below is a no-op. For 007985 ** example, when inserting data into a table with auto-generated integer 007986 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 007987 ** integer key to use. It then calls this function to actually insert the 007988 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 007989 ** that the cursor is already where it needs to be and returns without 007990 ** doing any work. To avoid thwarting these optimizations, it is important 007991 ** not to clear the cursor here. 007992 */ 007993 if( pCur->curFlags & BTCF_Multiple ){ 007994 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 007995 if( rc ) return rc; 007996 } 007997 007998 if( pCur->pKeyInfo==0 ){ 007999 assert( pX->pKey==0 ); 008000 /* If this is an insert into a table b-tree, invalidate any incrblob 008001 ** cursors open on the row being replaced */ 008002 invalidateIncrblobCursors(p, pX->nKey, 0); 008003 008004 /* If the cursor is currently on the last row and we are appending a 008005 ** new row onto the end, set the "loc" to avoid an unnecessary 008006 ** btreeMoveto() call */ 008007 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 008008 loc = 0; 008009 }else if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0 008010 && pCur->info.nKey==pX->nKey-1 ){ 008011 loc = -1; 008012 }else if( loc==0 ){ 008013 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, appendBias, &loc); 008014 if( rc ) return rc; 008015 } 008016 }else if( loc==0 ){ 008017 if( pX->nMem ){ 008018 UnpackedRecord r; 008019 r.pKeyInfo = pCur->pKeyInfo; 008020 r.aMem = pX->aMem; 008021 r.nField = pX->nMem; 008022 r.default_rc = 0; 008023 r.errCode = 0; 008024 r.r1 = 0; 008025 r.r2 = 0; 008026 r.eqSeen = 0; 008027 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, appendBias, &loc); 008028 }else{ 008029 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, appendBias, &loc); 008030 } 008031 if( rc ) return rc; 008032 } 008033 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); 008034 008035 pPage = pCur->apPage[pCur->iPage]; 008036 assert( pPage->intKey || pX->nKey>=0 ); 008037 assert( pPage->leaf || !pPage->intKey ); 008038 008039 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 008040 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 008041 loc==0 ? "overwrite" : "new entry")); 008042 assert( pPage->isInit ); 008043 newCell = pBt->pTmpSpace; 008044 assert( newCell!=0 ); 008045 rc = fillInCell(pPage, newCell, pX, &szNew); 008046 if( rc ) goto end_insert; 008047 assert( szNew==pPage->xCellSize(pPage, newCell) ); 008048 assert( szNew <= MX_CELL_SIZE(pBt) ); 008049 idx = pCur->aiIdx[pCur->iPage]; 008050 if( loc==0 ){ 008051 CellInfo info; 008052 assert( idx<pPage->nCell ); 008053 rc = sqlite3PagerWrite(pPage->pDbPage); 008054 if( rc ){ 008055 goto end_insert; 008056 } 008057 oldCell = findCell(pPage, idx); 008058 if( !pPage->leaf ){ 008059 memcpy(newCell, oldCell, 4); 008060 } 008061 rc = clearCell(pPage, oldCell, &info); 008062 if( info.nSize==szNew && info.nLocal==info.nPayload ){ 008063 /* Overwrite the old cell with the new if they are the same size. 008064 ** We could also try to do this if the old cell is smaller, then add 008065 ** the leftover space to the free list. But experiments show that 008066 ** doing that is no faster then skipping this optimization and just 008067 ** calling dropCell() and insertCell(). */ 008068 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 008069 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; 008070 memcpy(oldCell, newCell, szNew); 008071 return SQLITE_OK; 008072 } 008073 dropCell(pPage, idx, info.nSize, &rc); 008074 if( rc ) goto end_insert; 008075 }else if( loc<0 && pPage->nCell>0 ){ 008076 assert( pPage->leaf ); 008077 idx = ++pCur->aiIdx[pCur->iPage]; 008078 }else{ 008079 assert( pPage->leaf ); 008080 } 008081 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 008082 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 008083 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 008084 008085 /* If no error has occurred and pPage has an overflow cell, call balance() 008086 ** to redistribute the cells within the tree. Since balance() may move 008087 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 008088 ** variables. 008089 ** 008090 ** Previous versions of SQLite called moveToRoot() to move the cursor 008091 ** back to the root page as balance() used to invalidate the contents 008092 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 008093 ** set the cursor state to "invalid". This makes common insert operations 008094 ** slightly faster. 008095 ** 008096 ** There is a subtle but important optimization here too. When inserting 008097 ** multiple records into an intkey b-tree using a single cursor (as can 008098 ** happen while processing an "INSERT INTO ... SELECT" statement), it 008099 ** is advantageous to leave the cursor pointing to the last entry in 008100 ** the b-tree if possible. If the cursor is left pointing to the last 008101 ** entry in the table, and the next row inserted has an integer key 008102 ** larger than the largest existing key, it is possible to insert the 008103 ** row without seeking the cursor. This can be a big performance boost. 008104 */ 008105 pCur->info.nSize = 0; 008106 if( pPage->nOverflow ){ 008107 assert( rc==SQLITE_OK ); 008108 pCur->curFlags &= ~(BTCF_ValidNKey); 008109 rc = balance(pCur); 008110 008111 /* Must make sure nOverflow is reset to zero even if the balance() 008112 ** fails. Internal data structure corruption will result otherwise. 008113 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 008114 ** from trying to save the current position of the cursor. */ 008115 pCur->apPage[pCur->iPage]->nOverflow = 0; 008116 pCur->eState = CURSOR_INVALID; 008117 } 008118 assert( pCur->apPage[pCur->iPage]->nOverflow==0 ); 008119 008120 end_insert: 008121 return rc; 008122 } 008123 008124 /* 008125 ** Delete the entry that the cursor is pointing to. 008126 ** 008127 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 008128 ** the cursor is left pointing at an arbitrary location after the delete. 008129 ** But if that bit is set, then the cursor is left in a state such that 008130 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 008131 ** as it would have been on if the call to BtreeDelete() had been omitted. 008132 ** 008133 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 008134 ** associated with a single table entry and its indexes. Only one of those 008135 ** deletes is considered the "primary" delete. The primary delete occurs 008136 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 008137 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 008138 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 008139 ** but which might be used by alternative storage engines. 008140 */ 008141 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 008142 Btree *p = pCur->pBtree; 008143 BtShared *pBt = p->pBt; 008144 int rc; /* Return code */ 008145 MemPage *pPage; /* Page to delete cell from */ 008146 unsigned char *pCell; /* Pointer to cell to delete */ 008147 int iCellIdx; /* Index of cell to delete */ 008148 int iCellDepth; /* Depth of node containing pCell */ 008149 CellInfo info; /* Size of the cell being deleted */ 008150 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ 008151 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */ 008152 008153 assert( cursorOwnsBtShared(pCur) ); 008154 assert( pBt->inTransaction==TRANS_WRITE ); 008155 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 008156 assert( pCur->curFlags & BTCF_WriteFlag ); 008157 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 008158 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 008159 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); 008160 assert( pCur->eState==CURSOR_VALID ); 008161 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 008162 008163 iCellDepth = pCur->iPage; 008164 iCellIdx = pCur->aiIdx[iCellDepth]; 008165 pPage = pCur->apPage[iCellDepth]; 008166 pCell = findCell(pPage, iCellIdx); 008167 008168 /* If the bPreserve flag is set to true, then the cursor position must 008169 ** be preserved following this delete operation. If the current delete 008170 ** will cause a b-tree rebalance, then this is done by saving the cursor 008171 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 008172 ** returning. 008173 ** 008174 ** Or, if the current delete will not cause a rebalance, then the cursor 008175 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 008176 ** before or after the deleted entry. In this case set bSkipnext to true. */ 008177 if( bPreserve ){ 008178 if( !pPage->leaf 008179 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 008180 ){ 008181 /* A b-tree rebalance will be required after deleting this entry. 008182 ** Save the cursor key. */ 008183 rc = saveCursorKey(pCur); 008184 if( rc ) return rc; 008185 }else{ 008186 bSkipnext = 1; 008187 } 008188 } 008189 008190 /* If the page containing the entry to delete is not a leaf page, move 008191 ** the cursor to the largest entry in the tree that is smaller than 008192 ** the entry being deleted. This cell will replace the cell being deleted 008193 ** from the internal node. The 'previous' entry is used for this instead 008194 ** of the 'next' entry, as the previous entry is always a part of the 008195 ** sub-tree headed by the child page of the cell being deleted. This makes 008196 ** balancing the tree following the delete operation easier. */ 008197 if( !pPage->leaf ){ 008198 int notUsed = 0; 008199 rc = sqlite3BtreePrevious(pCur, ¬Used); 008200 if( rc ) return rc; 008201 } 008202 008203 /* Save the positions of any other cursors open on this table before 008204 ** making any modifications. */ 008205 if( pCur->curFlags & BTCF_Multiple ){ 008206 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 008207 if( rc ) return rc; 008208 } 008209 008210 /* If this is a delete operation to remove a row from a table b-tree, 008211 ** invalidate any incrblob cursors open on the row being deleted. */ 008212 if( pCur->pKeyInfo==0 ){ 008213 invalidateIncrblobCursors(p, pCur->info.nKey, 0); 008214 } 008215 008216 /* Make the page containing the entry to be deleted writable. Then free any 008217 ** overflow pages associated with the entry and finally remove the cell 008218 ** itself from within the page. */ 008219 rc = sqlite3PagerWrite(pPage->pDbPage); 008220 if( rc ) return rc; 008221 rc = clearCell(pPage, pCell, &info); 008222 dropCell(pPage, iCellIdx, info.nSize, &rc); 008223 if( rc ) return rc; 008224 008225 /* If the cell deleted was not located on a leaf page, then the cursor 008226 ** is currently pointing to the largest entry in the sub-tree headed 008227 ** by the child-page of the cell that was just deleted from an internal 008228 ** node. The cell from the leaf node needs to be moved to the internal 008229 ** node to replace the deleted cell. */ 008230 if( !pPage->leaf ){ 008231 MemPage *pLeaf = pCur->apPage[pCur->iPage]; 008232 int nCell; 008233 Pgno n = pCur->apPage[iCellDepth+1]->pgno; 008234 unsigned char *pTmp; 008235 008236 pCell = findCell(pLeaf, pLeaf->nCell-1); 008237 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 008238 nCell = pLeaf->xCellSize(pLeaf, pCell); 008239 assert( MX_CELL_SIZE(pBt) >= nCell ); 008240 pTmp = pBt->pTmpSpace; 008241 assert( pTmp!=0 ); 008242 rc = sqlite3PagerWrite(pLeaf->pDbPage); 008243 if( rc==SQLITE_OK ){ 008244 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 008245 } 008246 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 008247 if( rc ) return rc; 008248 } 008249 008250 /* Balance the tree. If the entry deleted was located on a leaf page, 008251 ** then the cursor still points to that page. In this case the first 008252 ** call to balance() repairs the tree, and the if(...) condition is 008253 ** never true. 008254 ** 008255 ** Otherwise, if the entry deleted was on an internal node page, then 008256 ** pCur is pointing to the leaf page from which a cell was removed to 008257 ** replace the cell deleted from the internal node. This is slightly 008258 ** tricky as the leaf node may be underfull, and the internal node may 008259 ** be either under or overfull. In this case run the balancing algorithm 008260 ** on the leaf node first. If the balance proceeds far enough up the 008261 ** tree that we can be sure that any problem in the internal node has 008262 ** been corrected, so be it. Otherwise, after balancing the leaf node, 008263 ** walk the cursor up the tree to the internal node and balance it as 008264 ** well. */ 008265 rc = balance(pCur); 008266 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 008267 while( pCur->iPage>iCellDepth ){ 008268 releasePage(pCur->apPage[pCur->iPage--]); 008269 } 008270 rc = balance(pCur); 008271 } 008272 008273 if( rc==SQLITE_OK ){ 008274 if( bSkipnext ){ 008275 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); 008276 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB ); 008277 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 008278 pCur->eState = CURSOR_SKIPNEXT; 008279 if( iCellIdx>=pPage->nCell ){ 008280 pCur->skipNext = -1; 008281 pCur->aiIdx[iCellDepth] = pPage->nCell-1; 008282 }else{ 008283 pCur->skipNext = 1; 008284 } 008285 }else{ 008286 rc = moveToRoot(pCur); 008287 if( bPreserve ){ 008288 pCur->eState = CURSOR_REQUIRESEEK; 008289 } 008290 } 008291 } 008292 return rc; 008293 } 008294 008295 /* 008296 ** Create a new BTree table. Write into *piTable the page 008297 ** number for the root page of the new table. 008298 ** 008299 ** The type of type is determined by the flags parameter. Only the 008300 ** following values of flags are currently in use. Other values for 008301 ** flags might not work: 008302 ** 008303 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 008304 ** BTREE_ZERODATA Used for SQL indices 008305 */ 008306 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ 008307 BtShared *pBt = p->pBt; 008308 MemPage *pRoot; 008309 Pgno pgnoRoot; 008310 int rc; 008311 int ptfFlags; /* Page-type flage for the root page of new table */ 008312 008313 assert( sqlite3BtreeHoldsMutex(p) ); 008314 assert( pBt->inTransaction==TRANS_WRITE ); 008315 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 008316 008317 #ifdef SQLITE_OMIT_AUTOVACUUM 008318 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 008319 if( rc ){ 008320 return rc; 008321 } 008322 #else 008323 if( pBt->autoVacuum ){ 008324 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 008325 MemPage *pPageMove; /* The page to move to. */ 008326 008327 /* Creating a new table may probably require moving an existing database 008328 ** to make room for the new tables root page. In case this page turns 008329 ** out to be an overflow page, delete all overflow page-map caches 008330 ** held by open cursors. 008331 */ 008332 invalidateAllOverflowCache(pBt); 008333 008334 /* Read the value of meta[3] from the database to determine where the 008335 ** root page of the new table should go. meta[3] is the largest root-page 008336 ** created so far, so the new root-page is (meta[3]+1). 008337 */ 008338 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 008339 pgnoRoot++; 008340 008341 /* The new root-page may not be allocated on a pointer-map page, or the 008342 ** PENDING_BYTE page. 008343 */ 008344 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 008345 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 008346 pgnoRoot++; 008347 } 008348 assert( pgnoRoot>=3 || CORRUPT_DB ); 008349 testcase( pgnoRoot<3 ); 008350 008351 /* Allocate a page. The page that currently resides at pgnoRoot will 008352 ** be moved to the allocated page (unless the allocated page happens 008353 ** to reside at pgnoRoot). 008354 */ 008355 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 008356 if( rc!=SQLITE_OK ){ 008357 return rc; 008358 } 008359 008360 if( pgnoMove!=pgnoRoot ){ 008361 /* pgnoRoot is the page that will be used for the root-page of 008362 ** the new table (assuming an error did not occur). But we were 008363 ** allocated pgnoMove. If required (i.e. if it was not allocated 008364 ** by extending the file), the current page at position pgnoMove 008365 ** is already journaled. 008366 */ 008367 u8 eType = 0; 008368 Pgno iPtrPage = 0; 008369 008370 /* Save the positions of any open cursors. This is required in 008371 ** case they are holding a reference to an xFetch reference 008372 ** corresponding to page pgnoRoot. */ 008373 rc = saveAllCursors(pBt, 0, 0); 008374 releasePage(pPageMove); 008375 if( rc!=SQLITE_OK ){ 008376 return rc; 008377 } 008378 008379 /* Move the page currently at pgnoRoot to pgnoMove. */ 008380 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 008381 if( rc!=SQLITE_OK ){ 008382 return rc; 008383 } 008384 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 008385 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 008386 rc = SQLITE_CORRUPT_BKPT; 008387 } 008388 if( rc!=SQLITE_OK ){ 008389 releasePage(pRoot); 008390 return rc; 008391 } 008392 assert( eType!=PTRMAP_ROOTPAGE ); 008393 assert( eType!=PTRMAP_FREEPAGE ); 008394 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 008395 releasePage(pRoot); 008396 008397 /* Obtain the page at pgnoRoot */ 008398 if( rc!=SQLITE_OK ){ 008399 return rc; 008400 } 008401 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 008402 if( rc!=SQLITE_OK ){ 008403 return rc; 008404 } 008405 rc = sqlite3PagerWrite(pRoot->pDbPage); 008406 if( rc!=SQLITE_OK ){ 008407 releasePage(pRoot); 008408 return rc; 008409 } 008410 }else{ 008411 pRoot = pPageMove; 008412 } 008413 008414 /* Update the pointer-map and meta-data with the new root-page number. */ 008415 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 008416 if( rc ){ 008417 releasePage(pRoot); 008418 return rc; 008419 } 008420 008421 /* When the new root page was allocated, page 1 was made writable in 008422 ** order either to increase the database filesize, or to decrement the 008423 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 008424 */ 008425 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 008426 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 008427 if( NEVER(rc) ){ 008428 releasePage(pRoot); 008429 return rc; 008430 } 008431 008432 }else{ 008433 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 008434 if( rc ) return rc; 008435 } 008436 #endif 008437 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 008438 if( createTabFlags & BTREE_INTKEY ){ 008439 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 008440 }else{ 008441 ptfFlags = PTF_ZERODATA | PTF_LEAF; 008442 } 008443 zeroPage(pRoot, ptfFlags); 008444 sqlite3PagerUnref(pRoot->pDbPage); 008445 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 008446 *piTable = (int)pgnoRoot; 008447 return SQLITE_OK; 008448 } 008449 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ 008450 int rc; 008451 sqlite3BtreeEnter(p); 008452 rc = btreeCreateTable(p, piTable, flags); 008453 sqlite3BtreeLeave(p); 008454 return rc; 008455 } 008456 008457 /* 008458 ** Erase the given database page and all its children. Return 008459 ** the page to the freelist. 008460 */ 008461 static int clearDatabasePage( 008462 BtShared *pBt, /* The BTree that contains the table */ 008463 Pgno pgno, /* Page number to clear */ 008464 int freePageFlag, /* Deallocate page if true */ 008465 int *pnChange /* Add number of Cells freed to this counter */ 008466 ){ 008467 MemPage *pPage; 008468 int rc; 008469 unsigned char *pCell; 008470 int i; 008471 int hdr; 008472 CellInfo info; 008473 008474 assert( sqlite3_mutex_held(pBt->mutex) ); 008475 if( pgno>btreePagecount(pBt) ){ 008476 return SQLITE_CORRUPT_BKPT; 008477 } 008478 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 008479 if( rc ) return rc; 008480 if( pPage->bBusy ){ 008481 rc = SQLITE_CORRUPT_BKPT; 008482 goto cleardatabasepage_out; 008483 } 008484 pPage->bBusy = 1; 008485 hdr = pPage->hdrOffset; 008486 for(i=0; i<pPage->nCell; i++){ 008487 pCell = findCell(pPage, i); 008488 if( !pPage->leaf ){ 008489 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 008490 if( rc ) goto cleardatabasepage_out; 008491 } 008492 rc = clearCell(pPage, pCell, &info); 008493 if( rc ) goto cleardatabasepage_out; 008494 } 008495 if( !pPage->leaf ){ 008496 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 008497 if( rc ) goto cleardatabasepage_out; 008498 }else if( pnChange ){ 008499 assert( pPage->intKey || CORRUPT_DB ); 008500 testcase( !pPage->intKey ); 008501 *pnChange += pPage->nCell; 008502 } 008503 if( freePageFlag ){ 008504 freePage(pPage, &rc); 008505 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 008506 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 008507 } 008508 008509 cleardatabasepage_out: 008510 pPage->bBusy = 0; 008511 releasePage(pPage); 008512 return rc; 008513 } 008514 008515 /* 008516 ** Delete all information from a single table in the database. iTable is 008517 ** the page number of the root of the table. After this routine returns, 008518 ** the root page is empty, but still exists. 008519 ** 008520 ** This routine will fail with SQLITE_LOCKED if there are any open 008521 ** read cursors on the table. Open write cursors are moved to the 008522 ** root of the table. 008523 ** 008524 ** If pnChange is not NULL, then table iTable must be an intkey table. The 008525 ** integer value pointed to by pnChange is incremented by the number of 008526 ** entries in the table. 008527 */ 008528 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ 008529 int rc; 008530 BtShared *pBt = p->pBt; 008531 sqlite3BtreeEnter(p); 008532 assert( p->inTrans==TRANS_WRITE ); 008533 008534 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 008535 008536 if( SQLITE_OK==rc ){ 008537 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 008538 ** is the root of a table b-tree - if it is not, the following call is 008539 ** a no-op). */ 008540 invalidateIncrblobCursors(p, 0, 1); 008541 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 008542 } 008543 sqlite3BtreeLeave(p); 008544 return rc; 008545 } 008546 008547 /* 008548 ** Delete all information from the single table that pCur is open on. 008549 ** 008550 ** This routine only work for pCur on an ephemeral table. 008551 */ 008552 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 008553 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 008554 } 008555 008556 /* 008557 ** Erase all information in a table and add the root of the table to 008558 ** the freelist. Except, the root of the principle table (the one on 008559 ** page 1) is never added to the freelist. 008560 ** 008561 ** This routine will fail with SQLITE_LOCKED if there are any open 008562 ** cursors on the table. 008563 ** 008564 ** If AUTOVACUUM is enabled and the page at iTable is not the last 008565 ** root page in the database file, then the last root page 008566 ** in the database file is moved into the slot formerly occupied by 008567 ** iTable and that last slot formerly occupied by the last root page 008568 ** is added to the freelist instead of iTable. In this say, all 008569 ** root pages are kept at the beginning of the database file, which 008570 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 008571 ** page number that used to be the last root page in the file before 008572 ** the move. If no page gets moved, *piMoved is set to 0. 008573 ** The last root page is recorded in meta[3] and the value of 008574 ** meta[3] is updated by this procedure. 008575 */ 008576 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 008577 int rc; 008578 MemPage *pPage = 0; 008579 BtShared *pBt = p->pBt; 008580 008581 assert( sqlite3BtreeHoldsMutex(p) ); 008582 assert( p->inTrans==TRANS_WRITE ); 008583 assert( iTable>=2 ); 008584 008585 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 008586 if( rc ) return rc; 008587 rc = sqlite3BtreeClearTable(p, iTable, 0); 008588 if( rc ){ 008589 releasePage(pPage); 008590 return rc; 008591 } 008592 008593 *piMoved = 0; 008594 008595 #ifdef SQLITE_OMIT_AUTOVACUUM 008596 freePage(pPage, &rc); 008597 releasePage(pPage); 008598 #else 008599 if( pBt->autoVacuum ){ 008600 Pgno maxRootPgno; 008601 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 008602 008603 if( iTable==maxRootPgno ){ 008604 /* If the table being dropped is the table with the largest root-page 008605 ** number in the database, put the root page on the free list. 008606 */ 008607 freePage(pPage, &rc); 008608 releasePage(pPage); 008609 if( rc!=SQLITE_OK ){ 008610 return rc; 008611 } 008612 }else{ 008613 /* The table being dropped does not have the largest root-page 008614 ** number in the database. So move the page that does into the 008615 ** gap left by the deleted root-page. 008616 */ 008617 MemPage *pMove; 008618 releasePage(pPage); 008619 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 008620 if( rc!=SQLITE_OK ){ 008621 return rc; 008622 } 008623 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 008624 releasePage(pMove); 008625 if( rc!=SQLITE_OK ){ 008626 return rc; 008627 } 008628 pMove = 0; 008629 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 008630 freePage(pMove, &rc); 008631 releasePage(pMove); 008632 if( rc!=SQLITE_OK ){ 008633 return rc; 008634 } 008635 *piMoved = maxRootPgno; 008636 } 008637 008638 /* Set the new 'max-root-page' value in the database header. This 008639 ** is the old value less one, less one more if that happens to 008640 ** be a root-page number, less one again if that is the 008641 ** PENDING_BYTE_PAGE. 008642 */ 008643 maxRootPgno--; 008644 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 008645 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 008646 maxRootPgno--; 008647 } 008648 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 008649 008650 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 008651 }else{ 008652 freePage(pPage, &rc); 008653 releasePage(pPage); 008654 } 008655 #endif 008656 return rc; 008657 } 008658 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 008659 int rc; 008660 sqlite3BtreeEnter(p); 008661 rc = btreeDropTable(p, iTable, piMoved); 008662 sqlite3BtreeLeave(p); 008663 return rc; 008664 } 008665 008666 008667 /* 008668 ** This function may only be called if the b-tree connection already 008669 ** has a read or write transaction open on the database. 008670 ** 008671 ** Read the meta-information out of a database file. Meta[0] 008672 ** is the number of free pages currently in the database. Meta[1] 008673 ** through meta[15] are available for use by higher layers. Meta[0] 008674 ** is read-only, the others are read/write. 008675 ** 008676 ** The schema layer numbers meta values differently. At the schema 008677 ** layer (and the SetCookie and ReadCookie opcodes) the number of 008678 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 008679 ** 008680 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 008681 ** of reading the value out of the header, it instead loads the "DataVersion" 008682 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 008683 ** database file. It is a number computed by the pager. But its access 008684 ** pattern is the same as header meta values, and so it is convenient to 008685 ** read it from this routine. 008686 */ 008687 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 008688 BtShared *pBt = p->pBt; 008689 008690 sqlite3BtreeEnter(p); 008691 assert( p->inTrans>TRANS_NONE ); 008692 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); 008693 assert( pBt->pPage1 ); 008694 assert( idx>=0 && idx<=15 ); 008695 008696 if( idx==BTREE_DATA_VERSION ){ 008697 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion; 008698 }else{ 008699 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 008700 } 008701 008702 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 008703 ** database, mark the database as read-only. */ 008704 #ifdef SQLITE_OMIT_AUTOVACUUM 008705 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 008706 pBt->btsFlags |= BTS_READ_ONLY; 008707 } 008708 #endif 008709 008710 sqlite3BtreeLeave(p); 008711 } 008712 008713 /* 008714 ** Write meta-information back into the database. Meta[0] is 008715 ** read-only and may not be written. 008716 */ 008717 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 008718 BtShared *pBt = p->pBt; 008719 unsigned char *pP1; 008720 int rc; 008721 assert( idx>=1 && idx<=15 ); 008722 sqlite3BtreeEnter(p); 008723 assert( p->inTrans==TRANS_WRITE ); 008724 assert( pBt->pPage1!=0 ); 008725 pP1 = pBt->pPage1->aData; 008726 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 008727 if( rc==SQLITE_OK ){ 008728 put4byte(&pP1[36 + idx*4], iMeta); 008729 #ifndef SQLITE_OMIT_AUTOVACUUM 008730 if( idx==BTREE_INCR_VACUUM ){ 008731 assert( pBt->autoVacuum || iMeta==0 ); 008732 assert( iMeta==0 || iMeta==1 ); 008733 pBt->incrVacuum = (u8)iMeta; 008734 } 008735 #endif 008736 } 008737 sqlite3BtreeLeave(p); 008738 return rc; 008739 } 008740 008741 #ifndef SQLITE_OMIT_BTREECOUNT 008742 /* 008743 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 008744 ** number of entries in the b-tree and write the result to *pnEntry. 008745 ** 008746 ** SQLITE_OK is returned if the operation is successfully executed. 008747 ** Otherwise, if an error is encountered (i.e. an IO error or database 008748 ** corruption) an SQLite error code is returned. 008749 */ 008750 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ 008751 i64 nEntry = 0; /* Value to return in *pnEntry */ 008752 int rc; /* Return code */ 008753 008754 if( pCur->pgnoRoot==0 ){ 008755 *pnEntry = 0; 008756 return SQLITE_OK; 008757 } 008758 rc = moveToRoot(pCur); 008759 008760 /* Unless an error occurs, the following loop runs one iteration for each 008761 ** page in the B-Tree structure (not including overflow pages). 008762 */ 008763 while( rc==SQLITE_OK ){ 008764 int iIdx; /* Index of child node in parent */ 008765 MemPage *pPage; /* Current page of the b-tree */ 008766 008767 /* If this is a leaf page or the tree is not an int-key tree, then 008768 ** this page contains countable entries. Increment the entry counter 008769 ** accordingly. 008770 */ 008771 pPage = pCur->apPage[pCur->iPage]; 008772 if( pPage->leaf || !pPage->intKey ){ 008773 nEntry += pPage->nCell; 008774 } 008775 008776 /* pPage is a leaf node. This loop navigates the cursor so that it 008777 ** points to the first interior cell that it points to the parent of 008778 ** the next page in the tree that has not yet been visited. The 008779 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 008780 ** of the page, or to the number of cells in the page if the next page 008781 ** to visit is the right-child of its parent. 008782 ** 008783 ** If all pages in the tree have been visited, return SQLITE_OK to the 008784 ** caller. 008785 */ 008786 if( pPage->leaf ){ 008787 do { 008788 if( pCur->iPage==0 ){ 008789 /* All pages of the b-tree have been visited. Return successfully. */ 008790 *pnEntry = nEntry; 008791 return moveToRoot(pCur); 008792 } 008793 moveToParent(pCur); 008794 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell ); 008795 008796 pCur->aiIdx[pCur->iPage]++; 008797 pPage = pCur->apPage[pCur->iPage]; 008798 } 008799 008800 /* Descend to the child node of the cell that the cursor currently 008801 ** points at. This is the right-child if (iIdx==pPage->nCell). 008802 */ 008803 iIdx = pCur->aiIdx[pCur->iPage]; 008804 if( iIdx==pPage->nCell ){ 008805 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 008806 }else{ 008807 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 008808 } 008809 } 008810 008811 /* An error has occurred. Return an error code. */ 008812 return rc; 008813 } 008814 #endif 008815 008816 /* 008817 ** Return the pager associated with a BTree. This routine is used for 008818 ** testing and debugging only. 008819 */ 008820 Pager *sqlite3BtreePager(Btree *p){ 008821 return p->pBt->pPager; 008822 } 008823 008824 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 008825 /* 008826 ** Append a message to the error message string. 008827 */ 008828 static void checkAppendMsg( 008829 IntegrityCk *pCheck, 008830 const char *zFormat, 008831 ... 008832 ){ 008833 va_list ap; 008834 if( !pCheck->mxErr ) return; 008835 pCheck->mxErr--; 008836 pCheck->nErr++; 008837 va_start(ap, zFormat); 008838 if( pCheck->errMsg.nChar ){ 008839 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1); 008840 } 008841 if( pCheck->zPfx ){ 008842 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 008843 } 008844 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap); 008845 va_end(ap); 008846 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){ 008847 pCheck->mallocFailed = 1; 008848 } 008849 } 008850 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 008851 008852 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 008853 008854 /* 008855 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 008856 ** corresponds to page iPg is already set. 008857 */ 008858 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 008859 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 008860 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 008861 } 008862 008863 /* 008864 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 008865 */ 008866 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 008867 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 008868 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 008869 } 008870 008871 008872 /* 008873 ** Add 1 to the reference count for page iPage. If this is the second 008874 ** reference to the page, add an error message to pCheck->zErrMsg. 008875 ** Return 1 if there are 2 or more references to the page and 0 if 008876 ** if this is the first reference to the page. 008877 ** 008878 ** Also check that the page number is in bounds. 008879 */ 008880 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 008881 if( iPage==0 ) return 1; 008882 if( iPage>pCheck->nPage ){ 008883 checkAppendMsg(pCheck, "invalid page number %d", iPage); 008884 return 1; 008885 } 008886 if( getPageReferenced(pCheck, iPage) ){ 008887 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 008888 return 1; 008889 } 008890 setPageReferenced(pCheck, iPage); 008891 return 0; 008892 } 008893 008894 #ifndef SQLITE_OMIT_AUTOVACUUM 008895 /* 008896 ** Check that the entry in the pointer-map for page iChild maps to 008897 ** page iParent, pointer type ptrType. If not, append an error message 008898 ** to pCheck. 008899 */ 008900 static void checkPtrmap( 008901 IntegrityCk *pCheck, /* Integrity check context */ 008902 Pgno iChild, /* Child page number */ 008903 u8 eType, /* Expected pointer map type */ 008904 Pgno iParent /* Expected pointer map parent page number */ 008905 ){ 008906 int rc; 008907 u8 ePtrmapType; 008908 Pgno iPtrmapParent; 008909 008910 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 008911 if( rc!=SQLITE_OK ){ 008912 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; 008913 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 008914 return; 008915 } 008916 008917 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 008918 checkAppendMsg(pCheck, 008919 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 008920 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 008921 } 008922 } 008923 #endif 008924 008925 /* 008926 ** Check the integrity of the freelist or of an overflow page list. 008927 ** Verify that the number of pages on the list is N. 008928 */ 008929 static void checkList( 008930 IntegrityCk *pCheck, /* Integrity checking context */ 008931 int isFreeList, /* True for a freelist. False for overflow page list */ 008932 int iPage, /* Page number for first page in the list */ 008933 int N /* Expected number of pages in the list */ 008934 ){ 008935 int i; 008936 int expected = N; 008937 int iFirst = iPage; 008938 while( N-- > 0 && pCheck->mxErr ){ 008939 DbPage *pOvflPage; 008940 unsigned char *pOvflData; 008941 if( iPage<1 ){ 008942 checkAppendMsg(pCheck, 008943 "%d of %d pages missing from overflow list starting at %d", 008944 N+1, expected, iFirst); 008945 break; 008946 } 008947 if( checkRef(pCheck, iPage) ) break; 008948 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 008949 checkAppendMsg(pCheck, "failed to get page %d", iPage); 008950 break; 008951 } 008952 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 008953 if( isFreeList ){ 008954 int n = get4byte(&pOvflData[4]); 008955 #ifndef SQLITE_OMIT_AUTOVACUUM 008956 if( pCheck->pBt->autoVacuum ){ 008957 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 008958 } 008959 #endif 008960 if( n>(int)pCheck->pBt->usableSize/4-2 ){ 008961 checkAppendMsg(pCheck, 008962 "freelist leaf count too big on page %d", iPage); 008963 N--; 008964 }else{ 008965 for(i=0; i<n; i++){ 008966 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 008967 #ifndef SQLITE_OMIT_AUTOVACUUM 008968 if( pCheck->pBt->autoVacuum ){ 008969 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 008970 } 008971 #endif 008972 checkRef(pCheck, iFreePage); 008973 } 008974 N -= n; 008975 } 008976 } 008977 #ifndef SQLITE_OMIT_AUTOVACUUM 008978 else{ 008979 /* If this database supports auto-vacuum and iPage is not the last 008980 ** page in this overflow list, check that the pointer-map entry for 008981 ** the following page matches iPage. 008982 */ 008983 if( pCheck->pBt->autoVacuum && N>0 ){ 008984 i = get4byte(pOvflData); 008985 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 008986 } 008987 } 008988 #endif 008989 iPage = get4byte(pOvflData); 008990 sqlite3PagerUnref(pOvflPage); 008991 008992 if( isFreeList && N<(iPage!=0) ){ 008993 checkAppendMsg(pCheck, "free-page count in header is too small"); 008994 } 008995 } 008996 } 008997 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 008998 008999 /* 009000 ** An implementation of a min-heap. 009001 ** 009002 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 009003 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 009004 ** and aHeap[N*2+1]. 009005 ** 009006 ** The heap property is this: Every node is less than or equal to both 009007 ** of its daughter nodes. A consequence of the heap property is that the 009008 ** root node aHeap[1] is always the minimum value currently in the heap. 009009 ** 009010 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 009011 ** the heap, preserving the heap property. The btreeHeapPull() routine 009012 ** removes the root element from the heap (the minimum value in the heap) 009013 ** and then moves other nodes around as necessary to preserve the heap 009014 ** property. 009015 ** 009016 ** This heap is used for cell overlap and coverage testing. Each u32 009017 ** entry represents the span of a cell or freeblock on a btree page. 009018 ** The upper 16 bits are the index of the first byte of a range and the 009019 ** lower 16 bits are the index of the last byte of that range. 009020 */ 009021 static void btreeHeapInsert(u32 *aHeap, u32 x){ 009022 u32 j, i = ++aHeap[0]; 009023 aHeap[i] = x; 009024 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 009025 x = aHeap[j]; 009026 aHeap[j] = aHeap[i]; 009027 aHeap[i] = x; 009028 i = j; 009029 } 009030 } 009031 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 009032 u32 j, i, x; 009033 if( (x = aHeap[0])==0 ) return 0; 009034 *pOut = aHeap[1]; 009035 aHeap[1] = aHeap[x]; 009036 aHeap[x] = 0xffffffff; 009037 aHeap[0]--; 009038 i = 1; 009039 while( (j = i*2)<=aHeap[0] ){ 009040 if( aHeap[j]>aHeap[j+1] ) j++; 009041 if( aHeap[i]<aHeap[j] ) break; 009042 x = aHeap[i]; 009043 aHeap[i] = aHeap[j]; 009044 aHeap[j] = x; 009045 i = j; 009046 } 009047 return 1; 009048 } 009049 009050 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 009051 /* 009052 ** Do various sanity checks on a single page of a tree. Return 009053 ** the tree depth. Root pages return 0. Parents of root pages 009054 ** return 1, and so forth. 009055 ** 009056 ** These checks are done: 009057 ** 009058 ** 1. Make sure that cells and freeblocks do not overlap 009059 ** but combine to completely cover the page. 009060 ** 2. Make sure integer cell keys are in order. 009061 ** 3. Check the integrity of overflow pages. 009062 ** 4. Recursively call checkTreePage on all children. 009063 ** 5. Verify that the depth of all children is the same. 009064 */ 009065 static int checkTreePage( 009066 IntegrityCk *pCheck, /* Context for the sanity check */ 009067 int iPage, /* Page number of the page to check */ 009068 i64 *piMinKey, /* Write minimum integer primary key here */ 009069 i64 maxKey /* Error if integer primary key greater than this */ 009070 ){ 009071 MemPage *pPage = 0; /* The page being analyzed */ 009072 int i; /* Loop counter */ 009073 int rc; /* Result code from subroutine call */ 009074 int depth = -1, d2; /* Depth of a subtree */ 009075 int pgno; /* Page number */ 009076 int nFrag; /* Number of fragmented bytes on the page */ 009077 int hdr; /* Offset to the page header */ 009078 int cellStart; /* Offset to the start of the cell pointer array */ 009079 int nCell; /* Number of cells */ 009080 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 009081 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 009082 ** False if IPK must be strictly less than maxKey */ 009083 u8 *data; /* Page content */ 009084 u8 *pCell; /* Cell content */ 009085 u8 *pCellIdx; /* Next element of the cell pointer array */ 009086 BtShared *pBt; /* The BtShared object that owns pPage */ 009087 u32 pc; /* Address of a cell */ 009088 u32 usableSize; /* Usable size of the page */ 009089 u32 contentOffset; /* Offset to the start of the cell content area */ 009090 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 009091 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 009092 const char *saved_zPfx = pCheck->zPfx; 009093 int saved_v1 = pCheck->v1; 009094 int saved_v2 = pCheck->v2; 009095 u8 savedIsInit = 0; 009096 009097 /* Check that the page exists 009098 */ 009099 pBt = pCheck->pBt; 009100 usableSize = pBt->usableSize; 009101 if( iPage==0 ) return 0; 009102 if( checkRef(pCheck, iPage) ) return 0; 009103 pCheck->zPfx = "Page %d: "; 009104 pCheck->v1 = iPage; 009105 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ 009106 checkAppendMsg(pCheck, 009107 "unable to get the page. error code=%d", rc); 009108 goto end_of_check; 009109 } 009110 009111 /* Clear MemPage.isInit to make sure the corruption detection code in 009112 ** btreeInitPage() is executed. */ 009113 savedIsInit = pPage->isInit; 009114 pPage->isInit = 0; 009115 if( (rc = btreeInitPage(pPage))!=0 ){ 009116 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 009117 checkAppendMsg(pCheck, 009118 "btreeInitPage() returns error code %d", rc); 009119 goto end_of_check; 009120 } 009121 data = pPage->aData; 009122 hdr = pPage->hdrOffset; 009123 009124 /* Set up for cell analysis */ 009125 pCheck->zPfx = "On tree page %d cell %d: "; 009126 contentOffset = get2byteNotZero(&data[hdr+5]); 009127 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 009128 009129 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 009130 ** number of cells on the page. */ 009131 nCell = get2byte(&data[hdr+3]); 009132 assert( pPage->nCell==nCell ); 009133 009134 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 009135 ** immediately follows the b-tree page header. */ 009136 cellStart = hdr + 12 - 4*pPage->leaf; 009137 assert( pPage->aCellIdx==&data[cellStart] ); 009138 pCellIdx = &data[cellStart + 2*(nCell-1)]; 009139 009140 if( !pPage->leaf ){ 009141 /* Analyze the right-child page of internal pages */ 009142 pgno = get4byte(&data[hdr+8]); 009143 #ifndef SQLITE_OMIT_AUTOVACUUM 009144 if( pBt->autoVacuum ){ 009145 pCheck->zPfx = "On page %d at right child: "; 009146 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 009147 } 009148 #endif 009149 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 009150 keyCanBeEqual = 0; 009151 }else{ 009152 /* For leaf pages, the coverage check will occur in the same loop 009153 ** as the other cell checks, so initialize the heap. */ 009154 heap = pCheck->heap; 009155 heap[0] = 0; 009156 } 009157 009158 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 009159 ** integer offsets to the cell contents. */ 009160 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 009161 CellInfo info; 009162 009163 /* Check cell size */ 009164 pCheck->v2 = i; 009165 assert( pCellIdx==&data[cellStart + i*2] ); 009166 pc = get2byteAligned(pCellIdx); 009167 pCellIdx -= 2; 009168 if( pc<contentOffset || pc>usableSize-4 ){ 009169 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 009170 pc, contentOffset, usableSize-4); 009171 doCoverageCheck = 0; 009172 continue; 009173 } 009174 pCell = &data[pc]; 009175 pPage->xParseCell(pPage, pCell, &info); 009176 if( pc+info.nSize>usableSize ){ 009177 checkAppendMsg(pCheck, "Extends off end of page"); 009178 doCoverageCheck = 0; 009179 continue; 009180 } 009181 009182 /* Check for integer primary key out of range */ 009183 if( pPage->intKey ){ 009184 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 009185 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 009186 } 009187 maxKey = info.nKey; 009188 } 009189 009190 /* Check the content overflow list */ 009191 if( info.nPayload>info.nLocal ){ 009192 int nPage; /* Number of pages on the overflow chain */ 009193 Pgno pgnoOvfl; /* First page of the overflow chain */ 009194 assert( pc + info.nSize - 4 <= usableSize ); 009195 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 009196 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 009197 #ifndef SQLITE_OMIT_AUTOVACUUM 009198 if( pBt->autoVacuum ){ 009199 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 009200 } 009201 #endif 009202 checkList(pCheck, 0, pgnoOvfl, nPage); 009203 } 009204 009205 if( !pPage->leaf ){ 009206 /* Check sanity of left child page for internal pages */ 009207 pgno = get4byte(pCell); 009208 #ifndef SQLITE_OMIT_AUTOVACUUM 009209 if( pBt->autoVacuum ){ 009210 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 009211 } 009212 #endif 009213 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 009214 keyCanBeEqual = 0; 009215 if( d2!=depth ){ 009216 checkAppendMsg(pCheck, "Child page depth differs"); 009217 depth = d2; 009218 } 009219 }else{ 009220 /* Populate the coverage-checking heap for leaf pages */ 009221 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 009222 } 009223 } 009224 *piMinKey = maxKey; 009225 009226 /* Check for complete coverage of the page 009227 */ 009228 pCheck->zPfx = 0; 009229 if( doCoverageCheck && pCheck->mxErr>0 ){ 009230 /* For leaf pages, the min-heap has already been initialized and the 009231 ** cells have already been inserted. But for internal pages, that has 009232 ** not yet been done, so do it now */ 009233 if( !pPage->leaf ){ 009234 heap = pCheck->heap; 009235 heap[0] = 0; 009236 for(i=nCell-1; i>=0; i--){ 009237 u32 size; 009238 pc = get2byteAligned(&data[cellStart+i*2]); 009239 size = pPage->xCellSize(pPage, &data[pc]); 009240 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 009241 } 009242 } 009243 /* Add the freeblocks to the min-heap 009244 ** 009245 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 009246 ** is the offset of the first freeblock, or zero if there are no 009247 ** freeblocks on the page. 009248 */ 009249 i = get2byte(&data[hdr+1]); 009250 while( i>0 ){ 009251 int size, j; 009252 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */ 009253 size = get2byte(&data[i+2]); 009254 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */ 009255 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 009256 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 009257 ** big-endian integer which is the offset in the b-tree page of the next 009258 ** freeblock in the chain, or zero if the freeblock is the last on the 009259 ** chain. */ 009260 j = get2byte(&data[i]); 009261 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 009262 ** increasing offset. */ 009263 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ 009264 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */ 009265 i = j; 009266 } 009267 /* Analyze the min-heap looking for overlap between cells and/or 009268 ** freeblocks, and counting the number of untracked bytes in nFrag. 009269 ** 009270 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 009271 ** There is an implied first entry the covers the page header, the cell 009272 ** pointer index, and the gap between the cell pointer index and the start 009273 ** of cell content. 009274 ** 009275 ** The loop below pulls entries from the min-heap in order and compares 009276 ** the start_address against the previous end_address. If there is an 009277 ** overlap, that means bytes are used multiple times. If there is a gap, 009278 ** that gap is added to the fragmentation count. 009279 */ 009280 nFrag = 0; 009281 prev = contentOffset - 1; /* Implied first min-heap entry */ 009282 while( btreeHeapPull(heap,&x) ){ 009283 if( (prev&0xffff)>=(x>>16) ){ 009284 checkAppendMsg(pCheck, 009285 "Multiple uses for byte %u of page %d", x>>16, iPage); 009286 break; 009287 }else{ 009288 nFrag += (x>>16) - (prev&0xffff) - 1; 009289 prev = x; 009290 } 009291 } 009292 nFrag += usableSize - (prev&0xffff) - 1; 009293 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 009294 ** is stored in the fifth field of the b-tree page header. 009295 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 009296 ** number of fragmented free bytes within the cell content area. 009297 */ 009298 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 009299 checkAppendMsg(pCheck, 009300 "Fragmentation of %d bytes reported as %d on page %d", 009301 nFrag, data[hdr+7], iPage); 009302 } 009303 } 009304 009305 end_of_check: 009306 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 009307 releasePage(pPage); 009308 pCheck->zPfx = saved_zPfx; 009309 pCheck->v1 = saved_v1; 009310 pCheck->v2 = saved_v2; 009311 return depth+1; 009312 } 009313 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 009314 009315 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 009316 /* 009317 ** This routine does a complete check of the given BTree file. aRoot[] is 009318 ** an array of pages numbers were each page number is the root page of 009319 ** a table. nRoot is the number of entries in aRoot. 009320 ** 009321 ** A read-only or read-write transaction must be opened before calling 009322 ** this function. 009323 ** 009324 ** Write the number of error seen in *pnErr. Except for some memory 009325 ** allocation errors, an error message held in memory obtained from 009326 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 009327 ** returned. If a memory allocation error occurs, NULL is returned. 009328 */ 009329 char *sqlite3BtreeIntegrityCheck( 009330 Btree *p, /* The btree to be checked */ 009331 int *aRoot, /* An array of root pages numbers for individual trees */ 009332 int nRoot, /* Number of entries in aRoot[] */ 009333 int mxErr, /* Stop reporting errors after this many */ 009334 int *pnErr /* Write number of errors seen to this variable */ 009335 ){ 009336 Pgno i; 009337 IntegrityCk sCheck; 009338 BtShared *pBt = p->pBt; 009339 int savedDbFlags = pBt->db->flags; 009340 char zErr[100]; 009341 VVA_ONLY( int nRef ); 009342 009343 sqlite3BtreeEnter(p); 009344 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 009345 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 009346 assert( nRef>=0 ); 009347 sCheck.pBt = pBt; 009348 sCheck.pPager = pBt->pPager; 009349 sCheck.nPage = btreePagecount(sCheck.pBt); 009350 sCheck.mxErr = mxErr; 009351 sCheck.nErr = 0; 009352 sCheck.mallocFailed = 0; 009353 sCheck.zPfx = 0; 009354 sCheck.v1 = 0; 009355 sCheck.v2 = 0; 009356 sCheck.aPgRef = 0; 009357 sCheck.heap = 0; 009358 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 009359 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 009360 if( sCheck.nPage==0 ){ 009361 goto integrity_ck_cleanup; 009362 } 009363 009364 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 009365 if( !sCheck.aPgRef ){ 009366 sCheck.mallocFailed = 1; 009367 goto integrity_ck_cleanup; 009368 } 009369 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 009370 if( sCheck.heap==0 ){ 009371 sCheck.mallocFailed = 1; 009372 goto integrity_ck_cleanup; 009373 } 009374 009375 i = PENDING_BYTE_PAGE(pBt); 009376 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 009377 009378 /* Check the integrity of the freelist 009379 */ 009380 sCheck.zPfx = "Main freelist: "; 009381 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 009382 get4byte(&pBt->pPage1->aData[36])); 009383 sCheck.zPfx = 0; 009384 009385 /* Check all the tables. 009386 */ 009387 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 009388 pBt->db->flags &= ~SQLITE_CellSizeCk; 009389 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 009390 i64 notUsed; 009391 if( aRoot[i]==0 ) continue; 009392 #ifndef SQLITE_OMIT_AUTOVACUUM 009393 if( pBt->autoVacuum && aRoot[i]>1 ){ 009394 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 009395 } 009396 #endif 009397 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 009398 } 009399 pBt->db->flags = savedDbFlags; 009400 009401 /* Make sure every page in the file is referenced 009402 */ 009403 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 009404 #ifdef SQLITE_OMIT_AUTOVACUUM 009405 if( getPageReferenced(&sCheck, i)==0 ){ 009406 checkAppendMsg(&sCheck, "Page %d is never used", i); 009407 } 009408 #else 009409 /* If the database supports auto-vacuum, make sure no tables contain 009410 ** references to pointer-map pages. 009411 */ 009412 if( getPageReferenced(&sCheck, i)==0 && 009413 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 009414 checkAppendMsg(&sCheck, "Page %d is never used", i); 009415 } 009416 if( getPageReferenced(&sCheck, i)!=0 && 009417 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 009418 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 009419 } 009420 #endif 009421 } 009422 009423 /* Clean up and report errors. 009424 */ 009425 integrity_ck_cleanup: 009426 sqlite3PageFree(sCheck.heap); 009427 sqlite3_free(sCheck.aPgRef); 009428 if( sCheck.mallocFailed ){ 009429 sqlite3StrAccumReset(&sCheck.errMsg); 009430 sCheck.nErr++; 009431 } 009432 *pnErr = sCheck.nErr; 009433 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); 009434 /* Make sure this analysis did not leave any unref() pages. */ 009435 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 009436 sqlite3BtreeLeave(p); 009437 return sqlite3StrAccumFinish(&sCheck.errMsg); 009438 } 009439 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 009440 009441 /* 009442 ** Return the full pathname of the underlying database file. Return 009443 ** an empty string if the database is in-memory or a TEMP database. 009444 ** 009445 ** The pager filename is invariant as long as the pager is 009446 ** open so it is safe to access without the BtShared mutex. 009447 */ 009448 const char *sqlite3BtreeGetFilename(Btree *p){ 009449 assert( p->pBt->pPager!=0 ); 009450 return sqlite3PagerFilename(p->pBt->pPager, 1); 009451 } 009452 009453 /* 009454 ** Return the pathname of the journal file for this database. The return 009455 ** value of this routine is the same regardless of whether the journal file 009456 ** has been created or not. 009457 ** 009458 ** The pager journal filename is invariant as long as the pager is 009459 ** open so it is safe to access without the BtShared mutex. 009460 */ 009461 const char *sqlite3BtreeGetJournalname(Btree *p){ 009462 assert( p->pBt->pPager!=0 ); 009463 return sqlite3PagerJournalname(p->pBt->pPager); 009464 } 009465 009466 /* 009467 ** Return non-zero if a transaction is active. 009468 */ 009469 int sqlite3BtreeIsInTrans(Btree *p){ 009470 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 009471 return (p && (p->inTrans==TRANS_WRITE)); 009472 } 009473 009474 #ifndef SQLITE_OMIT_WAL 009475 /* 009476 ** Run a checkpoint on the Btree passed as the first argument. 009477 ** 009478 ** Return SQLITE_LOCKED if this or any other connection has an open 009479 ** transaction on the shared-cache the argument Btree is connected to. 009480 ** 009481 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 009482 */ 009483 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 009484 int rc = SQLITE_OK; 009485 if( p ){ 009486 BtShared *pBt = p->pBt; 009487 sqlite3BtreeEnter(p); 009488 if( pBt->inTransaction!=TRANS_NONE ){ 009489 rc = SQLITE_LOCKED; 009490 }else{ 009491 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 009492 } 009493 sqlite3BtreeLeave(p); 009494 } 009495 return rc; 009496 } 009497 #endif 009498 009499 /* 009500 ** Return non-zero if a read (or write) transaction is active. 009501 */ 009502 int sqlite3BtreeIsInReadTrans(Btree *p){ 009503 assert( p ); 009504 assert( sqlite3_mutex_held(p->db->mutex) ); 009505 return p->inTrans!=TRANS_NONE; 009506 } 009507 009508 int sqlite3BtreeIsInBackup(Btree *p){ 009509 assert( p ); 009510 assert( sqlite3_mutex_held(p->db->mutex) ); 009511 return p->nBackup!=0; 009512 } 009513 009514 /* 009515 ** This function returns a pointer to a blob of memory associated with 009516 ** a single shared-btree. The memory is used by client code for its own 009517 ** purposes (for example, to store a high-level schema associated with 009518 ** the shared-btree). The btree layer manages reference counting issues. 009519 ** 009520 ** The first time this is called on a shared-btree, nBytes bytes of memory 009521 ** are allocated, zeroed, and returned to the caller. For each subsequent 009522 ** call the nBytes parameter is ignored and a pointer to the same blob 009523 ** of memory returned. 009524 ** 009525 ** If the nBytes parameter is 0 and the blob of memory has not yet been 009526 ** allocated, a null pointer is returned. If the blob has already been 009527 ** allocated, it is returned as normal. 009528 ** 009529 ** Just before the shared-btree is closed, the function passed as the 009530 ** xFree argument when the memory allocation was made is invoked on the 009531 ** blob of allocated memory. The xFree function should not call sqlite3_free() 009532 ** on the memory, the btree layer does that. 009533 */ 009534 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 009535 BtShared *pBt = p->pBt; 009536 sqlite3BtreeEnter(p); 009537 if( !pBt->pSchema && nBytes ){ 009538 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 009539 pBt->xFreeSchema = xFree; 009540 } 009541 sqlite3BtreeLeave(p); 009542 return pBt->pSchema; 009543 } 009544 009545 /* 009546 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 009547 ** btree as the argument handle holds an exclusive lock on the 009548 ** sqlite_master table. Otherwise SQLITE_OK. 009549 */ 009550 int sqlite3BtreeSchemaLocked(Btree *p){ 009551 int rc; 009552 assert( sqlite3_mutex_held(p->db->mutex) ); 009553 sqlite3BtreeEnter(p); 009554 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 009555 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 009556 sqlite3BtreeLeave(p); 009557 return rc; 009558 } 009559 009560 009561 #ifndef SQLITE_OMIT_SHARED_CACHE 009562 /* 009563 ** Obtain a lock on the table whose root page is iTab. The 009564 ** lock is a write lock if isWritelock is true or a read lock 009565 ** if it is false. 009566 */ 009567 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 009568 int rc = SQLITE_OK; 009569 assert( p->inTrans!=TRANS_NONE ); 009570 if( p->sharable ){ 009571 u8 lockType = READ_LOCK + isWriteLock; 009572 assert( READ_LOCK+1==WRITE_LOCK ); 009573 assert( isWriteLock==0 || isWriteLock==1 ); 009574 009575 sqlite3BtreeEnter(p); 009576 rc = querySharedCacheTableLock(p, iTab, lockType); 009577 if( rc==SQLITE_OK ){ 009578 rc = setSharedCacheTableLock(p, iTab, lockType); 009579 } 009580 sqlite3BtreeLeave(p); 009581 } 009582 return rc; 009583 } 009584 #endif 009585 009586 #ifndef SQLITE_OMIT_INCRBLOB 009587 /* 009588 ** Argument pCsr must be a cursor opened for writing on an 009589 ** INTKEY table currently pointing at a valid table entry. 009590 ** This function modifies the data stored as part of that entry. 009591 ** 009592 ** Only the data content may only be modified, it is not possible to 009593 ** change the length of the data stored. If this function is called with 009594 ** parameters that attempt to write past the end of the existing data, 009595 ** no modifications are made and SQLITE_CORRUPT is returned. 009596 */ 009597 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 009598 int rc; 009599 assert( cursorOwnsBtShared(pCsr) ); 009600 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 009601 assert( pCsr->curFlags & BTCF_Incrblob ); 009602 009603 rc = restoreCursorPosition(pCsr); 009604 if( rc!=SQLITE_OK ){ 009605 return rc; 009606 } 009607 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 009608 if( pCsr->eState!=CURSOR_VALID ){ 009609 return SQLITE_ABORT; 009610 } 009611 009612 /* Save the positions of all other cursors open on this table. This is 009613 ** required in case any of them are holding references to an xFetch 009614 ** version of the b-tree page modified by the accessPayload call below. 009615 ** 009616 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 009617 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 009618 ** saveAllCursors can only return SQLITE_OK. 009619 */ 009620 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 009621 assert( rc==SQLITE_OK ); 009622 009623 /* Check some assumptions: 009624 ** (a) the cursor is open for writing, 009625 ** (b) there is a read/write transaction open, 009626 ** (c) the connection holds a write-lock on the table (if required), 009627 ** (d) there are no conflicting read-locks, and 009628 ** (e) the cursor points at a valid row of an intKey table. 009629 */ 009630 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 009631 return SQLITE_READONLY; 009632 } 009633 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 009634 && pCsr->pBt->inTransaction==TRANS_WRITE ); 009635 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 009636 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 009637 assert( pCsr->apPage[pCsr->iPage]->intKey ); 009638 009639 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 009640 } 009641 009642 /* 009643 ** Mark this cursor as an incremental blob cursor. 009644 */ 009645 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 009646 pCur->curFlags |= BTCF_Incrblob; 009647 pCur->pBtree->hasIncrblobCur = 1; 009648 } 009649 #endif 009650 009651 /* 009652 ** Set both the "read version" (single byte at byte offset 18) and 009653 ** "write version" (single byte at byte offset 19) fields in the database 009654 ** header to iVersion. 009655 */ 009656 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 009657 BtShared *pBt = pBtree->pBt; 009658 int rc; /* Return code */ 009659 009660 assert( iVersion==1 || iVersion==2 ); 009661 009662 /* If setting the version fields to 1, do not automatically open the 009663 ** WAL connection, even if the version fields are currently set to 2. 009664 */ 009665 pBt->btsFlags &= ~BTS_NO_WAL; 009666 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 009667 009668 rc = sqlite3BtreeBeginTrans(pBtree, 0); 009669 if( rc==SQLITE_OK ){ 009670 u8 *aData = pBt->pPage1->aData; 009671 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 009672 rc = sqlite3BtreeBeginTrans(pBtree, 2); 009673 if( rc==SQLITE_OK ){ 009674 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 009675 if( rc==SQLITE_OK ){ 009676 aData[18] = (u8)iVersion; 009677 aData[19] = (u8)iVersion; 009678 } 009679 } 009680 } 009681 } 009682 009683 pBt->btsFlags &= ~BTS_NO_WAL; 009684 return rc; 009685 } 009686 009687 /* 009688 ** Return true if the cursor has a hint specified. This routine is 009689 ** only used from within assert() statements 009690 */ 009691 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 009692 return (pCsr->hints & mask)!=0; 009693 } 009694 009695 /* 009696 ** Return true if the given Btree is read-only. 009697 */ 009698 int sqlite3BtreeIsReadonly(Btree *p){ 009699 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 009700 } 009701 009702 /* 009703 ** Return the size of the header added to each page by this module. 009704 */ 009705 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 009706 009707 #if !defined(SQLITE_OMIT_SHARED_CACHE) 009708 /* 009709 ** Return true if the Btree passed as the only argument is sharable. 009710 */ 009711 int sqlite3BtreeSharable(Btree *p){ 009712 return p->sharable; 009713 } 009714 009715 /* 009716 ** Return the number of connections to the BtShared object accessed by 009717 ** the Btree handle passed as the only argument. For private caches 009718 ** this is always 1. For shared caches it may be 1 or greater. 009719 */ 009720 int sqlite3BtreeConnectionCount(Btree *p){ 009721 testcase( p->sharable ); 009722 return p->pBt->nRef; 009723 } 009724 #endif